geom/doc/salome/gui/GEOM/input/section_operation.doc

48 lines
1.8 KiB
Plaintext
Raw Permalink Normal View History

/*!
\page section_opeartion_page Section
2013-12-18 20:23:59 +06:00
\b Section operation creates an edge or a wire representing the intersection of surfaces of two shapes.
2013-12-18 20:23:59 +06:00
To produce it, select in the main menu <b>Operations - > Boolean - > Section</b>
\image html neo-section.png "Section dialog"
2013-12-18 20:23:59 +06:00
In this dialog:
- Input or accept the default \b Name of the resulting shape.
- Click the arrow button and select in the Object Browser or in the Viewer the intersecting <b>Objects</b>.
- Activate the corresponding check-box if you wish to <b> Detect Self-intersections </b>.
- Activate \ref restore_presentation_parameters_page "Advanced options" if required.
- Press "Apply" or "Apply & Close" button to get the result (EDGE or WIRE).
\note This algorithm does not find all types of self-intersections. It is tuned
to detect vertex/vertex, vertex/edge, edge/edge, vertex/face and edge/face
intersections. Face/face intersections detection is switched off as it
is a time-consuming operation that gives an impact on performance. To find
2013-12-18 20:23:59 +06:00
all self-intersections use \ref check_self_intersections_page
"Detect Self-intersection tool".
2013-12-18 20:23:59 +06:00
This operation can be performed using a <b>TUI Command:</b>
<em>geompy.MakeSection(s1, s2, checkSelfInte)</em>
<b>Arguments:</b> Name + 2 shapes + an optional flag for self-intersection check.
2012-08-09 13:58:02 +06:00
<b>Example:</b>
2009-02-13 17:16:39 +05:00
\image html fusesn1.png "The initial shapes"
2009-02-13 17:16:39 +05:00
\image html sectionsn.png "The resulting object"
Our <b>TUI Scripts</b> provide you with useful examples of the use of
\ref tui_section "Boolean Operations".
<b> More details </b>
2013-12-18 20:23:59 +06:00
Please refer to <a href="SALOME_BOA_PA.pdf">this document</a> for a detailed description of Boolean operations.
It provides a general review of the Partition and Boolean
operations algorithms, describes the usage methodology and highlights
major limitations of these operations.
*/