geom/src/OBJECT/GEOM_WireframeFace.cxx

466 lines
14 KiB
C++
Raw Normal View History

#include "GEOM_WireframeFace.h"
#include <vtkObjectFactory.h>
#include <vtkPoints.h>
#include <vtkCellArray.h>
#include <vtkPolyDataMapper.h>
#include <vtkPolyData.h>
#include <Precision.hxx>
#include <BRepTools.hxx>
#include <TopExp_Explorer.hxx>
#include <Geom2dHatch_Hatcher.hxx>
#include <Geom2dHatch_Intersector.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <BRep_Tool.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <Geom2d_Line.hxx>
#include <gp_Dir2d.hxx>
#include <gp_Pnt2d.hxx>
#include <Geom2dHatch_Hatcher.hxx>
#include <HatchGen_Domain.hxx>
#include <Adaptor3d_HCurve.hxx>
vtkStandardNewMacro(GEOM_WireframeFace);
GEOM_WireframeFace::GEOM_WireframeFace():
NbIso(1),
Discret(15)
{
}
GEOM_WireframeFace::~GEOM_WireframeFace()
{
}
void
GEOM_WireframeFace::
Execute()
{
vtkPolyData* aPolyData = GetOutput();
aPolyData->Allocate();
vtkPoints* aPts = vtkPoints::New();
aPolyData->SetPoints(aPts);
aPts->Delete();
TFaceSet::Iterator anIter(myFaceSet);
for(; anIter.More(); anIter.Next()){
const TopoDS_Face& aFace = anIter.Value();
OCC2VTK(aFace,aPolyData,aPts,NbIso,Discret);
}
}
void
GEOM_WireframeFace::
OCC2VTK(const TopoDS_Face& theFace,
vtkPolyData* thePolyData,
vtkPoints* thePts,
const int theNbIso,
const int theDiscret)
{
TopoDS_Face aFace = theFace;
aFace.Orientation(TopAbs_FORWARD);
CreateIso(aFace,theNbIso,theDiscret,thePolyData,thePts);
}
void
GEOM_WireframeFace::
CreateIso(const TopoDS_Face& theFace,
const int theNbIso,
const int theDiscret,
vtkPolyData* thePolyData,
vtkPoints* thePts)
{
// Constants for iso building
static Standard_Real INTERSECTOR_CONFUSION = 1.e-10 ; // -8 ;
static Standard_Real INTERSECTOR_TANGENCY = 1.e-10 ; // -8 ;
static Standard_Real HATHCER_CONFUSION_2D = 1.e-8 ;
static Standard_Real HATHCER_CONFUSION_3D = 1.e-8 ;
Geom2dHatch_Hatcher
aHatcher(Geom2dHatch_Intersector(INTERSECTOR_CONFUSION,
INTERSECTOR_TANGENCY),
HATHCER_CONFUSION_2D,
HATHCER_CONFUSION_3D,
Standard_True,
Standard_False);
Standard_Real anUMin, anUMax, aVMin, aVMax;
TColStd_Array1OfReal anUPrm(1, theNbIso), aVPrm(1, theNbIso);
TColStd_Array1OfInteger anUInd(1, theNbIso), aVInd(1, theNbIso);
anUInd.Init(0);
aVInd.Init(0);
//-----------------------------------------------------------------------
// If the Min Max bounds are infinite, there are bounded to Infinite
// value.
//-----------------------------------------------------------------------
BRepTools::UVBounds(theFace, anUMin, anUMax, aVMin, aVMax) ;
Standard_Boolean InfiniteUMin = Precision::IsNegativeInfinite (anUMin) ;
Standard_Boolean InfiniteUMax = Precision::IsPositiveInfinite (anUMax) ;
Standard_Boolean InfiniteVMin = Precision::IsNegativeInfinite (aVMin) ;
Standard_Boolean InfiniteVMax = Precision::IsPositiveInfinite (aVMax) ;
static float VTKINFINITE = 1.0E38;
if(InfiniteUMin && InfiniteUMax){
anUMin = - VTKINFINITE ;
anUMax = VTKINFINITE ;
}else if(InfiniteUMin){
anUMin = anUMax - VTKINFINITE ;
}else if(InfiniteUMax){
anUMax = anUMin + VTKINFINITE ;
}
if(InfiniteVMin && InfiniteVMax){
aVMin = - VTKINFINITE ;
aVMax = VTKINFINITE ;
}else if(InfiniteVMin){
aVMin = aVMax - VTKINFINITE ;
}else if(InfiniteVMax){
aVMax = aVMin + VTKINFINITE ;
}
//-----------------------------------------------------------------------
// Retreiving the edges and loading them into the hatcher.
//-----------------------------------------------------------------------
TopExp_Explorer ExpEdges(theFace, TopAbs_EDGE);
for(; ExpEdges.More(); ExpEdges.Next()){
const TopoDS_Edge& anEdge = TopoDS::Edge(ExpEdges.Current());
Standard_Real U1, U2 ;
const Handle(Geom2d_Curve) PCurve =
BRep_Tool::CurveOnSurface(anEdge, theFace, U1, U2) ;
if(PCurve.IsNull() || U1 == U2)
return;
//-- Test if a TrimmedCurve is necessary
if(Abs(PCurve->FirstParameter()-U1) <= Precision::PConfusion() &&
Abs(PCurve->LastParameter()-U2) <= Precision::PConfusion())
{
aHatcher.AddElement(PCurve, anEdge.Orientation()) ;
}else{
if(!PCurve->IsPeriodic()){
Handle(Geom2d_TrimmedCurve) TrimPCurve =
Handle(Geom2d_TrimmedCurve)::DownCast(PCurve);
if(!TrimPCurve.IsNull()){
Handle_Geom2d_Curve aBasisCurve = TrimPCurve->BasisCurve();
if(aBasisCurve->FirstParameter()-U1 > Precision::PConfusion() ||
U2-aBasisCurve->LastParameter() > Precision::PConfusion())
{
aHatcher.AddElement(PCurve, anEdge.Orientation()) ;
return;
}
}else{
if(PCurve->FirstParameter()-U1 > Precision::PConfusion()){
U1=PCurve->FirstParameter();
}
if(U2-PCurve->LastParameter() > Precision::PConfusion()){
U2=PCurve->LastParameter();
}
}
}
Handle(Geom2d_TrimmedCurve) TrimPCurve =
new Geom2d_TrimmedCurve(PCurve, U1, U2);
aHatcher.AddElement(TrimPCurve, anEdge.Orientation());
}
}
//-----------------------------------------------------------------------
// Loading and trimming the hatchings.
//-----------------------------------------------------------------------
Standard_Integer IIso;
Standard_Real DeltaU = Abs(anUMax - anUMin) ;
Standard_Real DeltaV = Abs(aVMax - aVMin) ;
Standard_Real confusion = Min(DeltaU, DeltaV) * HATHCER_CONFUSION_3D ;
aHatcher.Confusion3d (confusion) ;
Standard_Real StepU = DeltaU / (Standard_Real)theNbIso;
if(StepU > confusion){
Standard_Real UPrm = anUMin + StepU / 2.;
gp_Dir2d Dir(0., 1.) ;
for(IIso = 1 ; IIso <= theNbIso ; IIso++) {
anUPrm(IIso) = UPrm ;
gp_Pnt2d Ori (UPrm, 0.) ;
Geom2dAdaptor_Curve HCur (new Geom2d_Line (Ori, Dir)) ;
anUInd(IIso) = aHatcher.AddHatching (HCur) ;
UPrm += StepU ;
}
}
Standard_Real StepV = DeltaV / (Standard_Real) theNbIso ;
if(StepV > confusion){
Standard_Real VPrm = aVMin + StepV / 2.;
gp_Dir2d Dir(1., 0.);
for(IIso = 1 ; IIso <= theNbIso ; IIso++){
aVPrm(IIso) = VPrm;
gp_Pnt2d Ori (0., VPrm);
Geom2dAdaptor_Curve HCur(new Geom2d_Line (Ori, Dir));
aVInd(IIso) = aHatcher.AddHatching (HCur) ;
VPrm += StepV ;
}
}
//-----------------------------------------------------------------------
// Computation.
//-----------------------------------------------------------------------
aHatcher.Trim() ;
Standard_Integer aNbDom = 0 ; // for debug purpose
for(IIso = 1 ; IIso <= theNbIso ; IIso++){
Standard_Integer Index ;
Index = anUInd(IIso) ;
if(Index != 0){
if(aHatcher.TrimDone(Index) && !aHatcher.TrimFailed(Index)){
aHatcher.ComputeDomains(Index);
if(aHatcher.IsDone (Index))
aNbDom = aHatcher.NbDomains (Index);
}
}
Index = aVInd(IIso);
if(Index != 0){
if(aHatcher.TrimDone (Index) && !aHatcher.TrimFailed(Index)){
aHatcher.ComputeDomains (Index);
if(aHatcher.IsDone (Index))
aNbDom = aHatcher.NbDomains (Index);
}
}
}
//-----------------------------------------------------------------------
// Push iso lines in vtk kernel
//-----------------------------------------------------------------------
for(Standard_Integer UIso = anUPrm.Lower() ; UIso <= anUPrm.Upper(); UIso++){
Standard_Integer UInd = anUInd.Value(UIso);
if(UInd != 0){
Standard_Real UPrm = anUPrm.Value(UIso);
if(aHatcher.IsDone(UInd)){
Standard_Integer NbDom = aHatcher.NbDomains(UInd);
for(Standard_Integer IDom = 1 ; IDom <= NbDom ; IDom++){
const HatchGen_Domain& Dom = aHatcher.Domain(UInd, IDom) ;
Standard_Real V1 = Dom.HasFirstPoint()? Dom.FirstPoint().Parameter(): aVMin - VTKINFINITE;
Standard_Real V2 = Dom.HasSecondPoint()? Dom.SecondPoint().Parameter(): aVMax + VTKINFINITE;
CreateIso_(theFace, GeomAbs_IsoU, UPrm, V1, V2, theDiscret, thePolyData, thePts);
}
}
}
}
for(Standard_Integer VIso = aVPrm.Lower() ; VIso <= aVPrm.Upper(); VIso++){
Standard_Integer VInd = aVInd.Value(VIso);
if(VInd != 0){
Standard_Real VPrm = aVPrm.Value(VIso);
if(aHatcher.IsDone (VInd)){
Standard_Integer NbDom = aHatcher.NbDomains(VInd);
for (Standard_Integer IDom = 1 ; IDom <= NbDom ; IDom++){
const HatchGen_Domain& Dom = aHatcher.Domain(VInd, IDom);
Standard_Real U1 = Dom.HasFirstPoint()? Dom.FirstPoint().Parameter(): aVMin - VTKINFINITE;
Standard_Real U2 = Dom.HasSecondPoint()? Dom.SecondPoint().Parameter(): aVMax + VTKINFINITE;
CreateIso_(theFace, GeomAbs_IsoV, VPrm, U1, U2, theDiscret, thePolyData, thePts);
}
}
}
}
}
void
GEOM_WireframeFace::
CreateIso_(const TopoDS_Face& theFace,
GeomAbs_IsoType theIsoType,
Standard_Real Par,
Standard_Real T1,
Standard_Real T2,
const int theDiscret,
vtkPolyData* thePolyData,
vtkPoints* thePts)
{
Standard_Real U1, U2, V1, V2, stepU=0., stepV=0.;
Standard_Integer j;
gp_Pnt P;
TopLoc_Location aLoc;
const Handle(Geom_Surface)& S = BRep_Tool::Surface(theFace,aLoc);
if(!S.IsNull()){
BRepAdaptor_Surface S(theFace,Standard_False);
GeomAbs_SurfaceType SurfType = S.GetType();
GeomAbs_CurveType CurvType = GeomAbs_OtherCurve;
Standard_Integer Intrv, nbIntv;
Standard_Integer nbUIntv = S.NbUIntervals(GeomAbs_CN);
Standard_Integer nbVIntv = S.NbVIntervals(GeomAbs_CN);
TColStd_Array1OfReal TI(1,Max(nbUIntv, nbVIntv)+1);
if(theIsoType == GeomAbs_IsoU){
S.VIntervals(TI, GeomAbs_CN);
V1 = Max(T1, TI(1));
V2 = Min(T2, TI(2));
U1 = Par;
U2 = Par;
stepU = 0;
nbIntv = nbVIntv;
}else{
S.UIntervals(TI, GeomAbs_CN);
U1 = Max(T1, TI(1));
U2 = Min(T2, TI(2));
V1 = Par;
V2 = Par;
stepV = 0;
nbIntv = nbUIntv;
}
S.D0(U1,V1,P);
MoveTo(P,thePts);
for(Intrv = 1; Intrv <= nbIntv; Intrv++){
if(TI(Intrv) <= T1 && TI(Intrv + 1) <= T1)
continue;
if(TI(Intrv) >= T2 && TI(Intrv + 1) >= T2)
continue;
if(theIsoType == GeomAbs_IsoU){
V1 = Max(T1, TI(Intrv));
V2 = Min(T2, TI(Intrv + 1));
stepV = (V2 - V1) / theDiscret;
}else{
U1 = Max(T1, TI(Intrv));
U2 = Min(T2, TI(Intrv + 1));
stepU = (U2 - U1) / theDiscret;
}
switch (SurfType) {
case GeomAbs_Plane :
break;
case GeomAbs_Cylinder :
case GeomAbs_Cone :
if(theIsoType == GeomAbs_IsoV){
for(j = 1; j < theDiscret; j++){
U1 += stepU;
V1 += stepV;
S.D0(U1,V1,P);
DrawTo(P,thePolyData,thePts);
}
}
break;
case GeomAbs_Sphere :
case GeomAbs_Torus :
case GeomAbs_OffsetSurface :
case GeomAbs_OtherSurface :
for(j = 1; j < theDiscret; j++){
U1 += stepU;
V1 += stepV;
S.D0(U1,V1,P);
DrawTo(P,thePolyData,thePts);
}
break;
case GeomAbs_BezierSurface :
case GeomAbs_BSplineSurface :
for(j = 1; j <= theDiscret/2; j++){
Standard_Real aStep = (theIsoType == GeomAbs_IsoV) ? stepU*2. : stepV*2.;
CreateIso__(S, theIsoType, U1, V1, aStep, thePolyData, thePts);
U1 += stepU*2.;
V1 += stepV*2.;
}
break;
case GeomAbs_SurfaceOfExtrusion :
case GeomAbs_SurfaceOfRevolution :
if((theIsoType == GeomAbs_IsoV && SurfType == GeomAbs_SurfaceOfRevolution) ||
(theIsoType == GeomAbs_IsoU && SurfType == GeomAbs_SurfaceOfExtrusion))
{
if(SurfType == GeomAbs_SurfaceOfExtrusion)
break;
for(j = 1; j < theDiscret; j++){
U1 += stepU;
V1 += stepV;
S.D0(U1,V1,P);
DrawTo(P,thePolyData,thePts);
}
}else{
CurvType = (S.BasisCurve())->GetType();
switch(CurvType){
case GeomAbs_Line :
break;
case GeomAbs_Circle :
case GeomAbs_Ellipse :
for (j = 1; j < theDiscret; j++) {
U1 += stepU;
V1 += stepV;
S.D0(U1,V1,P);
DrawTo(P,thePolyData,thePts);
}
break;
case GeomAbs_Parabola :
case GeomAbs_Hyperbola :
case GeomAbs_BezierCurve :
case GeomAbs_BSplineCurve :
case GeomAbs_OtherCurve :
for(j = 1; j <= theDiscret/2; j++){
Standard_Real aStep = (theIsoType == GeomAbs_IsoV) ? stepU*2. : stepV*2.;
CreateIso__(S, theIsoType, U1, V1, aStep, thePolyData, thePts);
U1 += stepU*2.;
V1 += stepV*2.;
}
break;
}
}
}
}
S.D0(U2,V2,P);
DrawTo(P,thePolyData,thePts);
}
}
void
GEOM_WireframeFace::
CreateIso__(const BRepAdaptor_Surface& theSurface,
GeomAbs_IsoType theIsoType,
Standard_Real& theU,
Standard_Real& theV,
Standard_Real theStep,
vtkPolyData* thePolyData,
vtkPoints* thePts)
{
gp_Pnt Pl, Pr, Pm;
if (theIsoType == GeomAbs_IsoU) {
theSurface.D0(theU, theV, Pl);
theSurface.D0(theU, theV + theStep/2., Pm);
theSurface.D0(theU, theV + theStep, Pr);
} else {
theSurface.D0(theU, theV, Pl);
theSurface.D0(theU + theStep/2., theV, Pm);
theSurface.D0(theU + theStep, theV, Pr);
}
static Standard_Real ISO_RATIO = 1.001;
if (Pm.Distance(Pl) + Pm.Distance(Pr) <= ISO_RATIO*Pl.Distance(Pr)) {
DrawTo(Pr,thePolyData,thePts);
} else {
if (theIsoType == GeomAbs_IsoU) {
CreateIso__(theSurface, theIsoType, theU, theV, theStep/2, thePolyData, thePts);
Standard_Real aLocalV = theV + theStep/2 ;
CreateIso__(theSurface, theIsoType, theU, aLocalV , theStep/2, thePolyData, thePts);
} else {
CreateIso__(theSurface, theIsoType, theU, theV, theStep/2, thePolyData, thePts);
Standard_Real aLocalU = theU + theStep/2 ;
CreateIso__(theSurface, theIsoType, aLocalU , theV, theStep/2, thePolyData, thePts);
}
}
}