geom/src/OBJECT/GEOM_OCCReader.cxx

969 lines
27 KiB
C++
Raw Normal View History

2003-05-12 21:09:12 +06:00
using namespace std;
// File : GEOM_OCCReader.h
// Created : Wed Feb 20 17:24:59 2002
// Author : Christophe ATTANASIO
// Project : SALOME
// Module : GEOM
// Copyright : Open CASCADE 2002
// $Header$
#include "GEOM_OCCReader.h"
// SALOME Includes
#include "utilities.h"
// VTK Includes
#include <vtkObjectFactory.h>
#include <vtkMergePoints.h>
// OpenCASCADE Includes
#include <BRepAdaptor_Surface.hxx>
#include <TopExp_Explorer.hxx>
#include <BRepMesh_IncrementalMesh.hxx>
#include <Poly_Triangulation.hxx>
#include <Poly_Polygon3D.hxx>
#include <BRep_Tool.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Wire.hxx>
#include <BRepBndLib.hxx>
#include <TopoDS.hxx>
#include <TopAbs.hxx>
#include <Precision.hxx>
#include <BRepTools.hxx>
#include <BRep_Tool.hxx>
#include <Geom2dAdaptor_Curve.hxx>
#include <Geom2dHatch_Intersector.hxx>
#include <Geom2dHatch_Hatcher.hxx>
#include <Geom2d_Curve.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2d_TrimmedCurve.hxx>
#include <HatchGen_Domain.hxx>
#include <GeomAbs_IsoType.hxx>
#include <Precision.hxx>
#include <TopAbs_ShapeEnum.hxx>
#include <TopExp_Explorer.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Edge.hxx>
#include <gp_Dir2d.hxx>
#include <gp_Pnt2d.hxx>
#include <TColStd_Array1OfInteger.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <Adaptor3d_HCurve.hxx>
#define MAX2(X, Y) ( Abs(X) > Abs(Y)? Abs(X) : Abs(Y) )
#define MAX3(X, Y, Z) ( MAX2 ( MAX2(X,Y) , Z) )
// Constante for iso building
static Standard_Real IntersectorConfusion = 1.e-10 ; // -8 ;
static Standard_Real IntersectorTangency = 1.e-10 ; // -8 ;
static Standard_Real HatcherConfusion2d = 1.e-8 ;
static Standard_Real HatcherConfusion3d = 1.e-8 ;
static Standard_Integer lastVTKpoint = 0;
static Standard_Integer PlotCount = 0;
static Standard_Real IsoRatio = 1.001;
static Standard_Integer MaxPlotCount = 5;
//=======================================================================
// Function : New
// Purpose :
//=======================================================================
GEOM_OCCReader* GEOM_OCCReader::New()
{
vtkObject* ret = vtkObjectFactory::CreateInstance("GEOM_OCCReader");
if(ret) {
return (GEOM_OCCReader*)ret;
}
return new GEOM_OCCReader;
}
//=======================================================================
// Function : GEOM_OCCReader
// Purpose :
//=======================================================================
GEOM_OCCReader::GEOM_OCCReader()
{
//this->myShape = NULL;
this->amode = 0;
this->forced = Standard_False;
this->discretiso = 15;
this->nbisos = 1;
}
//=======================================================================
// Function : ~GEOM_OCCReader
// Purpose :
//=======================================================================
GEOM_OCCReader::~GEOM_OCCReader()
{
}
//=======================================================================
// Function : Execute
// Purpose :
//=======================================================================
void GEOM_OCCReader::Execute() {
vtkPolyData* output = this->GetOutput();
vtkPoints* Pts = NULL;
vtkCellArray* Cells = NULL;
TopLoc_Location aLoc;
// Allocation
Pts = vtkPoints::New();
Cells = vtkCellArray::New();
//Compute number of triangles and points
Standard_Integer nbpoly=0,nbpts=0;
if(amode==1) {
//for shading
if(myShape.ShapeType() == TopAbs_FACE) {
// whole FACE
const TopoDS_Face& aFace = TopoDS::Face(myShape);
Handle(Poly_Triangulation) aPoly = BRep_Tool::Triangulation(aFace,aLoc);
if(aPoly.IsNull()) {
Pts->Delete();
Cells->Delete();
return;
}
nbpts = aPoly->NbNodes();
nbpoly = aPoly->NbTriangles();
Pts->SetNumberOfPoints(nbpts);
Cells->Allocate(Cells->EstimateSize(nbpoly,3));
}
else {
Cells->Delete();
Pts->Delete();
return;
}
}
// Start computation
if(amode == 0) {
ComputeWireframe(Pts,Cells);
output->SetPoints(Pts);
output->SetLines(Cells);
output->Squeeze();
}
else {
if(myShape.ShapeType() == TopAbs_FACE) {
ComputeShading(Pts,Cells);
output->SetPoints(Pts);
output->SetPolys(Cells);
output->Squeeze();
}
}
Pts->Delete();
Cells->Delete();
}
//=======================================================================
// Function : ComputeWireframe
// Purpose : Compute the shape in CAD wireframe mode
//=======================================================================
void GEOM_OCCReader::ComputeWireframe(vtkPoints* Pts,vtkCellArray* Cells){
// Check the type of the shape:
if(myShape.ShapeType() == TopAbs_FACE) {
// Face
TransferFaceWData(TopoDS::Face(myShape),Pts,Cells);
} else if(myShape.ShapeType() == TopAbs_EDGE) {
// Edge
TransferEdgeWData(TopoDS::Edge(myShape),Pts,Cells);
} else {
if(myShape.ShapeType() == TopAbs_VERTEX) {
// Vertex
TransferVertexWData(TopoDS::Vertex(myShape),Pts,Cells);
}
}
}
//=======================================================================
// Function : TransferFaceWData
// Purpose : Transfert wireframe data for FACE
//=======================================================================
void GEOM_OCCReader::TransferFaceWData(const TopoDS_Face& aFace,
vtkPoints* Pts,
vtkCellArray* Cells)
{
TopoDS_Face aCopyFace = aFace;
aCopyFace.Orientation (TopAbs_FORWARD);
createISO(aCopyFace,Precision::Infinite(),1,Pts,Cells);
}
//=======================================================================
// Function : createISO
// Purpose : Create ISO for Face Wireframe representation
//=======================================================================
void GEOM_OCCReader::createISO (const TopoDS_Face& TopologicalFace,
const Standard_Real Infinite,
const Standard_Integer NbIsos,
vtkPoints* Pts,
vtkCellArray* Cell)
{
Geom2dHatch_Hatcher aHatcher (Geom2dHatch_Intersector (IntersectorConfusion,
IntersectorTangency),
HatcherConfusion2d,
HatcherConfusion3d,
Standard_True,
Standard_False);
Standard_Real myInfinite,myUMin,myUMax,myVMin,myVMax;
//myInfinite = Precision::Infinite();
myInfinite = 1e38; // VTK uses float numbers - Precision::Infinite() is double and can not be accepted.
Standard_Integer myNbDom;
TColStd_Array1OfReal myUPrm(1, NbIsos),myVPrm(1, NbIsos);
TColStd_Array1OfInteger myUInd(1, NbIsos),myVInd(1, NbIsos);
myUInd.Init(0);
myVInd.Init(0);
//-----------------------------------------------------------------------
// If the Min Max bounds are infinite, there are bounded to Infinite
// value.
//-----------------------------------------------------------------------
BRepTools::UVBounds (TopologicalFace, myUMin, myUMax, myVMin, myVMax) ;
Standard_Boolean InfiniteUMin = Precision::IsNegativeInfinite (myUMin) ;
Standard_Boolean InfiniteUMax = Precision::IsPositiveInfinite (myUMax) ;
Standard_Boolean InfiniteVMin = Precision::IsNegativeInfinite (myVMin) ;
Standard_Boolean InfiniteVMax = Precision::IsPositiveInfinite (myVMax) ;
if (InfiniteUMin && InfiniteUMax) {
myUMin = - myInfinite ;
myUMax = myInfinite ;
} else if (InfiniteUMin) {
myUMin = myUMax - myInfinite ;
} else if (InfiniteUMax) {
myUMax = myUMin + myInfinite ;
}
if (InfiniteVMin && InfiniteVMax) {
myVMin = - myInfinite ;
myVMax = myInfinite ;
} else if (InfiniteVMin) {
myVMin = myVMax - myInfinite ;
} else if (InfiniteVMax) {
myVMax = myVMin + myInfinite ;
}
//-----------------------------------------------------------------------
// Retreiving the edges and loading them into the hatcher.
//-----------------------------------------------------------------------
TopExp_Explorer ExpEdges ;
for (ExpEdges.Init (TopologicalFace, TopAbs_EDGE) ; ExpEdges.More() ; ExpEdges.Next()) {
const TopoDS_Edge& TopologicalEdge = TopoDS::Edge (ExpEdges.Current()) ;
Standard_Real U1, U2 ;
const Handle(Geom2d_Curve) PCurve = BRep_Tool::CurveOnSurface (TopologicalEdge, TopologicalFace, U1, U2) ;
if ( PCurve.IsNull() ) {
return;
}
if ( U1==U2) {
return;
}
//-- Test if a TrimmedCurve is necessary
if( Abs(PCurve->FirstParameter()-U1)<= Precision::PConfusion()
&& Abs(PCurve->LastParameter()-U2)<= Precision::PConfusion()) {
aHatcher.AddElement (PCurve, TopologicalEdge.Orientation()) ;
}
else {
if (!PCurve->IsPeriodic()) {
Handle (Geom2d_TrimmedCurve) TrimPCurve =Handle(Geom2d_TrimmedCurve)::DownCast(PCurve);
if (!TrimPCurve.IsNull()) {
if (TrimPCurve->BasisCurve()->FirstParameter()-U1 > Precision::PConfusion() ||
U2-TrimPCurve->BasisCurve()->LastParameter() > Precision::PConfusion()) {
aHatcher.AddElement (PCurve, TopologicalEdge.Orientation()) ;
return;
}
}
else {
if (PCurve->FirstParameter()-U1 > Precision::PConfusion()){
U1=PCurve->FirstParameter();
}
if (U2-PCurve->LastParameter() > Precision::PConfusion()){
U2=PCurve->LastParameter();
}
}
}
Handle (Geom2d_TrimmedCurve) TrimPCurve = new Geom2d_TrimmedCurve (PCurve, U1, U2) ;
aHatcher.AddElement (TrimPCurve, TopologicalEdge.Orientation()) ;
}
}
//-----------------------------------------------------------------------
// Loading and trimming the hatchings.
//-----------------------------------------------------------------------
Standard_Integer IIso ;
Standard_Real DeltaU = Abs (myUMax - myUMin) ;
Standard_Real DeltaV = Abs (myVMax - myVMin) ;
Standard_Real confusion = Min (DeltaU, DeltaV) * HatcherConfusion3d ;
aHatcher.Confusion3d (confusion) ;
Standard_Real StepU = DeltaU / (Standard_Real) NbIsos ;
if (StepU > confusion) {
Standard_Real UPrm = myUMin + StepU / 2. ;
gp_Dir2d Dir (0., 1.) ;
for (IIso = 1 ; IIso <= NbIsos ; IIso++) {
myUPrm(IIso) = UPrm ;
gp_Pnt2d Ori (UPrm, 0.) ;
Geom2dAdaptor_Curve HCur (new Geom2d_Line (Ori, Dir)) ;
myUInd(IIso) = aHatcher.AddHatching (HCur) ;
UPrm += StepU ;
}
}
Standard_Real StepV = DeltaV / (Standard_Real) NbIsos ;
if (StepV > confusion) {
Standard_Real VPrm = myVMin + StepV / 2. ;
gp_Dir2d Dir (1., 0.) ;
for (IIso = 1 ; IIso <= NbIsos ; IIso++) {
myVPrm(IIso) = VPrm ;
gp_Pnt2d Ori (0., VPrm) ;
Geom2dAdaptor_Curve HCur (new Geom2d_Line (Ori, Dir)) ;
myVInd(IIso) = aHatcher.AddHatching (HCur) ;
VPrm += StepV ;
}
}
//-----------------------------------------------------------------------
// Computation.
//-----------------------------------------------------------------------
aHatcher.Trim() ;
myNbDom = 0 ;
for (IIso = 1 ; IIso <= NbIsos ; IIso++) {
Standard_Integer Index ;
Index = myUInd(IIso) ;
if (Index != 0) {
if (aHatcher.TrimDone (Index) && !aHatcher.TrimFailed (Index)) {
aHatcher.ComputeDomains (Index);
if (aHatcher.IsDone (Index)) myNbDom = myNbDom + aHatcher.NbDomains (Index) ;
}
}
Index = myVInd(IIso) ;
if (Index != 0) {
if (aHatcher.TrimDone (Index) && !aHatcher.TrimFailed (Index)) {
aHatcher.ComputeDomains (Index);
if (aHatcher.IsDone (Index)) myNbDom = myNbDom + aHatcher.NbDomains (Index) ;
}
}
}
//-----------------------------------------------------------------------
// Push iso lines in vtk kernel
//-----------------------------------------------------------------------
Standard_Integer pt_start_idx = 0;
for (Standard_Integer UIso = myUPrm.Lower() ; UIso <= myUPrm.Upper() ; UIso++) {
Standard_Integer UInd = myUInd.Value (UIso) ;
if (UInd != 0) {
Standard_Real UPrm = myUPrm.Value (UIso) ;
if (!aHatcher.IsDone (UInd)) {
MESSAGE("DBRep_IsoBuilder:: U iso of parameter: "<<UPrm)
switch (aHatcher.Status (UInd)) {
case HatchGen_NoProblem : MESSAGE("No Problem") ; break ;
case HatchGen_TrimFailure : MESSAGE("Trim Failure") ; break ;
case HatchGen_TransitionFailure : MESSAGE("Transition Failure") ; break ;
case HatchGen_IncoherentParity : MESSAGE("Incoherent Parity") ; break ;
case HatchGen_IncompatibleStates : MESSAGE("Incompatible States") ; break ;
}
} else {
Standard_Integer NbDom = aHatcher.NbDomains (UInd) ;
for (Standard_Integer IDom = 1 ; IDom <= NbDom ; IDom++) {
const HatchGen_Domain& Dom = aHatcher.Domain (UInd, IDom) ;
Standard_Real V1 = Dom.HasFirstPoint() ? Dom.FirstPoint().Parameter() : myVMin - myInfinite ;
Standard_Real V2 = Dom.HasSecondPoint() ? Dom.SecondPoint().Parameter() : myVMax + myInfinite ;
DrawIso(GeomAbs_IsoU, UPrm, V1, V2, Pts, Cell,pt_start_idx);
}
}
}
}
for (Standard_Integer VIso = myVPrm.Lower() ; VIso <= myVPrm.Upper() ; VIso++) {
Standard_Integer VInd = myVInd.Value (VIso) ;
if (VInd != 0) {
Standard_Real VPrm = myVPrm.Value (VIso) ;
if (!aHatcher.IsDone (VInd)) {
MESSAGE("DBRep_IsoBuilder:: V iso of parameter: "<<VPrm)
switch (aHatcher.Status (VInd)) {
case HatchGen_NoProblem : MESSAGE("No Problem") ; break ;
case HatchGen_TrimFailure : MESSAGE("Trim Failure") ; break ;
case HatchGen_TransitionFailure : MESSAGE("Transition Failure") ; break ;
case HatchGen_IncoherentParity : MESSAGE("Incoherent Parity") ; break ;
case HatchGen_IncompatibleStates : MESSAGE("Incompatible States") ; break ;
}
} else {
Standard_Integer NbDom = aHatcher.NbDomains (VInd) ;
for (Standard_Integer IDom = 1 ; IDom <= NbDom ; IDom++) {
const HatchGen_Domain& Dom = aHatcher.Domain (VInd, IDom) ;
Standard_Real U1 = Dom.HasFirstPoint() ? Dom.FirstPoint().Parameter() : myVMin - myInfinite ;
Standard_Real U2 = Dom.HasSecondPoint() ? Dom.SecondPoint().Parameter() : myVMax + myInfinite ;
DrawIso(GeomAbs_IsoV, VPrm, U1, U2, Pts, Cell,pt_start_idx) ;
}
}
}
}
}
//=======================================================================
// Function : MoveTo
// Purpose : Init VTK ISO PLOT
//=======================================================================
void GEOM_OCCReader::MoveTo(gp_Pnt P,
vtkPoints* Pts)
{
float coord[3];
coord[0] = P.X(); coord[1] = P.Y(); coord[2] = P.Z();
lastVTKpoint = Pts->InsertNextPoint(coord);
}
//=======================================================================
// Function : DrawTo
// Purpose : Plot point in VTK
//=======================================================================
void GEOM_OCCReader::DrawTo(gp_Pnt P,
vtkPoints* Pts,
vtkCellArray* Cells)
{
float coord[3];
coord[0] = P.X(); coord[1] = P.Y(); coord[2] = P.Z();
Standard_Integer NewVTKpoint = Pts->InsertNextPoint(coord);
int pts[2];
pts[0] = lastVTKpoint;
pts[1] = NewVTKpoint;
Cells->InsertNextCell(2,pts);
lastVTKpoint = NewVTKpoint;
}
//=======================================================================
// Function : DrawIso
// Purpose : Draw an iso on vtk
//=======================================================================
void GEOM_OCCReader::DrawIso(GeomAbs_IsoType T,
Standard_Real Par,
Standard_Real T1,
Standard_Real T2,
vtkPoints* Pts,
vtkCellArray* Cells,
Standard_Integer& startidx)
{
Standard_Boolean halt = Standard_False;
Standard_Integer j,myDiscret = discretiso;
Standard_Real U1,U2,V1,V2,stepU=0.,stepV=0.;
gp_Pnt P;
TopLoc_Location l;
const Handle(Geom_Surface)& S = BRep_Tool::Surface(TopoDS::Face(myShape),l);
if (!S.IsNull()) {
BRepAdaptor_Surface S(TopoDS::Face(myShape),Standard_False);
GeomAbs_SurfaceType SurfType = S.GetType();
GeomAbs_CurveType CurvType = GeomAbs_OtherCurve;
Standard_Integer Intrv, nbIntv;
Standard_Integer nbUIntv = S.NbUIntervals(GeomAbs_CN);
Standard_Integer nbVIntv = S.NbVIntervals(GeomAbs_CN);
TColStd_Array1OfReal TI(1,Max(nbUIntv, nbVIntv)+1);
if (T == GeomAbs_IsoU) {
S.VIntervals(TI, GeomAbs_CN);
V1 = Max(T1, TI(1));
V2 = Min(T2, TI(2));
U1 = Par;
U2 = Par;
stepU = 0;
nbIntv = nbVIntv;
}
else {
S.UIntervals(TI, GeomAbs_CN);
U1 = Max(T1, TI(1));
U2 = Min(T2, TI(2));
V1 = Par;
V2 = Par;
stepV = 0;
nbIntv = nbUIntv;
}
S.D0(U1,V1,P);
MoveTo(P,Pts);
for (Intrv = 1; Intrv <= nbIntv; Intrv++) {
if (TI(Intrv) <= T1 && TI(Intrv + 1) <= T1)
continue;
if (TI(Intrv) >= T2 && TI(Intrv + 1) >= T2)
continue;
if (T == GeomAbs_IsoU) {
V1 = Max(T1, TI(Intrv));
V2 = Min(T2, TI(Intrv + 1));
stepV = (V2 - V1) / myDiscret;
}
else {
U1 = Max(T1, TI(Intrv));
U2 = Min(T2, TI(Intrv + 1));
stepU = (U2 - U1) / myDiscret;
}
switch (SurfType) {
//-------------GeomAbs_Plane---------------
case GeomAbs_Plane :
break;
//----GeomAbs_Cylinder GeomAbs_Cone------
case GeomAbs_Cylinder :
case GeomAbs_Cone :
if (T == GeomAbs_IsoV) {
for (j = 1; j < myDiscret; j++) {
U1 += stepU;
V1 += stepV;
S.D0(U1,V1,P);
DrawTo(P,Pts,Cells);
}
}
break;
//---GeomAbs_Sphere GeomAbs_Torus--------
//GeomAbs_BezierSurface GeomAbs_BezierSurface
case GeomAbs_Sphere :
case GeomAbs_Torus :
case GeomAbs_OffsetSurface :
case GeomAbs_OtherSurface :
for (j = 1; j < myDiscret; j++) {
U1 += stepU;
V1 += stepV;
S.D0(U1,V1,P);
DrawTo(P,Pts,Cells);
}
break;
//-------------GeomAbs_BSplineSurface------
case GeomAbs_BezierSurface :
case GeomAbs_BSplineSurface :
for (j = 1; j <= myDiscret/2; j++) {
PlotCount = 0;
PlotIso ( S, T, U1, V1, (T == GeomAbs_IsoV) ? stepU*2. : stepV*2., halt, Pts, Cells);
U1 += stepU*2.;
V1 += stepV*2.;
}
break;
//-------------GeomAbs_SurfaceOfExtrusion--
//-------------GeomAbs_SurfaceOfRevolution-
case GeomAbs_SurfaceOfExtrusion :
case GeomAbs_SurfaceOfRevolution :
if ((T == GeomAbs_IsoV && SurfType == GeomAbs_SurfaceOfRevolution) ||
(T == GeomAbs_IsoU && SurfType == GeomAbs_SurfaceOfExtrusion)) {
if (SurfType == GeomAbs_SurfaceOfExtrusion) break;
for (j = 1; j < myDiscret; j++) {
U1 += stepU;
V1 += stepV;
S.D0(U1,V1,P);
DrawTo(P,Pts,Cells);
}
} else {
CurvType = (S.BasisCurve())->GetType();
switch (CurvType) {
case GeomAbs_Line :
break;
case GeomAbs_Circle :
case GeomAbs_Ellipse :
for (j = 1; j < myDiscret; j++) {
U1 += stepU;
V1 += stepV;
S.D0(U1,V1,P);
DrawTo(P,Pts,Cells);
}
break;
case GeomAbs_Parabola :
case GeomAbs_Hyperbola :
case GeomAbs_BezierCurve :
case GeomAbs_BSplineCurve :
case GeomAbs_OtherCurve :
for (j = 1; j <= myDiscret/2; j++) {
PlotCount = 0;
PlotIso ( S, T, U1, V1,(T == GeomAbs_IsoV) ? stepU*2. : stepV*2., halt, Pts, Cells);
U1 += stepU*2.;
V1 += stepV*2.;
}
break;
}
}
}
}
S.D0(U2,V2,P);
DrawTo(P,Pts,Cells);
}
}
//=======================================================================
// Function : PlotIso
// Purpose : Plot iso for other surface
//=======================================================================
void GEOM_OCCReader::PlotIso (BRepAdaptor_Surface& S,
GeomAbs_IsoType T,
Standard_Real& U,
Standard_Real& V,
Standard_Real Step,
Standard_Boolean& halt,
vtkPoints* Pts,
vtkCellArray* Cells)
{
++PlotCount;
gp_Pnt Pl, Pr, Pm;
if (T == GeomAbs_IsoU) {
S.D0(U, V, Pl);
S.D0(U, V + Step/2., Pm);
S.D0(U, V + Step, Pr);
} else {
S.D0(U, V, Pl);
S.D0(U + Step/2., V, Pm);
S.D0(U + Step, V, Pr);
}
if (PlotCount > MaxPlotCount) {
DrawTo(Pr,Pts,Cells);
return;
}
if (Pm.Distance(Pl) + Pm.Distance(Pr) <= IsoRatio*Pl.Distance(Pr)) {
DrawTo(Pr,Pts,Cells);
} else
if (T == GeomAbs_IsoU) {
PlotIso ( S, T, U, V, Step/2, halt, Pts, Cells);
Standard_Real aLocalV = V + Step/2 ;
PlotIso ( S, T, U, aLocalV , Step/2, halt, Pts, Cells);
} else {
PlotIso ( S, T, U, V, Step/2, halt, Pts, Cells);
Standard_Real aLocalU = U + Step/2 ;
PlotIso ( S, T, aLocalU , V, Step/2, halt, Pts, Cells);
}
}
//=======================================================================
// Function : TransferEdgeWData
// Purpose : Transfert wireframe data for EDGE
//=======================================================================
void GEOM_OCCReader::TransferEdgeWData(const TopoDS_Edge& aEdge,
vtkPoints* Pts,
vtkCellArray* Cells) {
Handle(Poly_PolygonOnTriangulation) aEdgePoly;
Standard_Integer i = 1;
Handle(Poly_Triangulation) T;
TopLoc_Location aEdgeLoc;
BRep_Tool::PolygonOnTriangulation(aEdge, aEdgePoly, T, aEdgeLoc, i);
Handle(Poly_Polygon3D) P;
if(aEdgePoly.IsNull()) {
P = BRep_Tool::Polygon3D(aEdge, aEdgeLoc);
}
if(P.IsNull() && aEdgePoly.IsNull())
return;
// Location edges
//---------------
gp_Trsf edgeTransf;
Standard_Boolean isidtrsf = true;
if(!aEdgeLoc.IsIdentity()) {
isidtrsf = false;
edgeTransf = aEdgeLoc.Transformation();
}
Standard_Integer nbnodes;
if (aEdgePoly.IsNull()) {
nbnodes = P->NbNodes();
const TColgp_Array1OfPnt& theNodesP = P->Nodes();
float coord[3];
int pts[2];
for(int j=1;j<nbnodes;j++) {
gp_Pnt pt1 = theNodesP(j);
gp_Pnt pt2 = theNodesP(j+1);
if(!isidtrsf) {
// apply edge transformation
pt1.Transform(edgeTransf);
pt2.Transform(edgeTransf);
}
// insert pt1
coord[0] = pt1.X(); coord[1] = pt1.Y(); coord[2] = pt1.Z();
pts[0] = Pts->InsertNextPoint(coord);
// insert pt2
coord[0] = pt2.X(); coord[1] = pt2.Y(); coord[2] = pt2.Z();
pts[1] = Pts->InsertNextPoint(coord);
// insert line (pt1,pt2)
Cells->InsertNextCell(2,pts);
}
} else {
nbnodes = aEdgePoly->NbNodes();
const TColStd_Array1OfInteger& Nodesidx = aEdgePoly->Nodes();
const TColgp_Array1OfPnt& theNodesPoly = T->Nodes();
float coord[3];
int pts[2];
for(int j=1;j<nbnodes;j++) {
Standard_Integer id1 = Nodesidx(j);
Standard_Integer id2 = Nodesidx(j+1);
gp_Pnt pt1 = theNodesPoly(id1);
gp_Pnt pt2 = theNodesPoly(id2);
if(!isidtrsf) {
// apply edge transformation
pt1.Transform(edgeTransf);
pt2.Transform(edgeTransf);
}
// insert pt1
coord[0] = pt1.X(); coord[1] = pt1.Y(); coord[2] = pt1.Z();
pts[0] = Pts->InsertNextPoint(coord);
// insert pt2
coord[0] = pt2.X(); coord[1] = pt2.Y(); coord[2] = pt2.Z();
pts[1] = Pts->InsertNextPoint(coord);
// insert line (pt1,pt2)
Cells->InsertNextCell(2,pts);
}
}
}
/* Standard_Integer nbnodes = aEdgePoly->NbNodes();
const TColStd_Array1OfInteger& Nodesidx = aEdgePoly->Nodes();
const TColgp_Array1OfPnt& theNodes = T->Nodes();
float coord[3];
int pts[2];
// PUSH NODES
for(i=1;i<=nbnodes;i++) {
Standard_Integer id = Nodesidx(i);
gp_Pnt pt = theNodes(id);
float coord[3];
if(!isidtrsf) pt.Transform(edgeTransf);
coord[0] = pt.X(); coord[1] = pt.Y(); coord[2] = pt.Z();
Pts->SetPoint(id-1,coord);
}
// PUSH EDGES
for(i=1;i<nbnodes;i++) {
Standard_Integer id1 = Nodesidx(i);
Standard_Integer id2 = Nodesidx(i+1);
int pts[2];
pts[0] = id1-1; pts[1] = id2-1;
// insert line (pt1,pt2)
Cells->InsertNextCell(2,pts);
}
}*/
//=======================================================================
// Function : TransferVertexWData
// Purpose : Transfert wireframe data for VERTEX
//=======================================================================
void GEOM_OCCReader::TransferVertexWData(const TopoDS_Vertex& aVertex,
vtkPoints* Pts,
vtkCellArray* Cells) {
#define ZERO_COORD coord[0] = 0.0; coord[1] = 0.0; coord[2] = 0.0
gp_Pnt P = BRep_Tool::Pnt( aVertex );
float delta = 1, coord[3];
int pts[2];
// insert pt
ZERO_COORD; coord[0] = +delta;
pts[0] = Pts->InsertNextPoint(coord);
coord[0] = -delta;
pts[1] = Pts->InsertNextPoint(coord);
// insert line (pt1,pt2)
Cells->InsertNextCell(2,pts);
ZERO_COORD; coord[1] = +delta;
pts[0] = Pts->InsertNextPoint(coord);
coord[1] = -delta;
pts[1] = Pts->InsertNextPoint(coord);
// insert line (pt1,pt2)
Cells->InsertNextCell(2,pts);
ZERO_COORD; coord[2] = +delta;
pts[0] = Pts->InsertNextPoint(coord);
coord[2] = -delta;
pts[1] = Pts->InsertNextPoint(coord);
// insert line (pt1,pt2)
Cells->InsertNextCell(2,pts);
#undef ZERO_COORD
}
//=======================================================================
// Function : TransferEdgeSData(
// Purpose : Transfert shading data for EDGE
//=======================================================================
void GEOM_OCCReader::TransferEdgeSData(const TopoDS_Edge& aFace,
vtkPoints* Pts,
vtkCellArray* Cells)
{
}
//=======================================================================
// Function : TransferFaceSData
// Purpose : Transfert shading data for FACE
//=======================================================================
void GEOM_OCCReader::TransferFaceSData(const TopoDS_Face& aFace,
vtkPoints* Pts,
vtkCellArray* Cells) {
TopLoc_Location aLoc;
Handle(Poly_Triangulation) aPoly = BRep_Tool::Triangulation(aFace,aLoc);
if(aPoly.IsNull()) return;
else {
gp_Trsf myTransf;
Standard_Boolean identity = true;
if(!aLoc.IsIdentity()) {
identity = false;
myTransf = aLoc.Transformation();
}
Standard_Integer nbNodesInFace = aPoly->NbNodes();
Standard_Integer nbTriInFace = aPoly->NbTriangles();
const Poly_Array1OfTriangle& Triangles = aPoly->Triangles();
const TColgp_Array1OfPnt& Nodes = aPoly->Nodes();
Standard_Integer i;
for(i=1;i<=nbNodesInFace;i++) {
gp_Pnt P = Nodes(i);
float coord[3];
if(!identity) P.Transform(myTransf);
coord[0] = P.X(); coord[1] = P.Y(); coord[2] = P.Z();
Pts->SetPoint(i-1,coord);
}
for(i=1;i<=nbTriInFace;i++) {
// Get the triangle
Standard_Integer N1,N2,N3;
Triangles(i).Get(N1,N2,N3);
int pts[3];
pts[0] = N1-1; pts[1] = N2-1; pts[2] = N3-1;
Cells->InsertNextCell(3,pts);
}
}
}
//=======================================================================
// Function : ComputeShading
// Purpose : Compute the shape in shading mode
//=======================================================================
void GEOM_OCCReader::ComputeShading(vtkPoints* Pts,vtkCellArray* Cells){
// Check the type of the shape:
if(myShape.ShapeType() == TopAbs_FACE) {
// Face
TransferFaceSData(TopoDS::Face(myShape),Pts,Cells);
}
else {
if(myShape.ShapeType() == TopAbs_EDGE) {
// Edge
TransferEdgeSData(TopoDS::Edge(myShape),Pts,Cells);
}
else {
}
}
}
//=======================================================================
// Function :
// Purpose : Set parameters
//=======================================================================
void GEOM_OCCReader::setDisplayMode(int thenewmode) {
amode = thenewmode;
}
void GEOM_OCCReader::setTopo(const TopoDS_Shape& aShape) {
myShape = aShape;
}
void GEOM_OCCReader::setForceUpdate(Standard_Boolean bol) {
forced = bol;
}
//=======================================================================
// Function :
// Purpose : Get parameters
//=======================================================================
const TopoDS_Shape& GEOM_OCCReader::getTopo() {
return myShape;
}
int GEOM_OCCReader::getDisplayMode() {
return amode;
}