geom/ARCHIMEDE/Archimede_VolumeSection.cxx

409 lines
12 KiB
C++
Raw Normal View History

2003-07-09 13:30:56 +06:00
// GEOM ARCHIMEDE : algorithm implementation
//
// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org
//
//
//
// File : Archimede_VolumeSection.cxx
// Author : Nicolas REJNERI
// Module : GEOM
// $Header$
using namespace std;
#include "Archimede_VolumeSection.hxx"
#include "utilities.h"
#include <iostream.h>
#include <BRepMesh_IncrementalMesh.hxx>
#include <TopExp_Explorer.hxx>
#include <TopLoc_Location.hxx>
#include <Poly_Triangulation.hxx>
#include <Poly_Array1OfTriangle.hxx>
#include <BRep_Tool.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Face.hxx>
#include <TopoDS_Shape.hxx>
#include <math_Matrix.hxx>
#include <math.h>
#include <GC_MakePlane.hxx>
#include <stdlib.h>
#include <gp_Trsf.hxx>
#include <gp_Dir.hxx>
#include <gp_Ax1.hxx>
#include <gp_Pnt.hxx>
#include <gp_Pln.hxx>
#include <GeomAPI_ProjectPointOnSurf.hxx>
#include <Geom_RectangularTrimmedSurface.hxx>
//-------------------------------------------------------------------------------------------------------
//----------------------------------- Methodes publiques -------------------------------------------------
//-------------------------------------------------------------------------------------------------------
// Maillage de la shape
VolumeSection::VolumeSection(TopoDS_Shape S , Standard_Real Precision):myShape(S),Tolerance(Precision)
{
// Maillage de la shape myShape
BRepMesh_IncrementalMesh(myShape,Tolerance);
}
TopoDS_Shape VolumeSection::GetShape()
{
return myShape;
}
void VolumeSection::SetPlane(Handle (Geom_Plane) P)
{
myPlane = P;
}
void VolumeSection::CenterOfGravity()
{
Standard_Integer i;
Standard_Integer nbNodes;
TopExp_Explorer ex;
TopLoc_Location L;
// Boucle sur les faces de la shape
Xmin = 1000000000;
Ymin = 1000000000;
Zmin = 1000000000;
Xmax = -1000000000;
Ymax = -1000000000;
Zmax = -1000000000;
for (ex.Init(myShape, TopAbs_FACE); ex.More(); ex.Next())
{
TopoDS_Face F = TopoDS::Face(ex.Current());
Handle(Poly_Triangulation) Tr = BRep_Tool::Triangulation(F, L);
if(Tr.IsNull())
MESSAGE("Error, null layer" )
nbNodes = Tr->NbNodes();
const TColgp_Array1OfPnt& Nodes = Tr->Nodes();
// Calcul des dimensions de la boite englobante du solide
for(i=1;i<=nbNodes;i++)
{
InitPoint = Nodes(i).Transformed(L.Transformation());
if(InitPoint.X() < Xmin)
Xmin = InitPoint.X();
if(InitPoint.X() > Xmax)
Xmax = InitPoint.X();
if(InitPoint.Y() < Ymin)
Ymin = InitPoint.Y();
if(InitPoint.Y() > Ymax)
Ymax = InitPoint.Y();
if(InitPoint.Z() < Zmin)
Zmin = InitPoint.Z();
if(InitPoint.Z() > Zmax)
Zmax = InitPoint.Z();
}
}
// Creation du point d'initialisation, c'est <20> dire le centre de gravit<69>
//g<>om<6F>trique de la boite englobante
InitPoint.SetX(0.5 * (Xmin + Xmax));
InitPoint.SetY(0.5 * (Ymin + Ymax));
InitPoint.SetZ(0);
}
Standard_Real VolumeSection::CalculateVolume(Standard_Real Elevation)
{
Standard_Integer i,noeud[3],flag[3];
Standard_Integer nbNodes;
TopExp_Explorer ex;
TopLoc_Location L;
Standard_Real z[3];
Standard_Real Volume=0;
Standard_Real Determinant=0;
gp_Pnt P[3];
// Projection du point d'initialisation sur le plan de section
InitPoint.SetZ(Elevation);
for (ex.Init(myShape, TopAbs_FACE); ex.More(); ex.Next())
{
TopoDS_Face F = TopoDS::Face(ex.Current());
Handle(Poly_Triangulation) Tr = BRep_Tool::Triangulation(F, L);
if(Tr.IsNull())
MESSAGE("Error, null layer" )
const Poly_Array1OfTriangle& triangles = Tr->Triangles();
Standard_Integer nbTriangles = Tr->NbTriangles();
nbNodes = Tr->NbNodes();
const TColgp_Array1OfPnt& Nodes = Tr->Nodes();
// Calcul des volumes de chaque triangle, de chaque face
//en tenant compte des triangles coup<75>s par le plan de section
for (i=1;i<=nbTriangles;i++)
{
Determinant=0;
//Gardons la meme orientation des noeuds
if (F.Orientation() == TopAbs_REVERSED)
triangles(i).Get(noeud[0], noeud[2], noeud[1]);
else
triangles(i).Get(noeud[0], noeud[1], noeud[2]);
P[0] = Nodes(noeud[0]).Transformed(L.Transformation());
z[0] = P[0].Z();
P[1] = Nodes(noeud[1]).Transformed(L.Transformation());
z[1] = P[1].Z();
P[2] = Nodes(noeud[2]).Transformed(L.Transformation());
z[2] = P[2].Z();
// Determination des cas aux limites pour les triangles
Standard_Integer i,compteur=0;
for (i=0;i<=2;i++)
{
flag[i]=Standard_False;
if(z[i]>=Elevation)
{
flag[i]=Standard_True;
compteur++;
}
}
switch(compteur)
{
case 0:
Determinant = ElementaryVolume(P[0],P[1],P[2]);
break;
case 1:
for (i=0;i<=2;i++)
{
if (flag[i]==Standard_True)
{
gp_Pnt Result1 = Intersection(P[i],P[(i+1)%3],Elevation);
gp_Pnt Result2 = Intersection(P[i],P[(i+2)%3],Elevation);
Determinant = ElementaryVolume(Result1,P[(i+1)%3],P[(i+2)%3])
+ ElementaryVolume(Result1,P[(i+2)%3],Result2);
}
}
break;
case 2:
for (i=0;i<=2;i++)
{
if (flag[i]==Standard_False)
{
gp_Pnt Result1 = Intersection(P[i],P[(i+1)%3],Elevation);
gp_Pnt Result2 = Intersection(P[i],P[(i+2)%3],Elevation);
Determinant = ElementaryVolume(P[i],Result1,Result2);
}
}
break;
case 3:
break;
}
Volume += Determinant;
}
}
return Volume;
}
Standard_Real VolumeSection::Archimede(Standard_Real Constante , Standard_Real Epsilon)
{
// Resolution de l equation V(h) = Constante a l aide de l algorithme de dichotomie avec ponderation type
// Lagrange
Standard_Real c,Binf,Bsup;
Standard_Real tempBsupVolume=0;
Standard_Real tempBinfVolume=0;
Standard_Real tempCVolume = 0;
Binf = Zmin;
Bsup = Zmax;
if(Binf>Bsup)
{
MESSAGE("error, Bound + < Bound - in dichotomy")
return -1;
}
tempBsupVolume = CalculateVolume(Bsup);
tempBinfVolume = CalculateVolume(Binf);
if (Constante>tempBsupVolume || Constante<tempBinfVolume)
{
MESSAGE("error, algorithm start Impossible. Wrong constant value" )
return -1;
}
c = ((Binf*(tempBsupVolume-Constante))-(Bsup*(tempBinfVolume-Constante)))
/((tempBsupVolume-Constante)-(tempBinfVolume-Constante));
tempCVolume = CalculateVolume(c);
if(Abs(tempCVolume-Constante)<=Epsilon)
{
goto endMethod;
}
else
{
while((Bsup-Binf)>Epsilon)
{
if((tempBinfVolume-Constante)*(tempCVolume-Constante)>0 && Abs(tempCVolume-Constante)>Epsilon)
{
Binf = c;
tempBinfVolume=tempCVolume;
c = ((Binf*(tempBsupVolume-Constante))-(Bsup*(tempBinfVolume-Constante)))
/((tempBsupVolume-Constante)-(tempBinfVolume-Constante));
tempCVolume=CalculateVolume(c);
}
else if((tempBinfVolume-Constante)*(tempCVolume-Constante)<0 && Abs(tempCVolume-Constante)>Epsilon)
{
Bsup = c;
tempBsupVolume =tempCVolume;
c = ((Binf*(tempBsupVolume-Constante))-(Bsup*(tempBinfVolume-Constante)))
/((tempBsupVolume-Constante)-(tempBinfVolume-Constante));
tempCVolume=CalculateVolume(c);
}
else
{
goto endMethod;
}
}
goto endMethod;
}
endMethod:
MESSAGE("La ligne de flottaison correspondant a la constante :"<<Constante<<" est a la cote Z = "<<c)
return c;
}
void VolumeSection::MakeRotation(gp_Dir PlaneDirection)
{
gp_Dir Zdirection(0.0,0.0,1.0);
Standard_Real VariationAngle = 0;
gp_Pnt RotationAxeLocation(0.0,0.0,0.0);
gp_Dir RotationAxeDirection(1.0,1.0,1.0);
gp_Ax1 RotationAxe(RotationAxeLocation,RotationAxeDirection);
gp_Trsf Transformation;
VariationAngle = Zdirection.Angle(PlaneDirection);
RotationAxe.SetDirection(PlaneDirection.Crossed(Zdirection));
Transformation.SetRotation(RotationAxe,VariationAngle);
TopLoc_Location L(Transformation);
myShape.Move(L);
myPlane->Transform(Transformation);
}
Handle (Geom_RectangularTrimmedSurface) VolumeSection::TrimSurf()
{
Standard_Real Umin,Umax,Vmin,Vmax;
gp_Pnt Pmin(Xmin,Ymin,Zmin);
GeomAPI_ProjectPointOnSurf Projection(Pmin,myPlane);
Projection.Parameters(1,Umin,Vmin);
gp_Pnt Pmax(Xmax,Ymax,Zmax);
GeomAPI_ProjectPointOnSurf Projection2(Pmax,myPlane);
Projection2.Parameters(1,Umax,Vmax);
Handle (Geom_RectangularTrimmedSurface) Plane = new Geom_RectangularTrimmedSurface(myPlane,Umin,Umax,Vmin,Vmax);
return Plane;
}
Handle (Geom_RectangularTrimmedSurface) VolumeSection::InvMakeRotation(gp_Dir PlaneDirection, Handle (Geom_RectangularTrimmedSurface) SurfTrim)
{
gp_Dir Zdirection(0.0,0.0,1.0);
Standard_Real VariationAngle = 0;
gp_Pnt RotationAxeLocation(0.0,0.0,0.0);
gp_Dir RotationAxeDirection(1.0,1.0,1.0);
gp_Ax1 RotationAxe(RotationAxeLocation,RotationAxeDirection);
gp_Trsf Transformation;
VariationAngle = Zdirection.Angle(PlaneDirection);
RotationAxe.SetDirection(PlaneDirection.Crossed(Zdirection));
Transformation.SetRotation(RotationAxe,-VariationAngle);
SurfTrim->Transform(Transformation);
TopLoc_Location L(Transformation);
myShape.Move(L);
return SurfTrim;
}
Handle (Geom_RectangularTrimmedSurface) VolumeSection::AjustePlan(Handle (Geom_RectangularTrimmedSurface) SurfTrim, Standard_Real Cote, gp_Pnt PosPlan)
{
gp_Trsf Transformation;
gp_Pnt PosArchi(PosPlan.X(),PosPlan.Y(),Cote);
Transformation.SetTranslation(PosPlan,PosArchi);
SurfTrim->Transform(Transformation);
return SurfTrim;
}
//-------------------------------------------------------------------------------------------------------
//----------------------------------- Methodes privees ---------------------------------------------------
//-------------------------------------------------------------------------------------------------------
//Fonction calculant l'intersection de la droite passant par les points P1 et P2
//avec le plan horizontal Z=Hauteur
gp_Pnt VolumeSection::Intersection(gp_Pnt P1,gp_Pnt P2,Standard_Real Hauteur)
{
Standard_Real constante;
gp_Pnt Point;
constante = (Hauteur-P1.Z())/(P2.Z()-P1.Z());
Point.SetX(P1.X()*(1-constante) + constante*P2.X());
Point.SetY(P1.Y()*(1-constante) + constante*P2.Y());
Point.SetZ(Hauteur);
return Point;
}
//Fonction calculant le volume <20>l<EFBFBD>mentaire de chaque t<>traedre <20> partir de 3 points
Standard_Real VolumeSection::ElementaryVolume(gp_Pnt P1,gp_Pnt P2,gp_Pnt P3)
{
Standard_Real Determinant;
math_Matrix M(1,3,1,3);
M(1,1)=P1.X()-InitPoint.X();
M(1,2)=P2.X()-InitPoint.X();
M(1,3)=P3.X()-InitPoint.X();
M(2,1)=P1.Y()-InitPoint.Y();
M(2,2)=P2.Y()-InitPoint.Y();
M(2,3)=P3.Y()-InitPoint.Y();
M(3,1)=P1.Z()-InitPoint.Z();
M(3,2)=P2.Z()-InitPoint.Z();
M(3,3)=P3.Z()-InitPoint.Z();
Determinant = (1.0/6) * M.Determinant();
return Determinant;
}
void VolumeSection::getZ( double& min, double& max)
{
min = Zmin;
max = Zmax;
}