Add support for OpenCV 4.x needed for Debian/sid (will be Debian 11).

This commit is contained in:
Pascal Obry 2020-05-11 11:23:49 +02:00
parent ae18a6997b
commit 1b78618638
2 changed files with 111 additions and 20 deletions

View File

@ -28,13 +28,12 @@
#include "utilities.h"
#include <opencv2/core/version.hpp>
#include <opencv2/imgcodecs.hpp>
#if CV_MAJOR_VERSION == 3
#define cvCvtPixToPlane cvSplit
#if CV_MAJOR_VERSION < 3
#error OpenCV version below 3 is not supported
#endif
// TODO : All the following methods but ComputeContours use the C API of OpenCV while ComputContours
// uses the C++ API of the library.
// This should be homogenized and preferably by using the C++ API (which is more recent for all the methods
@ -65,10 +64,16 @@ void ShapeRec_FeatureDetector::SetPath( const std::string& thePath )
imagePath = thePath;
if (imagePath != "")
{
#if CV_MAJOR_VERSION > 3
cv::Mat src = cv::imread(imagePath.c_str(), cv::IMREAD_COLOR);
imgHeight = src.size().height;
imgWidth = src.size().width;
#else
IplImage* src = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
imgHeight = src->height;
imgWidth = src->width;
cvReleaseImage(&src);
#endif
}
}
@ -80,6 +85,31 @@ void ShapeRec_FeatureDetector::ComputeCorners( bool useROI, ShapeRec_Parameters*
ShapeRec_CornersParameters* aCornersParameters = dynamic_cast<ShapeRec_CornersParameters*>( parameters );
if ( !aCornersParameters ) aCornersParameters = new ShapeRec_CornersParameters();
#if CV_MAJOR_VERSION > 3
cv::Mat src_img_gray = cv::imread (imagePath.c_str(), cv::IMREAD_GRAYSCALE);
if ( useROI )
{
// If a ROI as been set use it for detection
src_img_gray = src_img_gray(rect);
}
std::vector<cv::Point2f> corners;
// image height and width
imgHeight = src_img_gray.size().height;
imgWidth = src_img_gray.size().width;
cv::goodFeaturesToTrack (src_img_gray, corners, cornerCount,
aCornersParameters->qualityLevel, aCornersParameters->minDistance,
cv::noArray(), 3, false);
cv::cornerSubPix
(src_img_gray, corners,
cvSize (aCornersParameters->kernelSize, aCornersParameters->kernelSize),
cvSize (-1, -1),
cvTermCriteria (aCornersParameters->typeCriteria, aCornersParameters->maxIter, aCornersParameters->epsilon));
#else
// Images to be used for detection
IplImage *eig_img, *temp_img, *src_img_gray;
@ -109,7 +139,7 @@ void ShapeRec_FeatureDetector::ComputeCorners( bool useROI, ShapeRec_Parameters*
cvReleaseImage (&eig_img);
cvReleaseImage (&temp_img);
cvReleaseImage (&src_img_gray);
#endif
}
/*!
@ -145,6 +175,68 @@ bool ShapeRec_FeatureDetector::ComputeContours( bool useROI, ShapeRec_Parameters
}
else //COLORFILTER
{
#if CV_MAJOR_VERSION > 3
cv::Mat input_image = cv::imread(imagePath.c_str(), cv::IMREAD_COLOR);
ShapeRec_ColorFilterParameters* aColorFilterParameters = dynamic_cast<ShapeRec_ColorFilterParameters*>( parameters );
if ( !aColorFilterParameters ) aColorFilterParameters = new ShapeRec_ColorFilterParameters();
cv::GaussianBlur( input_image, input_image,
cvSize (aColorFilterParameters->smoothSize, aColorFilterParameters->smoothSize), 0 );
cv::Mat sample_image = input_image(rect);
cv::Mat sample_hsv;
cv::cvtColor(sample_image, sample_hsv, CV_BGR2HSV);
/// Separate the image in 3 places ( H, S and V )
std::vector<cv::Mat> hsv_planes;
cv::split( sample_image, hsv_planes );
cv::Mat sample_planes[] = { hsv_planes[0], hsv_planes[1] };
// Create the hue / saturation histogram of the SAMPLE image.
// This histogramm will be representative of what is the zone
// we want to find the frontier of. Indeed, the sample image is meant to
// be representative of this zone
const float hranges[] = { 0, 180 };
const float sranges[] = { 0, 256 };
const float* ranges[] = { hranges, sranges };
cv::Mat sample_hist;
cv::calcHist( sample_planes, 2, 0, cv::Mat(), sample_hist, 1, aColorFilterParameters->histSize, ranges );
// Calculate the back projection of hue and saturation planes of the INPUT image
// by mean of the histogram of the SAMPLE image.
//
// The pixels which (h,s) coordinates correspond to high values in the histogram
// will have high values in the grey image result. It means that a pixel of the INPUT image
// which is more probably in the zone represented by the SAMPLE image, will be whiter
// in the back projection.
// Get hue and saturation planes of the INPUT image
cv::Mat input_hsv;
cv::cvtColor(input_image, input_hsv, CV_BGR2HSV);
/// Separate the image in 3 places ( H, S and V )
std::vector<cv::Mat> input_hsv_planes;
cv::split( input_hsv, input_hsv_planes );
cv::Mat input_planes[] = { input_hsv_planes[0], input_hsv_planes[1] };
cv::Mat backproject, binary_backproject;
// Compute the back projection
cv::calcBackProject(input_planes, 2, 0, sample_hist, backproject, ranges);
// Threshold in order to obtain a binary image
cv::threshold(backproject, binary_backproject,
aColorFilterParameters->threshold, aColorFilterParameters->maxThreshold, cv::THRESH_BINARY);
detected_edges = cv::Mat(binary_backproject);
#else
// Load the input image where we want to detect contours
IplImage* input_image = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
@ -169,7 +261,7 @@ bool ShapeRec_FeatureDetector::ComputeContours( bool useROI, ShapeRec_Parameters
cvCvtColor(sample_image, sample_hsv, CV_BGR2HSV);
cvCvtPixToPlane(sample_hsv, sample_h_plane, sample_s_plane, 0, 0);
cvSplit(sample_hsv, sample_h_plane, sample_s_plane, 0, 0);
IplImage* sample_planes[] = { sample_h_plane, sample_s_plane };
// Create the hue / saturation histogram of the SAMPLE image.
@ -224,7 +316,7 @@ bool ShapeRec_FeatureDetector::ComputeContours( bool useROI, ShapeRec_Parameters
// Get hue and saturation planes of the INPUT image
cvCvtColor(input_image, input_hsv, CV_BGR2HSV);
cvCvtPixToPlane(input_hsv, input_hplane, input_splane, 0, 0);
cvSplit(input_hsv, input_hplane, input_splane, 0, 0);
IplImage* input_planes[] = { input_hplane, input_splane };
// Compute the back projection
@ -242,10 +334,7 @@ bool ShapeRec_FeatureDetector::ComputeContours( bool useROI, ShapeRec_Parameters
cvReleaseImage(&input_splane);
cvReleaseImage(&backproject);
#if CV_MAJOR_VERSION == 3
detected_edges = cv::cvarrToMat(binary_backproject);
#else
detected_edges = cv::Mat(binary_backproject);
#endif
}
// else if ( detection_method == RIDGE_DETECTOR ) // Method adapted for engineering drawings (e.g. watershed functionality could be used here cf.OpenCV documentation and samples)

View File

@ -29,16 +29,18 @@
// https://tracker.dev.opencascade.org/view.php?id=28457 issue.
#ifdef HAVE_TBB
#undef HAVE_TBB
#include <cv.h>
#include <highgui.h>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/highgui/highgui_c.h>
#define HAVE_TBB
#else
#include <cv.h>
#include <highgui.h>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
#else // HAVE_TBB
#include <opencv2/opencv.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/highgui/highgui_c.h>
#endif
// Qt