NPAL15298: KindOfShape(). For all cases.

This commit is contained in:
jfa 2007-04-06 12:55:09 +00:00
parent 52a39bebf3
commit 53a38614c4
4 changed files with 645 additions and 366 deletions

View File

@ -2127,32 +2127,33 @@ module GEOM
SHELL,
WIRE,
// SOLIDs
SPHERE,
CYLINDER,
BOX,
ROTATED_BOX,
TORUS,
CONE,
POLYHEDRON,
SOLID,
SPHERE, // full sphere
CYLINDER, // cylinder
BOX, // box with faces, parallel to global coordinate planes
ROTATED_BOX, // other box
TORUS, // full torus
CONE, // cone
POLYHEDRON, // solid, bounded by polygons
SOLID, // other solid
// FACEs
SPHERE2D,
CYLINDER2D,
TORUS2D,
CONE2D,
DISK,
ELLIPSE2D,
POLYGON,
PLANAR,
FACE,
SPHERE2D, // spherical face (closed)
CYLINDER2D, // cylindrical face with defined height
TORUS2D, // toroidal face (closed)
CONE2D, // conical face with defined height
DISK_CIRCLE, // planar, bounded by circle
DISK_ELLIPSE, // planar, bounded by ellipse
POLYGON, // planar, bounded by segments
PLANE, // infinite planar
PLANAR, // other planar
FACE, // other face
// EDGEs
CIRCLE,
ARC,
ELLIPSE,
ARC_ELLIPSE,
CIRCLE, // full circle
ARC_CIRCLE, // arc of circle
ELLIPSE, // full ellipse
ARC_ELLIPSE, // arc of ellipse
LINE, // infinite segment
SEGMENT,
EDGE,
SEGMENT, // segment
EDGE, // other edge
// VERTEX
VERTEX
};

View File

@ -25,10 +25,13 @@
#include <GEOMImpl_MeasureDriver.hxx>
#include <GEOMImpl_IMeasure.hxx>
#include <GEOMAlgo_ShapeInfo.hxx>
#include <GEOMAlgo_ShapeInfoFiller.hxx>
#include <GEOM_Function.hxx>
#include <GEOM_PythonDump.hxx>
#include "utilities.h"
#include <utilities.h>
#include <OpUtil.hxx>
#include <Utils_ExceptHandlers.hxx>
@ -132,313 +135,582 @@ GEOMImpl_IMeasureOperations::ShapeKind GEOMImpl_IMeasureOperations::KindOfShape
TopoDS_Shape aShape = aRefShape->GetValue();
if (aShape.IsNull()) return aKind;
TopAbs_ShapeEnum aType = aShape.ShapeType();
// Call algorithm
GEOMAlgo_ShapeInfoFiller aSF;
aSF.SetShape(aShape);
aSF.Perform();
Standard_Integer iErr = aSF.ErrorStatus();
if (iErr) {
SetErrorCode("Error in GEOMAlgo_ShapeInfoFiller");
return SK_NO_SHAPE;
}
const GEOMAlgo_ShapeInfo& anInfo = aSF.Info();
// Interprete results
TopAbs_ShapeEnum aType = anInfo.Type();
switch (aType)
{
//??? geompy.kind.compound nb_solids nb_faces nb_edges nb_vertices
//??? geompy.kind.compsolid nb_solids nb_faces nb_edges nb_vertices
//? "nb_faces" - all faces or only 'standalone' faces?
case TopAbs_COMPOUND:
aKind = SK_COMPOUND;
//
break;
case TopAbs_COMPSOLID:
aKind = SK_COMPSOLID;
//
break;
case TopAbs_SHELL:
//geompy.kind.shell geompy.info.closed nb_faces nb_edges nb_vertices
//geompy.kind.shell geompy.info.unclosed nb_faces nb_edges nb_vertices
aKind = SK_SHELL;
//
break;
case TopAbs_WIRE:
//geompy.kind.wire geompy.info.closed nb_edges nb_vertices
//geompy.kind.wire geompy.info.unclosed nb_edges nb_vertices
aKind = SK_WIRE;
//
break;
case TopAbs_SOLID:
//geompy.kind.sphere xc yc zc R
//geompy.kind.cylinder xb yb zb dx dy dz R H
//geompy.kind.box xc yc zc dx dy dz
//geompy.kind.rotated_box xo yo zo zx zy zz xx xy xz dx dy dz
//geompy.kind.torus xc yc zc dx dy dz R_1 R_2
//geompy.kind.cone xb yb zb dx dy dz H R_1 R_2
//geompy.kind.polyhedron nb_faces nb_edges nb_vertices
//geompy.kind.solid nb_faces nb_edges nb_vertices
aKind = SK_SOLID;
//if () {
// aKind = SK_SPHERE;
// aKind = SK_CYLINDER;
// aKind = SK_BOX;
// aKind = SK_ROTATED_BOX;
// aKind = SK_TORUS;
// aKind = SK_CONE;
// aKind = SK_POLYHEDRON;
//}
break;
case TopAbs_FACE:
// geompy.kind.sphere2d xc yc zc R
// + geompy.kind.cylinder2d xb yb zb dx dy dz R H
// geompy.kind.torus2d xc yc zc dx dy dz R_1 R_2
// geompy.kind.cone2d xc yc zc dx dy dz R_1 R_2
// geompy.kind.disk xc yc zc dx dy dz R
// geompy.kind.ellipse2d xc yc zc dx dy dz R_1 R_2
// geompy.kind.polygon xo yo zo dx dy dz nb_edges nb_vertices
// + geompy.kind.planar xo yo zo dx dy dz nb_edges nb_vertices
// + geompy.kind.face nb_edges nb_vertices _surface_type_id_
aKind = SK_FACE;
{
TopoDS_Face aF = TopoDS::Face(aShape);
// (+) geompy.kind.COMPOUND nb_solids nb_faces nb_edges nb_vertices
// (+) geompy.kind.COMPSOLID nb_solids nb_faces nb_edges nb_vertices
// ??? "nb_faces" - all faces or only 'standalone' faces?
if (aType == TopAbs_COMPOUND)
aKind = SK_COMPOUND;
else
aKind = SK_COMPSOLID;
int nbWires = 0, nbEdges = 0, nbVertices = 0;
//theIntegers->Append(anInfo.NbSubShapes(TopAbs_COMPOUND));
//theIntegers->Append(anInfo.NbSubShapes(TopAbs_COMPSOLID));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_SOLID));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_FACE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_EDGE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_VERTEX));
}
break;
TopTools_MapOfShape mapShape;
TopExp_Explorer expw (aF, TopAbs_WIRE);
for (; expw.More(); expw.Next()) {
if (mapShape.Add(expw.Current())) {
//listShape.Append(expw.Current());
nbWires++;
case TopAbs_SHELL:
{
// (+) geompy.kind.SHELL geompy.info.closed nb_faces nb_edges nb_vertices
// (+) geompy.kind.SHELL geompy.info.unclosed nb_faces nb_edges nb_vertices
aKind = SK_SHELL;
theIntegers->Append((int)anInfo.KindOfClosed());
theIntegers->Append(anInfo.NbSubShapes(TopAbs_FACE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_EDGE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_VERTEX));
}
break;
case TopAbs_WIRE:
{
// (+) geompy.kind.WIRE geompy.info.closed nb_edges nb_vertices
// (+) geompy.kind.WIRE geompy.info.unclosed nb_edges nb_vertices
aKind = SK_WIRE;
theIntegers->Append((int)anInfo.KindOfClosed());
theIntegers->Append(anInfo.NbSubShapes(TopAbs_EDGE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_VERTEX));
}
break;
case TopAbs_SOLID:
{
aKind = SK_SOLID;
GEOMAlgo_KindOfName aKN = anInfo.KindOfName();
switch (aKN)
{
case GEOMAlgo_KN_SPHERE:
// (+) geompy.kind.SPHERE xc yc zc R
{
aKind = SK_SPHERE;
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
theDoubles->Append(anInfo.Radius1());
}
break;
case GEOMAlgo_KN_CYLINDER:
// (+) geompy.kind.CYLINDER xb yb zb dx dy dz R H
{
aKind = SK_CYLINDER;
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(anInfo.Radius1());
theDoubles->Append(anInfo.Height());
}
break;
case GEOMAlgo_KN_BOX:
// (+) geompy.kind.BOX xc yc zc ax ay az
{
aKind = SK_BOX;
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
gp_Dir aX = anAx3.XDirection();
// ax ay az
if (aD.IsParallel(gp::DZ(), Precision::Angular()) &&
aX.IsParallel(gp::DX(), Precision::Angular())) {
theDoubles->Append(anInfo.Length()); // ax'
theDoubles->Append(anInfo.Width()); // ay'
theDoubles->Append(anInfo.Height()); // az'
}
else if (aD.IsParallel(gp::DZ(), Precision::Angular()) &&
aX.IsParallel(gp::DY(), Precision::Angular())) {
theDoubles->Append(anInfo.Width()); // ay'
theDoubles->Append(anInfo.Length()); // ax'
theDoubles->Append(anInfo.Height()); // az'
}
else if (aD.IsParallel(gp::DX(), Precision::Angular()) &&
aX.IsParallel(gp::DZ(), Precision::Angular())) {
theDoubles->Append(anInfo.Height()); // az'
theDoubles->Append(anInfo.Width()); // ay'
theDoubles->Append(anInfo.Length()); // ax'
}
else if (aD.IsParallel(gp::DX(), Precision::Angular()) &&
aX.IsParallel(gp::DY(), Precision::Angular())) {
theDoubles->Append(anInfo.Height()); // az'
theDoubles->Append(anInfo.Length()); // ax'
theDoubles->Append(anInfo.Width()); // ay'
}
else if (aD.IsParallel(gp::DY(), Precision::Angular()) &&
aX.IsParallel(gp::DZ(), Precision::Angular())) {
theDoubles->Append(anInfo.Width()); // ay'
theDoubles->Append(anInfo.Height()); // az'
theDoubles->Append(anInfo.Length()); // ax'
}
else if (aD.IsParallel(gp::DY(), Precision::Angular()) &&
aX.IsParallel(gp::DX(), Precision::Angular())) {
theDoubles->Append(anInfo.Length()); // ax'
theDoubles->Append(anInfo.Height()); // az'
theDoubles->Append(anInfo.Width()); // ay'
}
else {
// (+) geompy.kind.ROTATED_BOX xo yo zo zx zy zz xx xy xz ax ay az
aKind = SK_ROTATED_BOX;
// Direction and XDirection
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(aX.X());
theDoubles->Append(aX.Y());
theDoubles->Append(aX.Z());
// ax ay az
theDoubles->Append(anInfo.Length());
theDoubles->Append(anInfo.Width());
theDoubles->Append(anInfo.Height());
}
}
break;
case GEOMAlgo_KN_TORUS:
// (+) geompy.kind.TORUS xc yc zc dx dy dz R_1 R_2
{
aKind = SK_TORUS;
mapShape.Clear();
TopExp_Explorer expe (aF, TopAbs_EDGE);
for (; expe.More(); expe.Next()) {
if (mapShape.Add(expe.Current())) {
//listShape.Append(expe.Current());
nbEdges++;
gp_Pnt aO = anInfo.Location();
theDoubles->Append(aO.X());
theDoubles->Append(aO.Y());
theDoubles->Append(aO.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(anInfo.Radius1());
theDoubles->Append(anInfo.Radius2());
}
break;
case GEOMAlgo_KN_CONE:
// (+) geompy.kind.CONE xb yb zb dx dy dz R_1 R_2 H
{
aKind = SK_CONE;
gp_Pnt aO = anInfo.Location();
theDoubles->Append(aO.X());
theDoubles->Append(aO.Y());
theDoubles->Append(aO.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(anInfo.Radius1());
theDoubles->Append(anInfo.Radius2());
theDoubles->Append(anInfo.Height());
}
break;
case GEOMAlgo_KN_POLYHEDRON:
// (+) geompy.kind.POLYHEDRON nb_faces nb_edges nb_vertices
{
aKind = SK_POLYHEDRON;
theIntegers->Append(anInfo.NbSubShapes(TopAbs_FACE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_EDGE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_VERTEX));
}
break;
default:
// (+) geompy.kind.SOLID nb_faces nb_edges nb_vertices
{
theIntegers->Append(anInfo.NbSubShapes(TopAbs_FACE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_EDGE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_VERTEX));
}
}
mapShape.Clear();
TopExp_Explorer expf (aF, TopAbs_VERTEX);
for (; expf.More(); expf.Next()) {
if (mapShape.Add(expf.Current())) {
//listShape.Append(expf.Current());
nbVertices++;
}
}
break;
// Geometry
Handle(Geom_Surface) aGS = BRep_Tool::Surface(aF);
if (!aGS.IsNull()) {
BRepAdaptor_Surface aBAS (aF);
if (aGS->IsKind(STANDARD_TYPE(Geom_Plane))) {
// planar
aKind = SK_PLANAR;
Handle(Geom_Plane) aGPlane = Handle(Geom_Plane)::DownCast(aGS);
gp_Pln aPln = aGPlane->Pln();
gp_Ax3 aPos = aPln.Position();
gp_Pnt anOri = aPos.Location();
gp_Dir aDirZ = aPos.Direction();
//gp_Dir aDirX = aPos.XDirection();
// xo yo zo
theDoubles->Append(anOri.X());
theDoubles->Append(anOri.Y());
theDoubles->Append(anOri.Z());
// dx dy dz
theDoubles->Append(aDirZ.X());
theDoubles->Append(aDirZ.Y());
theDoubles->Append(aDirZ.Z());
// nb_edges nb_vertices (for planar only)
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
//if () {
// aKind = SK_DISK;
// aKind = SK_ELLIPSE2D;
// aKind = SK_POLYGON;
//}
}
else if (aGS->IsKind(STANDARD_TYPE(Geom_SphericalSurface))) {
//if (/*isSphere*/false) {
if (aBAS.IsUClosed() && aBAS.IsVClosed()) { // does not work
Handle(Geom_SphericalSurface) aGSph = Handle(Geom_SphericalSurface)::DownCast(aGS);
// parameters
gp_Pnt aLoc = aGSph->Location();
Standard_Real rr = aGSph->Radius();
// xc yc zc
theDoubles->Append(aLoc.X());
theDoubles->Append(aLoc.Y());
theDoubles->Append(aLoc.Z());
// R
theDoubles->Append(rr);
case TopAbs_FACE:
{
aKind = SK_FACE;
GEOMAlgo_KindOfName aKN = anInfo.KindOfName();
switch (aKN) {
case GEOMAlgo_KN_SPHERE:
// (+) geompy.kind.SPHERE2D xc yc zc R
{
aKind = SK_SPHERE2D;
}
else {
// nb_edges nb_vertices (for spherical only)
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
theIntegers->Append((Standard_Integer)GeomAbs_Sphere);
}
}
else if (aGS->IsKind(STANDARD_TYPE(Geom_CylindricalSurface))) {
// Pure cylinder or just a piece of cylindric surface
TopLoc_Location aL;
Handle(Geom_Surface) aGSLoc = BRep_Tool::Surface(aF, aL);
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
//aF.Orientation(TopAbs_FORWARD);
TopExp_Explorer ex (aF, TopAbs_EDGE);
Standard_Real uMin, uMax, vMin, vMax;
bool isCylinder = true;
for (; ex.More(); ex.Next()) {
// check all edges: pure cylinder has only one seam edge
// and two edges with const v parameter
TopoDS_Edge E = TopoDS::Edge(ex.Current());
if (BRep_Tool::IsClosed(E, aGSLoc, aL)) {
// seam edge
//TopoDS_Edge ERevr = E;
//ERevr.Reverse();
//Handle(Geom2d_Curve) pcRepl1 = BRep_Tool::CurveOnSurface(E , aF, f,l);
//Handle(Geom2d_Curve) pcRepl2 = BRep_Tool::CurveOnSurface(ERevr, aF, f,l);
theDoubles->Append(anInfo.Radius1());
}
else {
BRepTools::UVBounds(aF, E, uMin, uMax, vMin, vMax);
if (Abs(vMin - vMax) > Precision::Confusion())
// neither seam, nor v-constant
isCylinder = false;
}
}
if (isCylinder) {
break;
case GEOMAlgo_KN_CYLINDER:
// (+) geompy.kind.CYLINDER2D xb yb zb dx dy dz R H
{
aKind = SK_CYLINDER2D;
Handle(Geom_CylindricalSurface) aGCyl = Handle(Geom_CylindricalSurface)::DownCast(aGS);
gp_Pnt aO = anInfo.Location();
theDoubles->Append(aO.X());
theDoubles->Append(aO.Y());
theDoubles->Append(aO.Z());
// parameters
gp_Pnt aLoc = aGCyl->Location();
gp_Ax1 anAx = aGCyl->Axis();
gp_Dir aDir = anAx.Direction();
Standard_Real rr = aGCyl->Radius();
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
// xb yb zb
theDoubles->Append(aLoc.X());
theDoubles->Append(aLoc.Y());
theDoubles->Append(aLoc.Z());
// dx dy dz
theDoubles->Append(aDir.X());
theDoubles->Append(aDir.Y());
theDoubles->Append(aDir.Z());
// R
theDoubles->Append(rr);
// H
Standard_Real hh = Abs(aBAS.FirstVParameter() - aBAS.LastVParameter());
theDoubles->Append(hh);
}
else {
// nb_edges nb_vertices (for cylinrical only)
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
theIntegers->Append((Standard_Integer)GeomAbs_Cylinder);
}
}
else if (aGS->IsKind(STANDARD_TYPE(Geom_ToroidalSurface))) {
// aKind = SK_TORUS2D;
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
theIntegers->Append((Standard_Integer)GeomAbs_Torus);
}
else if (aGS->IsKind(STANDARD_TYPE(Geom_ConicalSurface))) {
// aKind = SK_CONE2D;
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
theIntegers->Append((Standard_Integer)GeomAbs_Cone);
}
else if (aGS->IsKind(STANDARD_TYPE(Geom_SurfaceOfLinearExtrusion))) {
//
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
theIntegers->Append((Standard_Integer)GeomAbs_SurfaceOfExtrusion);
}
else if (aGS->IsKind(STANDARD_TYPE(Geom_SurfaceOfRevolution))) {
//
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
theIntegers->Append((Standard_Integer)GeomAbs_SurfaceOfRevolution);
}
else if (aGS->IsKind(STANDARD_TYPE(Geom_BezierSurface))) {
//
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
theIntegers->Append((Standard_Integer)GeomAbs_BezierSurface);
}
else if (aGS->IsKind(STANDARD_TYPE(Geom_BSplineSurface))) {
//
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
theIntegers->Append((Standard_Integer)GeomAbs_BSplineSurface);
}
else if (aGS->IsKind(STANDARD_TYPE(Geom_OffsetSurface))) {
//
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
theIntegers->Append((Standard_Integer)GeomAbs_OffsetSurface);
}
else if (aGS->IsKind(STANDARD_TYPE(Geom_RectangularTrimmedSurface))) {
//
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
theIntegers->Append((Standard_Integer)GeomAbs_OtherSurface);
}
else {
// ???
theIntegers->Append(nbEdges);
theIntegers->Append(nbVertices);
theIntegers->Append((Standard_Integer)GeomAbs_OtherSurface);
}
}
theDoubles->Append(anInfo.Radius1());
theDoubles->Append(anInfo.Height());
}
break;
case TopAbs_EDGE:
//geompy.kind.circle xc yc zc dx dy dz R
//geompy.kind.arc xc yc zc dx dy dz R x1 y1 z1 x2 y2 z2
//geompy.kind.ellipse xc yc zc dx dy dz R_1 R_2
//geompy.kind.arcEllipse xc yc zc dx dy dz R_1 R_2 x1 y1 z1 x2 y2 z2
//geompy.kind.line x1 y1 z1 x2 y2 z2
//geompy.kind.segment x1 y1 z1 x2 y2 z2
//geompy.kind.edge nb_vertices _curve_type_id_
aKind = SK_EDGE;
//if () {
// aKind = SK_CIRCLE;
// aKind = SK_ARC;
// aKind = SK_ELLIPSE;
// aKind = SK_ARC_ELLIPSE;
// aKind = SK_LINE;
// aKind = SK_SEGMENT;
//}
break;
case TopAbs_VERTEX:
//geompy.kind.VERTEX x y z
aKind = SK_VERTEX;
case GEOMAlgo_KN_TORUS:
// (+) geompy.kind.TORUS2D xc yc zc dx dy dz R_1 R_2
{
TopoDS_Vertex aV = TopoDS::Vertex(aShape);
gp_Pnt aP = BRep_Tool::Pnt(aV);
aKind = SK_TORUS2D;
gp_Pnt aO = anInfo.Location();
theDoubles->Append(aO.X());
theDoubles->Append(aO.Y());
theDoubles->Append(aO.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(anInfo.Radius1());
theDoubles->Append(anInfo.Radius2());
}
break;
case GEOMAlgo_KN_CONE:
// (+) geompy.kind.CONE2D xc yc zc dx dy dz R_1 R_2 H
{
aKind = SK_CONE2D;
gp_Pnt aO = anInfo.Location();
theDoubles->Append(aO.X());
theDoubles->Append(aO.Y());
theDoubles->Append(aO.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(anInfo.Radius1());
theDoubles->Append(anInfo.Radius2());
theDoubles->Append(anInfo.Height());
}
break;
case GEOMAlgo_KN_DISKCIRCLE:
// (+) geompy.kind.DISK_CIRCLE xc yc zc dx dy dz R
{
aKind = SK_DISK_CIRCLE;
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(anInfo.Radius1());
}
break;
case GEOMAlgo_KN_DISKELLIPSE:
// (+) geompy.kind.DISK_ELLIPSE xc yc zc dx dy dz R_1 R_2
{
aKind = SK_DISK_ELLIPSE;
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(anInfo.Radius1());
theDoubles->Append(anInfo.Radius2());
}
break;
case GEOMAlgo_KN_RECTANGLE:
case GEOMAlgo_KN_TRIANGLE:
case GEOMAlgo_KN_QUADRANGLE:
case GEOMAlgo_KN_POLYGON:
// (+) geompy.kind.POLYGON xo yo zo dx dy dz nb_edges nb_vertices
{
aKind = SK_POLYGON;
gp_Pnt aO = anInfo.Location();
theDoubles->Append(aO.X());
theDoubles->Append(aO.Y());
theDoubles->Append(aO.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theIntegers->Append(anInfo.NbSubShapes(TopAbs_EDGE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_VERTEX));
}
break;
case GEOMAlgo_KN_PLANE: // infinite
// (+) geompy.kind.PLANE xo yo zo dx dy dz
{
aKind = SK_PLANE;
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
}
break;
default:
if (anInfo.KindOfShape() == GEOMAlgo_KS_PLANE) {
// (+) geompy.kind.PLANAR xo yo zo dx dy dz nb_edges nb_vertices
aKind = SK_PLANAR;
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theIntegers->Append(anInfo.NbSubShapes(TopAbs_EDGE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_VERTEX));
}
else {
// ??? geompy.kind.FACE nb_edges nb_vertices _surface_type_id_
// (+) geompy.kind.FACE nb_edges nb_vertices
theIntegers->Append(anInfo.NbSubShapes(TopAbs_EDGE));
theIntegers->Append(anInfo.NbSubShapes(TopAbs_VERTEX));
}
}
}
break;
case TopAbs_EDGE:
{
aKind = SK_EDGE;
GEOMAlgo_KindOfName aKN = anInfo.KindOfName();
switch (aKN) {
case GEOMAlgo_KN_CIRCLE:
{
// (+) geompy.kind.CIRCLE xc yc zc dx dy dz R
aKind = SK_CIRCLE;
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(anInfo.Radius1());
}
break;
case GEOMAlgo_KN_ARCCIRCLE:
{
// (+) geompy.kind.ARC_CIRCLE xc yc zc dx dy dz R x1 y1 z1 x2 y2 z2
aKind = SK_ARC_CIRCLE;
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(anInfo.Radius1());
gp_Pnt aP1 = anInfo.Pnt1();
theDoubles->Append(aP1.X());
theDoubles->Append(aP1.Y());
theDoubles->Append(aP1.Z());
gp_Pnt aP2 = anInfo.Pnt2();
theDoubles->Append(aP2.X());
theDoubles->Append(aP2.Y());
theDoubles->Append(aP2.Z());
}
break;
case GEOMAlgo_KN_ELLIPSE:
{
// (+) geompy.kind.ELLIPSE xc yc zc dx dy dz R_1 R_2
aKind = SK_ELLIPSE;
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(anInfo.Radius1());
theDoubles->Append(anInfo.Radius2());
}
break;
case GEOMAlgo_KN_ARCELLIPSE:
{
// (+) geompy.kind.ARC_ELLIPSE xc yc zc dx dy dz R_1 R_2 x1 y1 z1 x2 y2 z2
aKind = SK_ARC_ELLIPSE;
gp_Pnt aC = anInfo.Location();
theDoubles->Append(aC.X());
theDoubles->Append(aC.Y());
theDoubles->Append(aC.Z());
gp_Ax3 anAx3 = anInfo.Position();
gp_Dir aD = anAx3.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
theDoubles->Append(anInfo.Radius1());
theDoubles->Append(anInfo.Radius2());
gp_Pnt aP1 = anInfo.Pnt1();
theDoubles->Append(aP1.X());
theDoubles->Append(aP1.Y());
theDoubles->Append(aP1.Z());
gp_Pnt aP2 = anInfo.Pnt2();
theDoubles->Append(aP2.X());
theDoubles->Append(aP2.Y());
theDoubles->Append(aP2.Z());
}
break;
case GEOMAlgo_KN_LINE:
{
// ??? geompy.kind.LINE x1 y1 z1 x2 y2 z2
// (+) geompy.kind.LINE x1 y1 z1 dx dy dz
aKind = SK_LINE;
gp_Pnt aO = anInfo.Location();
theDoubles->Append(aO.X());
theDoubles->Append(aO.Y());
theDoubles->Append(aO.Z());
gp_Dir aD = anInfo.Direction();
theDoubles->Append(aD.X());
theDoubles->Append(aD.Y());
theDoubles->Append(aD.Z());
}
break;
case GEOMAlgo_KN_SEGMENT:
{
// (+) geompy.kind.SEGMENT x1 y1 z1 x2 y2 z2
aKind = SK_SEGMENT;
gp_Pnt aP1 = anInfo.Pnt1();
theDoubles->Append(aP1.X());
theDoubles->Append(aP1.Y());
theDoubles->Append(aP1.Z());
gp_Pnt aP2 = anInfo.Pnt2();
theDoubles->Append(aP2.X());
theDoubles->Append(aP2.Y());
theDoubles->Append(aP2.Z());
}
break;
default:
// ??? geompy.kind.EDGE nb_vertices _curve_type_id_
// (+) geompy.kind.EDGE nb_vertices
theIntegers->Append(anInfo.NbSubShapes(TopAbs_VERTEX));
}
}
break;
case TopAbs_VERTEX:
{
// (+) geompy.kind.VERTEX x y z
aKind = SK_VERTEX;
gp_Pnt aP = anInfo.Location();
theDoubles->Append(aP.X());
theDoubles->Append(aP.Y());
theDoubles->Append(aP.Z());

View File

@ -48,32 +48,33 @@ class GEOMImpl_IMeasureOperations : public GEOM_IOperations {
SK_SHELL,
SK_WIRE,
// SOLIDs
SK_SPHERE,
SK_CYLINDER,
SK_BOX,
SK_ROTATED_BOX,
SK_TORUS,
SK_CONE,
SK_POLYHEDRON,
SK_SOLID,
SK_SPHERE, // full sphere
SK_CYLINDER, // cylinder
SK_BOX, // box with faces, parallel to global coordinate planes
SK_ROTATED_BOX, // other box
SK_TORUS, // full torus
SK_CONE, // cone
SK_POLYHEDRON, // solid, bounded by polygons
SK_SOLID, // other solid
// FACEs
SK_SPHERE2D,
SK_CYLINDER2D,
SK_TORUS2D,
SK_CONE2D,
SK_DISK,
SK_ELLIPSE2D,
SK_POLYGON,
SK_PLANAR,
SK_FACE,
SK_SPHERE2D, // spherical face (closed)
SK_CYLINDER2D, // cylindrical face with defined height
SK_TORUS2D, // toroidal face (closed)
SK_CONE2D, // conical face with defined height
SK_DISK_CIRCLE, // planar, bounded by circle
SK_DISK_ELLIPSE, // planar, bounded by ellipse
SK_POLYGON, // planar, bounded by segments
SK_PLANE, // infinite planar
SK_PLANAR, // other planar
SK_FACE, // other face
// EDGEs
SK_CIRCLE,
SK_ARC,
SK_ELLIPSE,
SK_ARC_ELLIPSE,
SK_CIRCLE, // full circle
SK_ARC_CIRCLE, // arc of circle
SK_ELLIPSE, // full ellipse
SK_ARC_ELLIPSE, // arc of ellipse
SK_LINE, // infinite segment
SK_SEGMENT,
SK_EDGE,
SK_SEGMENT, // segment
SK_EDGE, // other edge
// VERTEX
SK_VERTEX
};

View File

@ -149,6 +149,11 @@ ShapeType = {"COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE"
kind = GEOM.GEOM_IKindOfShape
class info:
UNKNOWN = 0
CLOSED = 1
UNCLOSED = 2
# -----------------------------------------------------------------------------
# Basic primitives
# -----------------------------------------------------------------------------
@ -1978,45 +1983,45 @@ def GetPosition(theShape):
# @note Concrete meaning of each value, returned via \a theIntegers
# or \a theDoubles list depends on the kind of the shape.
# The full list of possible outputs is:
# Currently implemented cases are marked with '+' sign:
#
# geompy.kind.COMPOUND nb_solids nb_faces nb_edges nb_vertices
# geompy.kind.COMPSOLID nb_solids nb_faces nb_edges nb_vertices
#
# geompy.kind.SHELL geompy.info.closed nb_faces nb_edges nb_vertices
# geompy.kind.SHELL geompy.info.unclosed nb_faces nb_edges nb_vertices
# geompy.kind.SHELL geompy.info.CLOSED nb_faces nb_edges nb_vertices
# geompy.kind.SHELL geompy.info.UNCLOSED nb_faces nb_edges nb_vertices
#
# geompy.kind.WIRE geompy.info.closed nb_edges nb_vertices
# geompy.kind.WIRE geompy.info.unclosed nb_edges nb_vertices
# geompy.kind.WIRE geompy.info.CLOSED nb_edges nb_vertices
# geompy.kind.WIRE geompy.info.UNCLOSED nb_edges nb_vertices
#
# geompy.kind.SPHERE xc yc zc R
# geompy.kind.CYLINDER xb yb zb dx dy dz R H
# geompy.kind.BOX xc yc zc dx dy dz
# geompy.kind.ROTATED_BOX xo yo zo zx zy zz xx xy xz dx dy dz
# geompy.kind.BOX xc yc zc ax ay az
# geompy.kind.ROTATED_BOX xc yc zc zx zy zz xx xy xz ax ay az
# geompy.kind.TORUS xc yc zc dx dy dz R_1 R_2
# geompy.kind.CONE xb yb zb dx dy dz H R_1 R_2
# geompy.kind.CONE xb yb zb dx dy dz R_1 R_2 H
# geompy.kind.POLYHEDRON nb_faces nb_edges nb_vertices
# geompy.kind.SOLID nb_faces nb_edges nb_vertices
#
# geompy.kind.SPHERE2D xc yc zc R
# + geompy.kind.CYLINDER2D xb yb zb dx dy dz R H
# geompy.kind.CYLINDER2D xb yb zb dx dy dz R H
# geompy.kind.TORUS2D xc yc zc dx dy dz R_1 R_2
# geompy.kind.CONE2D xc yc zc dx dy dz R_1 R_2
# geompy.kind.DISK xc yc zc dx dy dz R
# geompy.kind.ELLIPSE2D xc yc zc dx dy dz R_1 R_2
# geompy.kind.CONE2D xc yc zc dx dy dz R_1 R_2 H
# geompy.kind.DISK_CIRCLE xc yc zc dx dy dz R
# geompy.kind.DISK_ELLIPSE xc yc zc dx dy dz R_1 R_2
# geompy.kind.POLYGON xo yo zo dx dy dz nb_edges nb_vertices
# + geompy.kind.PLANAR xo yo zo dx dy dz nb_edges nb_vertices
# + geompy.kind.FACE nb_edges nb_vertices _surface_type_id_
# geompy.kind.PLANE xo yo zo dx dy dz
# geompy.kind.PLANAR xo yo zo dx dy dz nb_edges nb_vertices
# geompy.kind.FACE nb_edges nb_vertices
#
# geompy.kind.CIRCLE xc yc zc dx dy dz R
# geompy.kind.ARC xc yc zc dx dy dz R x1 y1 z1 x2 y2 z2
# geompy.kind.ARC_CIRCLE xc yc zc dx dy dz R x1 y1 z1 x2 y2 z2
# geompy.kind.ELLIPSE xc yc zc dx dy dz R_1 R_2
# geompy.kind.ARC_ELLIPSE xc yc zc dx dy dz R_1 R_2 x1 y1 z1 x2 y2 z2
# geompy.kind.LINE x1 y1 z1 x2 y2 z2
# geompy.kind.LINE xo yo zo dx dy dz
# geompy.kind.SEGMENT x1 y1 z1 x2 y2 z2
# geompy.kind.EDGE nb_vertices _curve_
# geompy.kind.EDGE nb_vertices
#
# + geompy.kind.VERTEX x y z
# geompy.kind.VERTEX x y z
#
# Example: see GEOM_TestMeasures.py
def KindOfShape(theShape):