Implemented [bos #35094] [EDF] (2023-T1) X,Y,Z to U,V.

This commit is contained in:
jfa 2023-05-12 09:46:46 +01:00
parent e06f87b076
commit 611d40ba2a
10 changed files with 634 additions and 0 deletions

View File

@ -0,0 +1,212 @@
# Test XYZtoUV and UVtoXYZ methods
import salome
salome.salome_init_without_session()
import GEOM
from salome.geom import geomBuilder
geompy = geomBuilder.New()
import math
import numpy as np
toler = 1e-04
# Create "Horse saddle"
OX = geompy.MakeVectorDXDYDZ(1, 0, 0, 'OX')
OY = geompy.MakeVectorDXDYDZ(0, 1, 0, 'OY')
Sphere_1 = geompy.MakeSphereR(100, 'Sphere_1')
[Edge_1,Edge_2,Edge_3] = geompy.ExtractShapes(Sphere_1, geompy.ShapeType["EDGE"], True)
geompy.addToStudyInFather( Sphere_1, Edge_1, 'Edge_1' )
geompy.addToStudyInFather( Sphere_1, Edge_2, 'Edge_2' )
geompy.addToStudyInFather( Sphere_1, Edge_3, 'Edge_3' )
Rotation_1 = geompy.MakeRotation(Edge_3, OX, 90*math.pi/180.0, 'Rotation_1')
Rotation_2 = geompy.MakeRotation(Rotation_1, OY, 180*math.pi/180.0, 'Rotation_2')
Translation_1 = geompy.MakeTranslation(Rotation_2, 200, 0, 0, 'Translation_1')
Translation_2 = geompy.MakeTranslation(Edge_3, 100, 100, 0, 'Translation_2')
Translation_3 = geompy.MakeTranslation(Translation_2, 0, -200, 0, 'Translation_3')
Filling_1 = geompy.MakeFilling([Translation_2, Edge_3, Translation_3])
geompy.addToStudy(Filling_1, 'Filling_1')
HorseSaddle = geompy.LimitTolerance(Filling_1, toler, 'HorseSaddle')
# Get 100 equidistant points on the "Horse saddle"
CompoundOfVertices = geompy.MakeVertexInsideFace(HorseSaddle, 100, "CompoundOfVertices")
assert(geompy.NumberOfSubShapes(CompoundOfVertices, geompy.ShapeType["VERTEX"]) == 100)
# Extract the vertices
listOfVertices = geompy.ExtractShapes(CompoundOfVertices, geompy.ShapeType["VERTEX"], True)
# Get list of coordinates of all 100 vertices
listOfCoords = []
for aV in listOfVertices:
listOfCoords += geompy.PointCoordinates(aV)
pass
# Test 1: with normalization of parameters
# Convert XYZ to UV
listOfParams_norm = geompy.XYZtoUV(HorseSaddle, listOfCoords, True)
assert(len(listOfParams_norm) == 200)
# Convert UV to XYZ
listOfCoords_new1 = geompy.UVtoXYZ(HorseSaddle, listOfParams_norm, True)
assert(len(listOfCoords_new1) == 300)
# Compare listOfCoords_new with listOfCoords
for (c1, c2) in zip(listOfCoords, listOfCoords_new1):
assert(abs(c1 - c2) < toler)
pass
# Test 2: without normalization of parameters
# Convert XYZ to UV
listOfParams = geompy.XYZtoUV(HorseSaddle, listOfCoords, False)
assert(len(listOfParams) == 200)
# Convert UV to XYZ
listOfCoords_new2 = geompy.UVtoXYZ(HorseSaddle, listOfParams, False)
assert(len(listOfCoords_new2) == 300)
# Compare listOfCoords_new with listOfCoords
for (c1, c2) in zip(listOfCoords, listOfCoords_new2):
assert(abs(c1 - c2) < toler)
pass
# Test 3: Check exceptions throwing if point (XYZ or UV) is out of face
listXYZ_3 = listOfCoords[:3]
listXYZ_3[2] = listXYZ_3[2] + 1.0 # move along OZ
try:
geompy.XYZtoUV(HorseSaddle, listXYZ_3, True)
except RuntimeError:
print(geompy.MeasuOp.GetErrorCode(), ", it's OK")
pass
except Exception:
assert False, 'Unexpected exception raised'
else:
assert False, 'XYZtoUV should raise an exception if input point is out of face'
listUV_2 = [2, 2] # each parameter value should be in [0,1] range (for normalized case)
try:
geompy.UVtoXYZ(HorseSaddle, listUV_2, True)
except RuntimeError:
print(geompy.MeasuOp.GetErrorCode(), ", it's OK")
pass
except Exception:
assert False, 'Unexpected exception raised'
else:
assert False, 'UVtoXYZ should raise an exception if input parameters are out of face'
# parameter U should be in [4.71239, 7.85398] range (on this face, for not normalized case)
# parameter V should be in [0, 1] range (on this face, for not normalized case)
listUV_2 = [10, 10]
try:
geompy.UVtoXYZ(HorseSaddle, listUV_2, True)
except RuntimeError:
print(geompy.MeasuOp.GetErrorCode(), ", it's OK")
pass
except Exception:
assert False, 'Unexpected exception raised'
else:
assert False, 'UVtoXYZ should raise an exception if input parameters are out of face'
# Test 4: Check exceptions in case of invalid data type (wrong length of array or type of elements)
# 1. Length of input array is not divisible by 3 (for XYZtoUV) or by 2 (for UVtoXYZ)
listXYZ_4 = listOfCoords[:4]
assert(len(listXYZ_4) == 4)
try:
geompy.XYZtoUV(HorseSaddle, listXYZ_4, True)
except RuntimeError:
print(geompy.MeasuOp.GetErrorCode(), ", it's OK")
pass
except Exception:
assert False, 'Unexpected exception raised'
else:
assert False, 'XYZtoUV should raise an exception if input list length is not divisible by 3'
listUV_3 = listOfParams[:3]
assert(len(listUV_3) == 3)
try:
geompy.UVtoXYZ(HorseSaddle, listUV_3, True)
except RuntimeError:
print(geompy.MeasuOp.GetErrorCode(), ", it's OK")
pass
except Exception:
assert False, 'Unexpected exception raised'
else:
assert False, 'UVtoXYZ should raise an exception if input list length is not divisible by 2'
# 2. Input array contains data of wrong type
listXYZ_w = ['a', 'b', 'c']
try:
geompy.XYZtoUV(HorseSaddle, listXYZ_w, True)
except Exception:
pass
else:
assert False, 'XYZtoUV should raise TypeError if input list contains not numerical data'
listXYZ_w = [10.0, '10.0', 10.0]
try:
geompy.XYZtoUV(HorseSaddle, listXYZ_w, True)
except Exception:
pass
else:
assert False, 'XYZtoUV should raise TypeError if input list contains not numerical data'
listUV_w = ['a', 'b']
try:
geompy.UVtoXYZ(HorseSaddle, listUV_w, True)
except Exception:
pass
else:
assert False, 'UVtoXYZ should raise TypeError if input list contains not numerical data'
listUV_w = [10.0, '10.0']
try:
geompy.UVtoXYZ(HorseSaddle, listUV_w, True)
except Exception:
pass
else:
assert False, 'UVtoXYZ should raise TypeError if input list contains not numerical data'
# Test 5: a. Translate each of the 100 points by toler*2.0 along the face normal
# and check that the XYZtoUV method fails by raising an exception.
# b. Translate each of the 100 points by toler*0.7 along the face normal
# and check that we obtain a result.
for ii in range(100):
# cc - coordinates of point #ii
cc = listOfCoords[ii*3 : ii*3 + 3]
pnt = geompy.MakeVertex(cc[0], cc[1], cc[2])
normal = geompy.GetNormal(HorseSaddle, pnt)
vv = geompy.VectorCoordinates(normal)
norm = np.linalg.norm(vv)
if norm > toler:
vec = vv / norm
# a. Move cc by toler*2.0 (XYZtoUV should fail)
pp_2tol = [cc[0] + vec[0]*toler*2.0,
cc[1] + vec[1]*toler*2.0,
cc[2] + vec[2]*toler*2.0]
try:
geompy.XYZtoUV(HorseSaddle, pp_2tol)
except RuntimeError:
pass
except Exception:
assert False, 'Unexpected exception raised'
else:
assert False, 'XYZtoUV should raise an exception if input point is out of face'
pass
# b. Move cc by toler*0.7 (XYZtoUV should not fail)
pp_07tol = [cc[0] + vec[0]*toler*0.7,
cc[1] + vec[1]*toler*0.7,
cc[2] + vec[2]*toler*0.7]
UV_pp = geompy.XYZtoUV(HorseSaddle, pp_07tol, False)
# compare with value from listOfParams (computed above)
UV_cc = listOfParams[ii*2 : ii*2 + 2]
for (c1, c2) in zip(UV_pp, UV_cc):
assert(abs(c1 - c2) < toler)
pass
pass
pass

View File

@ -136,4 +136,5 @@ SET(GOOD_TESTS
GEOM_Field.py
check_self_intersections_fast.py # OCC > 6.9.0
shape_proximity.py
XYZ_to_UV.py
)

View File

@ -23,6 +23,7 @@
<li>\subpage tui_fast_intersection_page</li>
<li>\subpage tui_check_conformity_page</li>
<li>\subpage tui_shape_proximity_page</li>
<li>\subpage tui_xyz_to_uv_page</li>
</ul>
*/

View File

@ -0,0 +1,7 @@
/*!
\page tui_xyz_to_uv_page Get point on face parameters U and V by coordinates or coordinates by parameters
\tui_script{XYZ_to_UV.py}
*/

View File

@ -4745,6 +4745,34 @@ module GEOM
in GEOM_Object thePoint,
in GEOM_Object theDirection);
/*!
* \brief Convert X,Y,Z points coordinates to UV parameters on the given surface.
\param theSurf the given face. It can be also a shell or a compound with one face.
\param theXYZlist float list of size 3*N where N is the number of points
for which we want their U,V coordinates.
If the user enters a list of size not divisible by 3
an exception will be thrown.
\param theIsNormalized if True, the returned parameters will be in range [0, 1].
\return list of float of size 2*N.
*/
ListOfDouble XYZtoUV(in GEOM_Object theSurf,
in ListOfDouble theXYZlist,
in boolean theIsNormalized);
/*!
* \brief Convert UV parameters on the given surface to 3D points coordinates.
\param theSurf the given face. It can be also a shell or a compound with one face.
\param theUVlist float list of size 2*N where N is the number of points
for which we want their X,Y,Z coordinates.
If the user enters a list of non-even size
an exception will be thrown.
\param theIsNormalized if True, the input parameters are expected to be in range [0, 1].
\return list of float of size 3*N.
*/
ListOfDouble UVtoXYZ(in GEOM_Object theSurf,
in ListOfDouble theUVlist,
in boolean theIsNormalized);
//! Methods and structure for implement CheckConformity tool
/*!

View File

@ -2793,6 +2793,216 @@ Handle(GEOM_Object) GEOMImpl_IMeasureOperations::SurfaceCurvatureByPointAndDirec
return aCV;
}
//=============================================================================
/*!
* XYZtoUV
*/
//=============================================================================
Handle(TColStd_HArray1OfReal) GEOMImpl_IMeasureOperations::XYZtoUV
(Handle(GEOM_Object) theSurf,
const Handle(TColStd_HArray1OfReal)& theXYZlist,
bool isNormalized)
{
SetErrorCode(KO);
Handle(TColStd_HArray1OfReal) aRet;
// Check list of coordinates
int nbC = theXYZlist->Length();
int nbP = nbC / 3;
if (nbP * 3 != nbC) {
SetErrorCode("Coordinates list length is not divisible by 3");
return aRet;
}
// Check face
if (theSurf.IsNull()) {
SetErrorCode("The shape is NULL");
return aRet;
}
Handle(GEOM_Function) aRefShape = theSurf->GetLastFunction();
if (aRefShape.IsNull()) {
SetErrorCode("The shape is NULL");
return aRet;
}
TopoDS_Shape aShape = aRefShape->GetValue();
if (aShape.IsNull()) {
SetErrorCode("The shape is NULL");
return aRet;
}
// The shape can be a face, a shell of one face or a compound with one face
TopoDS_Face F;
if (aShape.ShapeType() == TopAbs_FACE) {
F = TopoDS::Face(aShape);
}
else if (aShape.ShapeType() < TopAbs_FACE) {
TopExp_Explorer Exp (aShape, TopAbs_FACE);
if (Exp.More()) {
F = TopoDS::Face(Exp.Current());
Exp.Next();
if (Exp.More()) {
SetErrorCode("There should be only one face");
return aRet;
}
}
}
if (F.IsNull()) {
SetErrorCode("There are no faces");
return aRet;
}
// Face tolerance
Standard_Real squareTolerance = BRep_Tool::Tolerance(F);
squareTolerance = squareTolerance * squareTolerance;
// Compute parameters
Handle(Geom_Surface) aSurf = BRep_Tool::Surface(F);
aRet = new TColStd_HArray1OfReal (0, nbP * 2 - 1);
Standard_Real U1,U2, V1,V2;
BRepTools::UVBounds(F, U1, U2, V1, V2);
Standard_Real dU = U2 - U1;
Standard_Real dV = V2 - V1;
int iCLower = theXYZlist->Lower();
for (int iP = 0; iP < nbP; iP++) {
gp_Pnt aP (theXYZlist->Value(iCLower + iP * 3),
theXYZlist->Value(iCLower + iP * 3 + 1),
theXYZlist->Value(iCLower + iP * 3 + 2));
Standard_Real U, V;
gp_Pnt aPonF = GEOMUtils::ProjectPointOnFace(aP, F, U, V);
if (aP.SquareDistance(aPonF) < squareTolerance) {
if (isNormalized) {
// Normalize parameters to be in [0, 1]
U = (U - U1) / dU;
V = (V - V1) / dV;
}
aRet->SetValue(iP * 2 , U);
aRet->SetValue(iP * 2 + 1, V);
}
else {
SetErrorCode("Point too far from face");
return aRet;
}
}
SetErrorCode(OK);
return aRet;
}
//=============================================================================
/*!
* UVtoXYZ
*/
//=============================================================================
Handle(TColStd_HArray1OfReal) GEOMImpl_IMeasureOperations::UVtoXYZ
(Handle(GEOM_Object) theSurf,
const Handle(TColStd_HArray1OfReal)& theUVlist,
bool isNormalized)
{
SetErrorCode(KO);
Handle(TColStd_HArray1OfReal) aRet;
// Check list of parameters
int nbC = theUVlist->Length();
int nbP = nbC / 2;
if (nbP * 2 != nbC) {
SetErrorCode("Parameters list length is not divisible by 2");
return aRet;
}
// Check face
if (theSurf.IsNull()) {
SetErrorCode("The shape is NULL");
return aRet;
}
Handle(GEOM_Function) aRefShape = theSurf->GetLastFunction();
if (aRefShape.IsNull()) {
SetErrorCode("The shape is NULL");
return aRet;
}
TopoDS_Shape aShape = aRefShape->GetValue();
if (aShape.IsNull()) {
SetErrorCode("The shape is NULL");
return aRet;
}
// The shape can be a face, a shell of one face or a compound with one face
TopoDS_Face F;
if (aShape.ShapeType() == TopAbs_FACE) {
F = TopoDS::Face(aShape);
}
else if (aShape.ShapeType() < TopAbs_FACE) {
TopExp_Explorer Exp (aShape, TopAbs_FACE);
if (Exp.More()) {
F = TopoDS::Face(Exp.Current());
Exp.Next();
if (Exp.More()) {
SetErrorCode("There should be only one face");
return aRet;
}
}
}
if (F.IsNull()) {
SetErrorCode("There are no faces");
return aRet;
}
// Face tolerance
Standard_Real squareTolerance = BRep_Tool::Tolerance(F);
squareTolerance = squareTolerance * squareTolerance;
// Compute coordinates
Handle(Geom_Surface) aSurf = BRep_Tool::Surface(F);
aRet = new TColStd_HArray1OfReal (0, nbP * 3 - 1);
Standard_Real U1,U2, V1,V2;
BRepTools::UVBounds(F, U1, U2, V1, V2);
Standard_Real dU = U2 - U1;
Standard_Real dV = V2 - V1;
Standard_Real tol = 1.e-4;
Standard_Real pc = Precision::Confusion();
int iCLower = theUVlist->Lower();
for (int iP = 0; iP < nbP; iP++) {
Standard_Real U = theUVlist->Value(iCLower + iP * 2);
Standard_Real V = theUVlist->Value(iCLower + iP * 2 + 1);
if (isNormalized) {
// Get real parameters from given normalized ones in [0, 1]
if (!(-pc < U && U < 1 + pc) || !(-pc < V && V < 1 + pc)) {
SetErrorCode("Normalized parameter is out of range [0,1]");
return aRet;
}
U = U1 + dU * U;
V = V1 + dV * V;
}
gp_Pnt2d aP2d (U, V);
BRepClass_FaceClassifier aClsf (F, aP2d, tol);
if (aClsf.State() != TopAbs_IN && aClsf.State() != TopAbs_ON) {
SetErrorCode("Given parameters are out of face");
return aRet;
}
gp_Pnt surfPnt = aSurf->Value(U, V);
aRet->SetValue(iP * 3 , surfPnt.X());
aRet->SetValue(iP * 3 + 1, surfPnt.Y());
aRet->SetValue(iP * 3 + 2, surfPnt.Z());
}
SetErrorCode(OK);
return aRet;
}
//=============================================================================
/*!
* SelfIntersected2D

View File

@ -244,6 +244,17 @@ class GEOMImpl_IMeasureOperations : public GEOM_IOperations {
Handle(GEOM_Object) thePoint,
Handle(GEOM_Object) theDirection);
// Methods to convert X,Y,Z coordinates of point to U,V parameters on surface and back
Standard_EXPORT Handle(TColStd_HArray1OfReal) XYZtoUV
(Handle(GEOM_Object) theSurf,
const Handle(TColStd_HArray1OfReal)& theXYZlist,
bool isNormalized);
Standard_EXPORT Handle(TColStd_HArray1OfReal) UVtoXYZ
(Handle(GEOM_Object) theSurf,
const Handle(TColStd_HArray1OfReal)& theUVlist,
bool isNormalized);
// Methods to compute proximity between two shapes
Standard_EXPORT Handle(GEOM_Object) ShapeProximityCalculator(Handle(GEOM_Object) theShape1,
Handle(GEOM_Object) theShape2);

View File

@ -21,6 +21,7 @@
//
#include <Standard_Stream.hxx>
#include <TColStd_HArray1OfReal.hxx>
#include "GEOM_IMeasureOperations_i.hh"
@ -1244,6 +1245,92 @@ GEOM::GEOM_Object_ptr GEOM_IMeasureOperations_i::SurfaceCurvatureByPointAndDirec
return GetObject(anObject);
}
//=============================================================================
/*!
* XYZtoUV
*/
//=============================================================================
GEOM::ListOfDouble* GEOM_IMeasureOperations_i::XYZtoUV
(GEOM::GEOM_Object_ptr theSurf,
const GEOM::ListOfDouble& theXYZlist,
CORBA::Boolean theIsNormalized)
{
GEOM::ListOfDouble_var resUV = new GEOM::ListOfDouble;
//Set a not done flag
GetOperations()->SetNotDone();
//Get the reference shape
Handle(::GEOM_Object) aShape = GetObjectImpl(theSurf);
if (aShape.IsNull()) return resUV._retn();
//Get input XYZ list
Handle(TColStd_HArray1OfReal) aXYZlist =
new TColStd_HArray1OfReal (0, theXYZlist.length() - 1);
{
size_t nb = theXYZlist.length();
for (size_t i = 0; i < nb; ++i)
aXYZlist->SetValue(i, theXYZlist[i]);
}
//Call implementation
Handle(TColStd_HArray1OfReal) aUVlist =
GetOperations()->XYZtoUV(aShape, aXYZlist, theIsNormalized);
if (GetOperations()->IsDone()) {
resUV->length(aUVlist->Length());
int i0 = aUVlist->Lower();
int nb = aUVlist->Upper();
for (int i = i0; i <= nb; ++i)
resUV[ i-i0 ] = aUVlist->Value(i);
}
return resUV._retn();
}
//=============================================================================
/*!
* UVtoXYZ
*/
//=============================================================================
GEOM::ListOfDouble* GEOM_IMeasureOperations_i::UVtoXYZ
(GEOM::GEOM_Object_ptr theSurf,
const GEOM::ListOfDouble& theUVlist,
CORBA::Boolean theIsNormalized)
{
GEOM::ListOfDouble_var resXYZ = new GEOM::ListOfDouble;
//Set a not done flag
GetOperations()->SetNotDone();
//Get the reference shape
Handle(::GEOM_Object) aShape = GetObjectImpl(theSurf);
if (aShape.IsNull()) return resXYZ._retn();
//Get input UV list
Handle(TColStd_HArray1OfReal) aUVlist =
new TColStd_HArray1OfReal (0, theUVlist.length() - 1);
{
size_t nb = theUVlist.length();
for (size_t i = 0; i < nb; ++i)
aUVlist->SetValue(i, theUVlist[i]);
}
//Call implementation
Handle(TColStd_HArray1OfReal) aXYZlist =
GetOperations()->UVtoXYZ(aShape, aUVlist, theIsNormalized);
if (GetOperations()->IsDone()) {
resXYZ->length(aXYZlist->Length());
int i0 = aXYZlist->Lower();
int nb = aXYZlist->Upper();
for (int i = i0; i <= nb; ++i)
resXYZ[ i-i0 ] = aXYZlist->Value(i);
}
return resXYZ._retn();
}
//=============================================================================
/*!
* SelfIntersected2D

View File

@ -170,6 +170,15 @@ class GEOM_I_EXPORT GEOM_IMeasureOperations_i :
GEOM::GEOM_Object_ptr thePoint,
GEOM::GEOM_Object_ptr theDirection);
// Methods to convert X,Y,Z coordinates of point to U,V parameters on surface and back
GEOM::ListOfDouble* XYZtoUV(GEOM::GEOM_Object_ptr theSurf,
const GEOM::ListOfDouble& theXYZlist,
CORBA::Boolean theIsNormalized);
GEOM::ListOfDouble* UVtoXYZ(GEOM::GEOM_Object_ptr theSurf,
const GEOM::ListOfDouble& theUVlist,
CORBA::Boolean theIsNormalized);
// Methods for class CheckConformity
GEOM::GEOM_IMeasureOperations::SequenceOfPairOfShape* SelfIntersected2D(
const GEOM::GEOM_IMeasureOperations::CheckResults& theResuts);

View File

@ -11232,6 +11232,74 @@ class geomBuilder(GEOM._objref_GEOM_Gen):
self._autoPublish(aVec, theName, "curvature")
return aVec
## Convert X,Y,Z points coordinates to UV parameters on the given surface.
# @param theSurf the given face. It can be also a shell or a compound with one face.
# @param theXYZlist float list of size 3*N where N is the number of points
# for which we want their U,V coordinates.
# If the user enters a list of size not divisible by 3
# an exception will be thrown.
# @param theIsNormalized if True, the returned parameters will be in range [0, 1].
#
# @return list of float of size 2*N.
#
# @ref tui_xyz_to_uv_page "Example"
@ManageTransactions("MeasuOp")
def XYZtoUV(self, theSurf, theXYZlist, theIsNormalized = True):
"""
Convert X,Y,Z points coordinates to UV parameters on the given surface.
Parameters:
theSurf the given face. It can be also a shell or a compound with one face.
theXYZlist float list of size 3*N where N is the number of points
for which we want their U,V coordinates.
If the user enters a list of size not divisible by 3
an exception will be thrown.
theIsNormalized if True, the returned parameters will be in range [0, 1].
Returns:
list of float of size 2*N.
Example of usage:
[u1,v1, u2,v2] = geompy.XYZtoUV(Face_1, [0,0,0, 0,10,10])
"""
aUVlist = self.MeasuOp.XYZtoUV(theSurf, theXYZlist, theIsNormalized)
RaiseIfFailed("XYZtoUV", self.MeasuOp)
return aUVlist
## Convert UV parameters on the given surface to 3D points coordinates.
# @param theSurf the given face. It can be also a shell or a compound with one face.
# @param theUVlist float list of size 2*N where N is the number of points
# for which we want their X,Y,Z coordinates.
# If the user enters a list of non-even size
# an exception will be thrown.
# @param theIsNormalized if True, the input parameters are expected to be in range [0, 1].
#
# @return list of float of size 3*N.
#
# @ref tui_xyz_to_uv_page "Example"
@ManageTransactions("MeasuOp")
def UVtoXYZ(self, theSurf, theUVlist, theIsNormalized = True):
"""
Convert UV parameters on the given surface to 3D points coordinates.
Parameters:
theSurf the given face. It can be also a shell or a compound with one face.
theUVlist float list of size 2*N where N is the number of points
for which we want their X,Y,Z coordinates.
If the user enters a list of non-even size
an exception will be thrown.
theIsNormalized if True, the input parameters are expected to be in range [0, 1].
Returns:
list of float of size 3*N.
Example of usage:
[x1,y1,z1, x2,y2,z2] = geompy.UVtoXYZ(Face_1, [0,0, 10,10])
"""
aXYZlist = self.MeasuOp.UVtoXYZ(theSurf, theUVlist, theIsNormalized)
RaiseIfFailed("UVtoXYZ", self.MeasuOp)
return aXYZlist
## Get min and max tolerances of sub-shapes of theShape
# @param theShape Shape, to get tolerances of.
# @return [FaceMin,FaceMax, EdgeMin,EdgeMax, VertMin,VertMax]\n