0020052: EDF 867 GEOM: Non removable extra edges. Cylindrical case.

This commit is contained in:
jfa 2009-08-24 06:46:38 +00:00
parent 76e33810ed
commit b62eb94767

View File

@ -41,9 +41,12 @@
#include <ShapeFix_Wire.hxx> #include <ShapeFix_Wire.hxx>
#include <ShapeFix_Edge.hxx> #include <ShapeFix_Edge.hxx>
#include <IntPatch_TheIIIntOfIntersection.hxx>
#include <BRep_Tool.hxx> #include <BRep_Tool.hxx>
#include <BRep_Builder.hxx> #include <BRep_Builder.hxx>
#include <BRepTools.hxx> #include <BRepTools.hxx>
#include <BRepTopAdaptor_TopolTool.hxx>
#include <TopExp.hxx> #include <TopExp.hxx>
#include <TopExp_Explorer.hxx> #include <TopExp_Explorer.hxx>
@ -66,14 +69,22 @@
#include <TColGeom_HArray2OfSurface.hxx> #include <TColGeom_HArray2OfSurface.hxx>
#include <GeomAdaptor_HSurface.hxx>
#include <GeomLib_IsPlanarSurface.hxx>
#include <Geom_Surface.hxx>
#include <Geom_Plane.hxx> #include <Geom_Plane.hxx>
#include <Geom_OffsetSurface.hxx> #include <Geom_OffsetSurface.hxx>
#include <Geom_CylindricalSurface.hxx>
#include <Geom_SphericalSurface.hxx> #include <Geom_SphericalSurface.hxx>
#include <Geom_Surface.hxx> #include <Geom_CylindricalSurface.hxx>
#include <Geom_Curve.hxx> #include <Geom_SurfaceOfRevolution.hxx>
#include <Geom_SurfaceOfLinearExtrusion.hxx>
#include <Geom_RectangularTrimmedSurface.hxx> #include <Geom_RectangularTrimmedSurface.hxx>
#include <Geom_Curve.hxx>
#include <Geom_Line.hxx>
#include <Geom_Circle.hxx>
#include <Geom2d_Line.hxx> #include <Geom2d_Line.hxx>
#include <gp_XY.hxx> #include <gp_XY.hxx>
@ -504,10 +515,64 @@ TopoDS_Shape BlockFix_UnionFaces::Perform(const TopoDS_Shape& Shape)
//purpose : //purpose :
//======================================================================= //=======================================================================
bool getCylinder (Handle(Geom_Surface)& theInSurface, gp_Cylinder& theOutCylinder)
{
bool isCylinder = false;
if (theInSurface->IsKind(STANDARD_TYPE(Geom_CylindricalSurface))) {
Handle(Geom_CylindricalSurface) aGC = Handle(Geom_CylindricalSurface)::DownCast(theInSurface);
theOutCylinder = aGC->Cylinder();
isCylinder = true;
}
else if (theInSurface->IsKind(STANDARD_TYPE(Geom_SurfaceOfRevolution))) {
Handle(Geom_SurfaceOfRevolution) aRS =
Handle(Geom_SurfaceOfRevolution)::DownCast(theInSurface);
Handle(Geom_Curve) aBasis = aRS->BasisCurve();
if (aBasis->IsKind(STANDARD_TYPE(Geom_Line))) {
Handle(Geom_Line) aBasisLine = Handle(Geom_Line)::DownCast(aBasis);
gp_Dir aDir = aRS->Direction();
gp_Dir aBasisDir = aBasisLine->Position().Direction();
if (aBasisDir.IsParallel(aDir, Precision::Confusion())) {
// basis line is parallel to the revolution axis: it is a cylinder
gp_Pnt aLoc = aRS->Location();
Standard_Real aR = aBasisLine->Lin().Distance(aLoc);
gp_Ax3 aCylAx (aLoc, aDir);
theOutCylinder = gp_Cylinder(aCylAx, aR);
isCylinder = true;
}
}
}
else if (theInSurface->IsKind(STANDARD_TYPE(Geom_SurfaceOfLinearExtrusion))) {
Handle(Geom_SurfaceOfLinearExtrusion) aLES =
Handle(Geom_SurfaceOfLinearExtrusion)::DownCast(theInSurface);
Handle(Geom_Curve) aBasis = aLES->BasisCurve();
if (aBasis->IsKind(STANDARD_TYPE(Geom_Circle))) {
Handle(Geom_Circle) aBasisCircle = Handle(Geom_Circle)::DownCast(aBasis);
gp_Dir aDir = aLES->Direction();
gp_Dir aBasisDir = aBasisCircle->Position().Direction();
if (aBasisDir.IsParallel(aDir, Precision::Confusion())) {
// basis circle is normal to the extrusion axis: it is a cylinder
gp_Pnt aLoc = aBasisCircle->Location();
Standard_Real aR = aBasisCircle->Radius();
gp_Ax3 aCylAx (aLoc, aDir);
theOutCylinder = gp_Cylinder(aCylAx, aR);
isCylinder = true;
}
}
}
else {
}
return isCylinder;
}
Standard_Boolean BlockFix_UnionFaces::IsSameDomain(const TopoDS_Face& aFace, Standard_Boolean BlockFix_UnionFaces::IsSameDomain(const TopoDS_Face& aFace,
const TopoDS_Face& aCheckedFace) const const TopoDS_Face& aCheckedFace) const
{ {
//checking the same handless //checking the same handles
TopLoc_Location L1, L2; TopLoc_Location L1, L2;
Handle(Geom_Surface) S1, S2; Handle(Geom_Surface) S1, S2;
@ -517,86 +582,80 @@ Standard_Boolean BlockFix_UnionFaces::IsSameDomain(const TopoDS_Face& aFace,
if (S1 == S2 && L1 == L2) if (S1 == S2 && L1 == L2)
return true; return true;
// begin: planar case (improvement 20052) // planar and cylindrical cases (IMP 20052)
Standard_Real aPrec = Precision::Confusion();
S1 = BRep_Tool::Surface(aFace); S1 = BRep_Tool::Surface(aFace);
S2 = BRep_Tool::Surface(aCheckedFace); S2 = BRep_Tool::Surface(aCheckedFace);
Handle(Geom_Plane) aGP1, aGP2; S1 = ClearRts(S1);
Handle(Geom_RectangularTrimmedSurface) aGRTS1, aGRTS2; S2 = ClearRts(S2);
Handle(Geom_OffsetSurface) aGOFS1, aGOFS2;
aGRTS1 = Handle(Geom_RectangularTrimmedSurface)::DownCast(S1); //Handle(Geom_OffsetSurface) aGOFS1, aGOFS2;
aGRTS2 = Handle(Geom_RectangularTrimmedSurface)::DownCast(S2); //aGOFS1 = Handle(Geom_OffsetSurface)::DownCast(S1);
//aGOFS2 = Handle(Geom_OffsetSurface)::DownCast(S2);
//if (!aGOFS1.IsNull()) S1 = aGOFS1->BasisSurface();
//if (!aGOFS2.IsNull()) S2 = aGOFS2->BasisSurface();
aGOFS1 = Handle(Geom_OffsetSurface)::DownCast(S1); // case of two elementary surfaces: use OCCT tool
aGOFS2 = Handle(Geom_OffsetSurface)::DownCast(S2); // elementary surfaces: ConicalSurface, CylindricalSurface,
// Plane, SphericalSurface and ToroidalSurface
if (S1->IsKind(STANDARD_TYPE(Geom_ElementarySurface)) &&
S2->IsKind(STANDARD_TYPE(Geom_ElementarySurface)))
{
Handle(GeomAdaptor_HSurface) aGA1 = new GeomAdaptor_HSurface(S1);
Handle(GeomAdaptor_HSurface) aGA2 = new GeomAdaptor_HSurface(S2);
if (!aGOFS1.IsNull()) { Handle(BRepTopAdaptor_TopolTool) aTT1 = new BRepTopAdaptor_TopolTool();
aGP1 = Handle(Geom_Plane)::DownCast(aGOFS1->BasisSurface()); Handle(BRepTopAdaptor_TopolTool) aTT2 = new BRepTopAdaptor_TopolTool();
}
else if (!aGRTS1.IsNull()) { IntPatch_TheIIIntOfIntersection anIIInt (aGA1, aTT1, aGA2, aTT2, aPrec, aPrec);
aGP1 = Handle(Geom_Plane)::DownCast(aGRTS1->BasisSurface()); if (!anIIInt.IsDone() || anIIInt.IsEmpty())
} return false;
else {
aGP1 = Handle(Geom_Plane)::DownCast(S1); return anIIInt.TangentFaces();
} }
if (!aGOFS2.IsNull()) { // case of two planar surfaces:
aGP2 = Handle(Geom_Plane)::DownCast(aGOFS2->BasisSurface()); // all kinds of surfaces checked, including b-spline and bezier
} GeomLib_IsPlanarSurface aPlanarityChecker1 (S1, aPrec);
else if (!aGRTS2.IsNull()) { if (aPlanarityChecker1.IsPlanar()) {
aGP2 = Handle(Geom_Plane)::DownCast(aGRTS2->BasisSurface()); GeomLib_IsPlanarSurface aPlanarityChecker2 (S2, aPrec);
} if (aPlanarityChecker2.IsPlanar()) {
else { gp_Pln aPln1 = aPlanarityChecker1.Plan();
aGP2 = Handle(Geom_Plane)::DownCast(S2); gp_Pln aPln2 = aPlanarityChecker2.Plan();
}
if (!aGP1.IsNull() && !aGP2.IsNull()) { if (aPln1.Position().Direction().IsParallel(aPln2.Position().Direction(), aPrec) &&
// both surfaces are planar, check equality aPln1.Distance(aPln2) < aPrec) {
Standard_Real A1, B1, C1, D1; return true;
Standard_Real A2, B2, C2, D2; }
aGP1->Coefficients(A1, B1, C1, D1); }
aGP2->Coefficients(A2, B2, C2, D2); }
if (fabs(A1) > Precision::Confusion()) { // case of two cylindrical surfaces, at least one of which is a swept surface
A1 = 1.0; // swept surfaces: SurfaceOfLinearExtrusion, SurfaceOfRevolution
B1 /= A1; if ((S1->IsKind(STANDARD_TYPE(Geom_CylindricalSurface)) ||
C1 /= A1; S1->IsKind(STANDARD_TYPE(Geom_SweptSurface))) &&
D1 /= A1; (S2->IsKind(STANDARD_TYPE(Geom_CylindricalSurface)) ||
S2->IsKind(STANDARD_TYPE(Geom_SweptSurface))))
{
gp_Cylinder aCyl1, aCyl2;
if (getCylinder(S1, aCyl1) && getCylinder(S2, aCyl2)) {
if (fabs(aCyl1.Radius() - aCyl2.Radius()) < aPrec) {
gp_Dir aDir1 = aCyl1.Position().Direction();
gp_Dir aDir2 = aCyl2.Position().Direction();
if (aDir1.IsParallel(aDir2, aPrec)) {
gp_Pnt aLoc1 = aCyl1.Location();
gp_Pnt aLoc2 = aCyl2.Location();
gp_Vec aVec12 (aLoc1, aLoc2);
if (aVec12.SquareMagnitude() < aPrec*aPrec ||
aVec12.IsParallel(aDir1, aPrec)) {
return true;
}
}
}
} }
else if (fabs(B1) > Precision::Confusion()) {
B1 = 1.0;
C1 /= B1;
D1 /= B1;
}
else {
C1 = 1.0;
D1 /= C1;
}
if (fabs(A2) > Precision::Confusion()) {
A2 = 1.0;
B2 /= A2;
C2 /= A2;
D2 /= A2;
}
else if (fabs(B2) > Precision::Confusion()) {
B2 = 1.0;
C2 /= B2;
D2 /= B2;
}
else {
C2 = 1.0;
D2 /= C2;
}
if (fabs(A1 - A2) < Precision::Confusion() &&
fabs(B1 - B2) < Precision::Confusion() &&
fabs(C1 - C2) < Precision::Confusion() &&
fabs(D1 - D2) < Precision::Confusion())
return true;
} }
// end: planar case (improvement 20052)
return false; return false;
} }