Improve shape recognition features

This commit is contained in:
kga 2013-10-22 11:33:32 +00:00
parent 52074fe3dd
commit b7d8f3aed7
2 changed files with 213 additions and 153 deletions

View File

@ -27,9 +27,7 @@
#include <stdio.h>
#include "utilities.h"
using namespace cv;
//TODO : All the following methods but ComputeContours use the C API of OpenCV while ComputContours
// TODO : All the following methods but ComputeContours use the C API of OpenCV while ComputContours
// uses the C++ API of the library.
// This should be homogenized and preferably by using the C++ API (which is more recent for all the methods
@ -68,11 +66,9 @@ void ShapeRec_FeatureDetector::SetPath( const std::string& thePath )
/*!
Computes the corners of the image located at imagePath
*/
void ShapeRec_FeatureDetector::ComputeCorners(){
// Parameters for the corner detection
double qualityLevel = 0.2;
double minDistance = 1;
void ShapeRec_FeatureDetector::ComputeCorners( bool useROI, ShapeRec_Parameters* parameters ){
ShapeRec_CornersParameters* aCornersParameters = dynamic_cast<ShapeRec_CornersParameters*>( parameters );
if ( !aCornersParameters ) aCornersParameters = new ShapeRec_CornersParameters();
// Images to be used for detection
IplImage *eig_img, *temp_img, *src_img_gray;
@ -80,7 +76,7 @@ void ShapeRec_FeatureDetector::ComputeCorners(){
// Load image
src_img_gray = cvLoadImage (imagePath.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
if ( rect.width > 1 )
if ( useROI )
{
// If a ROI as been set use it for detection
cvSetImageROI( src_img_gray, rect );
@ -96,9 +92,9 @@ void ShapeRec_FeatureDetector::ComputeCorners(){
// Corner detection using cvCornerMinEigenVal
// (one of the methods available inOpenCV, there is also a cvConerHarris method that can be used by setting a flag in cvGoodFeaturesToTrack)
cvGoodFeaturesToTrack (src_img_gray, eig_img, temp_img, corners, &cornerCount, /*quality-level=*/qualityLevel, /*min-distance=*/minDistance);
cvFindCornerSubPix (src_img_gray, corners, cornerCount,
cvSize (3, 3), cvSize (-1, -1), cvTermCriteria (CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03));
cvGoodFeaturesToTrack (src_img_gray, eig_img, temp_img, corners, &cornerCount, aCornersParameters->qualityLevel, aCornersParameters->minDistance);
cvFindCornerSubPix (src_img_gray, corners, cornerCount, cvSize (aCornersParameters->kernelSize, aCornersParameters->kernelSize), cvSize (-1, -1),
cvTermCriteria (aCornersParameters->typeCriteria, aCornersParameters->maxIter, aCornersParameters->epsilon));
cvReleaseImage (&eig_img);
cvReleaseImage (&temp_img);
@ -109,47 +105,120 @@ void ShapeRec_FeatureDetector::ComputeCorners(){
/*!
Computes the contours of the image located at imagePath
*/
bool ShapeRec_FeatureDetector::ComputeContours( int detection_method ){
bool ShapeRec_FeatureDetector::ComputeContours( bool useROI, ShapeRec_Parameters* parameters ){
// Initialising images
Mat src, src_gray;
Mat detected_edges;
cv::Mat src, src_gray;
cv::Mat detected_edges;
// Read image
src = imread( imagePath.c_str() );
src = cv::imread( imagePath.c_str() );
if( !src.data )
return false;
if ( detection_method == CANNY ) // The problem is that with that filter the detector detects double contours
if ( !useROI ) // CANNY: The problem is that with that filter the detector detects double contours
{
// Thresholds for Canny detector
int lowThreshold = 100;
int ratio = 3;
int kernel_size = 3; // 3,5 or 7
// Convert the image to grayscale
if (src.channels() == 3)
cvtColor( src, src_gray, CV_BGR2GRAY );
cv::cvtColor( src, src_gray, CV_BGR2GRAY );
else if (src.channels() == 1)
src_gray = src;
// Reduce noise with a kernel 3x3
blur( src_gray, detected_edges, Size(3,3) );
ShapeRec_CannyParameters* aCannyParameters = dynamic_cast<ShapeRec_CannyParameters*>( parameters );
if ( !aCannyParameters ) aCannyParameters = new ShapeRec_CannyParameters();
// Reduce noise
blur( src_gray, detected_edges, cv::Size( aCannyParameters->kernelSize, aCannyParameters->kernelSize ) );
// Canny detector
Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size, /*L2gradient =*/true );
Canny( detected_edges, detected_edges, aCannyParameters->lowThreshold, aCannyParameters->lowThreshold * aCannyParameters->ratio,
aCannyParameters->kernelSize, aCannyParameters->L2gradient );
}
else if ( detection_method == COLORFILTER )
else //COLORFILTER
{
if ( !rect.width > 1 )
return false;
detected_edges = _colorFiltering();
IplImage* find_image = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
ShapeRec_ColorFilterParameters* aColorFilterParameters = dynamic_cast<ShapeRec_ColorFilterParameters*>( parameters );
if ( !aColorFilterParameters ) aColorFilterParameters = new ShapeRec_ColorFilterParameters();
// Reduce noise
cvSmooth( find_image, find_image, CV_GAUSSIAN, aColorFilterParameters->smoothSize, aColorFilterParameters->smoothSize );
// Crop the image to build an histogram from the selected part
cvSetImageROI(find_image, rect);
IplImage* test_image = cvCreateImage(cvGetSize(find_image),
find_image->depth,
find_image->nChannels);
cvCopy(find_image, test_image, NULL);
cvResetImageROI(find_image);
IplImage* test_hsv = cvCreateImage(cvGetSize(test_image),8,3);
IplImage* h_plane = cvCreateImage( cvGetSize(test_image), 8, 1 );
IplImage* s_plane = cvCreateImage( cvGetSize(test_image), 8, 1 );
CvHistogram* hist;
cvCvtColor(test_image, test_hsv, CV_BGR2HSV);
cvCvtPixToPlane(test_hsv, h_plane, s_plane, 0, 0);
IplImage* planes[] = { h_plane, s_plane };
//create hist
float hranges[] = { 0, 180 };
float sranges[] = { 0, 256 };
float* ranges[] = { hranges, sranges };
hist = cvCreateHist( 2, aColorFilterParameters->histSize, aColorFilterParameters->histType, ranges );
//calculate hue /saturation histogram
cvCalcHist(planes, hist, 0 ,0);
// // TEST print of the histogram for debugging
// IplImage* hist_image = cvCreateImage(cvSize(320,300),8,3);
//
// //draw hist on hist_test image.
// cvZero(hist_image);
// float max_value = 0;
// cvGetMinMaxHistValue(hist, 0 , &max_value, 0, 0);
// int bin_w = hist_image->width/size_hist;
// for(int i = 0; i < size_hist; i++ )
// {
// //prevent overflow
// int val = cvRound( cvGetReal1D(hist->bins,i)*hist_image->
// height/max_value);
// CvScalar color = CV_RGB(200,0,0);
// //hsv2rgb(i*180.f/size_hist);
// cvRectangle( hist_image, cvPoint(i*bin_w,hist_image->height),
// cvPoint((i+1)*bin_w,hist_image->height - val),
// color, -1, 8, 0 );
// }
//
//
// cvNamedWindow("hist", 1); cvShowImage("hist",hist_image);
//calculate back projection of hue and saturation planes of input image
IplImage* backproject = cvCreateImage(cvGetSize(test_image), 8, 1);
IplImage* binary_backproject = cvCreateImage(cvGetSize(test_image), 8, 1);
cvCalcBackProject(planes, backproject, hist);
// Threshold in order to obtain binary image
cvThreshold(backproject, binary_backproject, aColorFilterParameters->threshold, aColorFilterParameters->maxThreshold, CV_THRESH_BINARY);
cvReleaseImage(&test_image);
cvReleaseImage(&test_hsv);
cvReleaseImage(&h_plane);
cvReleaseImage(&s_plane);
cvReleaseImage(&find_image);
cvReleaseImage(&backproject);
detected_edges = cv::Mat(binary_backproject);
}
else if ( detection_method == RIDGE_DETECTOR ) // Method adapted for engineering drawings (e.g. watershed functionnality could be used here cf.OpenCV documentation and samples)
{
// TODO
return false;
}
_detectAndRetrieveContours( detected_edges );
// else if ( detection_method == RIDGE_DETECTOR ) // Method adapted for engineering drawings (e.g. watershed functionnality could be used here cf.OpenCV documentation and samples)
// {
// // TODO
// return false;
// }
// _detectAndRetrieveContours( detected_edges, parameters->findContoursMethod );
detected_edges = detected_edges > 1;
findContours( detected_edges, contours, hierarchy, CV_RETR_CCOMP, parameters->findContoursMethod, useROI ? cvPoint(rect.x,rect.y) : cvPoint(0,0) );
return true;
@ -161,9 +230,9 @@ bool ShapeRec_FeatureDetector::ComputeContours( int detection_method ){
bool ShapeRec_FeatureDetector::ComputeLines(){
MESSAGE("ShapeRec_FeatureDetector::ComputeLines()")
// Initialising images
Mat src, src_gray, detected_edges, dst;
cv::Mat src, src_gray, detected_edges, dst;
src=imread(imagePath.c_str(), 0);
src=cv::imread(imagePath.c_str(), 0);
Canny( src, dst, 50, 200, 3 );
HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 );
@ -203,111 +272,65 @@ std::string ShapeRec_FeatureDetector::CroppImage()
return "/tmp/cropped_image.bmp";
}
/*!
Performs contours detection and store them in contours
\param binaryImg - src image to find contours of
\class ShapeRec_CornersParameters
\brief Parameters for the corners detection
*/
void ShapeRec_FeatureDetector::_detectAndRetrieveContours( Mat binaryImg )
ShapeRec_CornersParameters::ShapeRec_CornersParameters()
{
qualityLevel = 0.2;
minDistance = 1;
typeCriteria = CV_TERMCRIT_ITER | CV_TERMCRIT_EPS;
maxIter = 20;
epsilon = 0.03;
}
ShapeRec_CornersParameters::~ShapeRec_CornersParameters()
{
binaryImg = binaryImg > 1;
int method = CV_CHAIN_APPROX_NONE;
findContours( binaryImg, contours, hierarchy,CV_RETR_CCOMP, method);
// Other possible approximations CV_CHAIN_APPROX_TC89_KCOS, CV_CHAIN_APPROX_TC89_L1, CV_CHAIN_APPROX_SIMPLE cf. OpenCV documentation
// for precise information
}
/*!
Performs color filtering from the image sample contained in the ROI rect of the image
located at imagePath
Thresholds the result in order ot obtain a binary image
\return binary image resulting from filtering and thersholding
\class ShapeRec_Parameters
\brief Parameters for the contour/corners detection
*/
Mat ShapeRec_FeatureDetector::_colorFiltering()
ShapeRec_Parameters::ShapeRec_Parameters()
{
kernelSize = 3;
findContoursMethod = CV_CHAIN_APPROX_NONE;
}
ShapeRec_Parameters::~ShapeRec_Parameters()
{
}
/*!
\class ShapeRec_CannyParameters
\brief Parameters for the contour detection
*/
ShapeRec_CannyParameters::ShapeRec_CannyParameters()
{
lowThreshold = 100; // is used for edge linking.
ratio = 3; // lowThreshold*ratio is used to find initial segments of strong edges
L2gradient = true; // norm L2 or L1
}
ShapeRec_CannyParameters::~ShapeRec_CannyParameters()
{
}
/*!
\class ShapeRec_ColorFilterParameters
\brief Parameters for the contour detection
*/
ShapeRec_ColorFilterParameters::ShapeRec_ColorFilterParameters()
{
smoothSize = 3; // The parameter of the smoothing operation, the aperture width. Must be a positive odd number
histSize = new int[2]; // array of the histogram dimension sizes
histSize[0] = 30; // hbins
histSize[1] = 32; // sbins
histType = CV_HIST_ARRAY; // histogram representation format
threshold = 128; // threshold value
maxThreshold = 255; // maximum value to use with the THRESH_BINARY thresholding types
}
ShapeRec_ColorFilterParameters::~ShapeRec_ColorFilterParameters()
{
IplImage* find_image = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
// Reduce noise with a kernel 3x3
cvSmooth( find_image, find_image, CV_GAUSSIAN, 3, 3 );
if ( !rect.width > 1 )
return Mat(find_image);
// Crop the image to build an histogram from the selected part
cvSetImageROI(find_image, rect);
IplImage* test_image = cvCreateImage(cvGetSize(find_image),
find_image->depth,
find_image->nChannels);
cvCopy(find_image, test_image, NULL);
cvResetImageROI(find_image);
IplImage* test_hsv = cvCreateImage(cvGetSize(test_image),8,3);
IplImage* h_plane = cvCreateImage( cvGetSize(test_image), 8, 1 );
IplImage* s_plane = cvCreateImage( cvGetSize(test_image), 8, 1 );
CvHistogram* hist;
cvCvtColor(test_image, test_hsv, CV_BGR2HSV);
cvCvtPixToPlane(test_hsv, h_plane, s_plane, 0, 0);
IplImage* planes[] = { h_plane, s_plane };
//create hist
int hbins = 30, sbins = 32; // TODO think to the best values here
int hist_size[] = { hbins, sbins };
float hranges[] = { 0, 180 };
float sranges[] = { 0, 255 };
float* ranges[] = { hranges, sranges };
hist = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
//calculate hue /saturation histogram
cvCalcHist(planes, hist, 0 ,0);
// // TEST print of the histogram for debugging
// IplImage* hist_image = cvCreateImage(cvSize(320,300),8,3);
//
// //draw hist on hist_test image.
// cvZero(hist_image);
// float max_value = 0;
// cvGetMinMaxHistValue(hist, 0 , &max_value, 0, 0);
// int bin_w = hist_image->width/size_hist;
// for(int i = 0; i < size_hist; i++ )
// {
// //prevent overflow
// int val = cvRound( cvGetReal1D(hist->bins,i)*hist_image->
// height/max_value);
// CvScalar color = CV_RGB(200,0,0);
// //hsv2rgb(i*180.f/size_hist);
// cvRectangle( hist_image, cvPoint(i*bin_w,hist_image->height),
// cvPoint((i+1)*bin_w,hist_image->height - val),
// color, -1, 8, 0 );
// }
//
//
// cvNamedWindow("hist", 1); cvShowImage("hist",hist_image);
//calculate back projection of hue and saturation planes of input image
IplImage* backproject = cvCreateImage(cvGetSize(find_image), 8, 1);
IplImage* binary_backproject = cvCreateImage(cvGetSize(find_image), 8, 1);
IplImage* find_hsv = cvCreateImage(cvGetSize(find_image),8,3);
IplImage* find_hplane = cvCreateImage(cvGetSize(find_image),8,1);
IplImage* find_splane = cvCreateImage(cvGetSize(find_image),8,1);
cvCvtColor(find_image, find_hsv, CV_BGR2HSV);
cvCvtPixToPlane(find_hsv, find_hplane, find_splane, 0, 0);
IplImage* find_planes[] = { find_hplane, find_splane };
cvCalcBackProject(find_planes, backproject, hist);
// Threshold in order to obtain binary image
cvThreshold(backproject, binary_backproject, 1, 255, CV_THRESH_BINARY); // NOTE it would be good to think about the best threshold to use (it's 1 for now)
cvReleaseImage(&test_image);
cvReleaseImage(&test_hsv);
cvReleaseImage(&h_plane);
cvReleaseImage(&s_plane);
cvReleaseImage(&find_image);
cvReleaseImage(&find_hsv);
cvReleaseImage(&find_hplane);
cvReleaseImage(&find_splane);
cvReleaseImage(&backproject);
return Mat(binary_backproject);
}

View File

@ -26,17 +26,57 @@
// OpenCV includes
#include <cv.h>
#include <highgui.h>
#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/highgui/highgui.hpp>
// Qt
#include <QRect>
enum // Method used for contour detection
class ShapeRec_Parameters
{
CANNY,
COLORFILTER,
RIDGE_DETECTOR
public:
ShapeRec_Parameters();
virtual ~ShapeRec_Parameters();
int kernelSize;
int findContoursMethod;
};
class ShapeRec_CornersParameters : public ShapeRec_Parameters
{
public:
ShapeRec_CornersParameters();
virtual ~ShapeRec_CornersParameters();
double qualityLevel;
double minDistance;
int typeCriteria;
int maxIter;
double epsilon;
};
class ShapeRec_CannyParameters : public ShapeRec_Parameters
{
public:
ShapeRec_CannyParameters();
virtual ~ShapeRec_CannyParameters();
int lowThreshold;
int ratio;
bool L2gradient;
};
class ShapeRec_ColorFilterParameters : public ShapeRec_Parameters
{
public:
ShapeRec_ColorFilterParameters();
virtual ~ShapeRec_ColorFilterParameters();
int smoothSize;
int* histSize;
int histType;
double threshold;
double maxThreshold;
};
class ShapeRec_FeatureDetector
@ -59,9 +99,9 @@ public:
int GetImgWidth() { return imgWidth; };
std::string CroppImage();
void ComputeCorners(); // Detects the corners from the image located at imagePath
bool ComputeLines(); // Detects the lines from the image located at imagePath
bool ComputeContours( int method ); // Detects the contours from the image located at imagePath
void ComputeCorners( bool useROI = false, ShapeRec_Parameters* parameters = 0 ); // Detects the corners from the image located at imagePath
bool ComputeLines(); // Detects the lines from the image located at imagePath
bool ComputeContours( bool useROI = false, ShapeRec_Parameters* parameters = 0 ); // Detects the contours from the image located at imagePath
private:
@ -76,7 +116,4 @@ private:
int imgHeight;
int imgWidth;
CvRect rect;
void _detectAndRetrieveContours( cv::Mat binaryImg );
cv::Mat _colorFiltering();
};