[bos #41409][FORUM] (2024) kindOfShape() bug for CONE2D

Make KindOfShape() work correctly in cases, when substrate surface is cone and contour-wire is arbitrary (tested with a wire, composed of lines and 2-order curves).
This commit is contained in:
dish 2024-04-02 18:53:19 +00:00 committed by jfa
parent 5f12362860
commit ec3ebbe891
6 changed files with 181 additions and 150 deletions

View File

@ -0,0 +1,137 @@
# Sample: KindOfShape method for faces, which are results of partitioning of a conical surface with a prism with complex base.
# Faces of the prism are not perpendicular to cone axis, therefore contour-wires of resulting cone fragments are composed of lines and 2-order curves.
import sys
import salome
salome.salome_init()
import salome_notebook
notebook = salome_notebook.NoteBook()
###
### GEOM component
###
import GEOM
from salome.geom import geomBuilder
import math
import SALOMEDS
def approximatelyEqual(a, b, epsilon = 1e-5):
return abs(a - b) <= ((abs(b) if (abs(a) < abs(b)) else abs(a)) * epsilon)
def assertShapeKindEquals(iShapeInfo, iKind):
assert (len(iShapeInfo) > 0), "Yielded data array is empty."
assert (iShapeInfo[0] == iKind), f"Expected shape kind is {iKind}, but yielded kind is {iShapeInfo[0]}."
def assertConePropsEqual(iShapeName, iShapeInfo, iExpectedShapeInfo):
assertShapeKindEquals(iShapeInfo, geompy.kind.CONE2D)
assert (len(iShapeInfo) == len(iExpectedShapeInfo)), f"{iShapeName}: Yielded data array is of unexpected length."
for idx in range(1, len(iShapeInfo)):
assert (approximatelyEqual(iShapeInfo[idx], iExpectedShapeInfo[idx])), f"{iShapeName}: Yielded data array element is not equal to the expected value."
def assertConeInfoEquals(iFace, iExpectedShapeInfo, iAddRestoredConeToStudy = False):
ShapeInfo = geompy.KindOfShape(iFace)
print("ShapeInfo of " + iFace.GetName() + " = ", end = "")
print(ShapeInfo, ', ')
assertConePropsEqual(iFace.GetName(), ShapeInfo, iExpectedShapeInfo)
if (iAddRestoredConeToStudy):
BottomLidCenter = geompy.MakeVertex(ShapeInfo[1], ShapeInfo[2], ShapeInfo[3])
AxisAuxPnt = geompy.MakeVertex(ShapeInfo[1] + ShapeInfo[4], ShapeInfo[2] + ShapeInfo[5], ShapeInfo[3] + ShapeInfo[6])
Axis = geompy.MakeVector(BottomLidCenter, AxisAuxPnt)
R1 = ShapeInfo[7] # Bottom lid radius.
R2 = ShapeInfo[8] # Top lid radius.
H = ShapeInfo[9]
RestoredCone = geompy.MakeCone(BottomLidCenter, Axis, R1, R2, H)
geompy.addToStudy(RestoredCone, iFace.GetName() + '__RestoredCone')
# iExpectedConeFragmentShapeInfos is a dictionary of [IndexOfFace, ExpectedShapeInfoOfFace]. IndexOfFace is zero-based index, not one-based one as in Shaper GUI!
def partitionConeAndAssertShapeInfosEqual(iCone, iPartitioningShape, iExpectedConeFragmentShapeInfos, iAddResultsToStudy):
PartitionedCone = geompy.MakePartition([iCone], [iPartitioningShape], [], [], geompy.ShapeType["FACE"], 0, [], 0)
if (iAddResultsToStudy):
geompy.addToStudy(PartitionedCone, "Partitioned" + iCone.GetName())
ConeFragments = geompy.ExtractShapes(PartitionedCone, geompy.ShapeType["FACE"], True)
ConeFragmentsIdxs = iExpectedConeFragmentShapeInfos.keys()
for ConeFragmentIdx in ConeFragmentsIdxs:
assert (ConeFragmentIdx < len(ConeFragments)), f"Num of faces, {iCone.GetName()} is partitioned into, <= {ConeFragmentIdx} (zero-based index)."
ConeFragment = ConeFragments[ConeFragmentIdx]
ConeFragmentName = f"Partitioned{iCone.GetName()}_Face_{ConeFragmentIdx+1}" # Add index to a name as Shaper GUI does.
if (iAddResultsToStudy):
geompy.addToStudyInFather(PartitionedCone, ConeFragment, ConeFragmentName)
else:
ConeFragment.SetName(ConeFragmentName)
assertConeInfoEquals(ConeFragment, iExpectedConeFragmentShapeInfos[ConeFragmentIdx], iAddResultsToStudy)
geompy = geomBuilder.New()
OriginalConeBaseCenter = geompy.MakeVertex(100, 130, -60)
OriginalConeAxisAuxPnt = geompy.MakeVertex(100, 230, 40)
OriginalConeAxis = geompy.MakeVector(OriginalConeBaseCenter, OriginalConeAxisAuxPnt)
OriginalCone = geompy.MakeCone(OriginalConeBaseCenter, OriginalConeAxis, 100, 50, 300)
PrismSubstrateCenter = geompy.MakeVertex(100, 1000, 50)
PrismDirAuxPnt = geompy.MakeVertex(100, 950, 50)
PrismDir = geompy.MakeVector(PrismSubstrateCenter, PrismDirAuxPnt)
PrismSubstrate = geompy.MakeDiskPntVecR(PrismSubstrateCenter, PrismDir, 100)
sk = geompy.Sketcher2D()
sk.addPoint(0.395986, 43.346713)
sk.addSegmentAbsolute(66.321537, 41.733575)
sk.addSegmentAbsolute(80.619408, -2.852314)
sk.addSegmentAbsolute(67.641539, -38.565150)
sk.addSegmentAbsolute(22.193602, -56.632163)
sk.addSegmentAbsolute(-19.060136, -51.084351)
sk.addSegmentAbsolute(-60.823572, 34.825751)
sk.addSegmentAbsolute(-13.047004, 55.727527)
sk.close()
PrismBase = sk.wire(PrismSubstrate)
Prism = geompy.MakePrismVecH(PrismBase, PrismDir, 1400)
geompy.addToStudy( OriginalConeBaseCenter, 'OriginalConeBaseCenter' )
geompy.addToStudy( OriginalConeAxisAuxPnt, 'OriginalConeAxisAuxPnt' )
geompy.addToStudy( OriginalConeAxis, 'OriginalConeAxis' )
geompy.addToStudy( OriginalCone, 'OriginalCone' )
geompy.addToStudy( PrismSubstrateCenter, 'PrismSubstrateCenter' )
geompy.addToStudy( PrismDirAuxPnt, 'PrismDirAuxPnt' )
geompy.addToStudy( PrismDir, 'PrismDir' )
geompy.addToStudy( PrismSubstrate, 'PrismSubstrate' )
geompy.addToStudy( PrismBase, 'PrismBase' )
geompy.addToStudy( Prism, 'Prism' )
# Test on the original cone
ExpectedOriginalConeFragmentsShapeInfos = {
3: ["CONE2D", 100.0, 215.76160602318674, 25.761606023186744, 0.0, 0.7071067811865475, 0.7071067811865475, 79.7857956051852, 54.62305376134459, 150.9764510630437],
5: ["CONE2D", 100.0, 129.99999999999753, -60.000000000002466, 0.0, 0.7071067811865475, 0.7071067811865475, 100.00000000000058, 69.82277418813575, 181.06335487118898],
11: ["CONE2D", 100.0, 216.57653245407857, 26.57653245407856, 0.0, 0.7071067811865475, 0.7071067811865475, 79.59371560336794, 52.95933239773038, 159.80629923382543]
}
partitionConeAndAssertShapeInfosEqual(OriginalCone, Prism, ExpectedOriginalConeFragmentsShapeInfos, True)
# Test on isotropically scaled cone. Non-isotropical scaling does not preserve shape kind - it is desired behavior.
ScaledCone = geompy.MakeScaleTransform(OriginalCone, OriginalConeAxisAuxPnt, 2)
ScaledCone.SetName('ScaledCone')
ExpectedScaledConeFragmentsShapeInfos = {
4: ["CONE2D", 100.0, 29.9999999999999, -160.00000000000009, 0.0, 0.7071067811865475, 0.7071067811865475, 200.00000000000003, 162.64508449690112, 224.1294930185934],
6: ["CONE2D", 100.0, 262.09898500769475, 72.09898500769472, 0.0, 0.7071067811865475, 0.7071067811865475, 145.2937445981814, 120.13428858458612, 150.95673608157182],
12: ["CONE2D", 100.0, 262.8999708414969, 72.8999708414969, 0.0, 0.7071067811865475, 0.7071067811865475, 145.10495042660943, 117.46838914559419, 165.8193676860916]
}
partitionConeAndAssertShapeInfosEqual(ScaledCone, Prism, ExpectedScaledConeFragmentsShapeInfos, False)
# Test on a cone, mirrored relative to a point.
PntMirroredCone = geompy.MakeMirrorByPoint(OriginalCone, OriginalConeAxisAuxPnt)
PntMirroredCone.SetName('PntMirroredCone')
ExpectedPntMirroredConeFragmentsShapeInfos = {
2: ["CONE2D", 100.0, 229.8712015945071, 39.87120159450711, -0.0, -0.7071067811865475, -0.7071067811865475, 76.39941588513841, 51.25530645152799, 150.8646566016625],
7: ["CONE2D", 100.0, 330.0, 140.0, -0.0, -0.7071067811865475, -0.7071067811865475, 100.0, 71.73019727352477, 169.61881635885143],
10: ["CONE2D", 100.0, 249.15532313133338, 59.15532313133339, -0.0, -0.7071067811865475, -0.7071067811865475, 80.9447269211102, 51.428754043115056, 177.09583726797095]
}
partitionConeAndAssertShapeInfosEqual(PntMirroredCone, Prism, ExpectedPntMirroredConeFragmentsShapeInfos, False)
if salome.sg.hasDesktop():
salome.sg.updateObjBrowser()

View File

@ -76,6 +76,7 @@ SET(GOOD_TESTS
get_non_blocks.py get_non_blocks.py
import_export.py import_export.py
inertia.py inertia.py
kind_of_shape_cone.py
min_distance.py min_distance.py
curvature_face.py curvature_face.py
normal_face.py normal_face.py

View File

@ -4,4 +4,6 @@
\tui_script{kind_of_shape.py} \tui_script{kind_of_shape.py}
\tui_script{kind_of_shape_cone.py}
*/ */

View File

@ -420,38 +420,52 @@ void GEOMAlgo_ShapeInfoFiller::FillFace(const TopoDS_Shape& aS)
//|||||||||||||||||||||||||||||||||||||||||||||||||||||||||| //||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
// 4. Cone // 4. Cone
else if (aST==GeomAbs_Cone) { else if (aST==GeomAbs_Cone) {
Standard_Real aSemiAngle; const gp_Cone aCone=aGAS.Cone();
gp_Cone aCone;
//
aCone=aGAS.Cone();
aP0=aCone.Location();
aAx3=aCone.Position();
// //
aInfo.SetKindOfShape(GEOMAlgo_KS_CONE); aInfo.SetKindOfShape(GEOMAlgo_KS_CONE);
aInfo.SetKindOfName(GEOMAlgo_KN_CONE); aInfo.SetKindOfName(GEOMAlgo_KN_CONE);
aInfo.SetLocation(aP0);
aInfo.SetPosition(aAx3);
// //
BRepTools::UVBounds(aF, aUMin, aUMax, aVMin, aVMax); BRepTools::UVBounds(aF, aUMin, aUMax, aVMin, aVMax);
bInfU1=Precision::IsNegativeInfinite(aUMin); bInfU1=Precision::IsNegativeInfinite(aUMin);
bInfU2=Precision::IsPositiveInfinite(aUMax); bInfU2=Precision::IsPositiveInfinite(aUMax);
bInfV1=Precision::IsNegativeInfinite(aVMin); bInfV1=Precision::IsNegativeInfinite(aVMin);
bInfV2=Precision::IsPositiveInfinite(aVMax); bInfV2=Precision::IsPositiveInfinite(aVMax);
// //
bInf=(bInfU1 || bInfU2 || bInfV1 || bInfV2); bInf=bInfV1 || bInfV2;
if (bInf) { if (bInf) {
aP0=aAx3.Location();
aAx3=aCone.Position();
aInfo.SetLocation(aP0);
aInfo.SetPosition(aAx3);
aInfo.SetKindOfBounds(GEOMAlgo_KB_INFINITE); aInfo.SetKindOfBounds(GEOMAlgo_KB_INFINITE);
return; return;
} }
// //
aInfo.SetKindOfBounds(GEOMAlgo_KB_TRIMMED); aInfo.SetKindOfBounds(GEOMAlgo_KB_TRIMMED);
// //
aSemiAngle=fabs(aCone.SemiAngle()); const Standard_Real aSemiAngle = aCone.SemiAngle();
dV=(aVMax-aVMin)*cos(aSemiAngle);
aInfo.SetHeight(dV); dV = aVMax - aVMin;
// Standard_Real H = dV * std::cos(aSemiAngle);
FillDetails(aF, aCone);
aAx3 = aCone.Position();
Standard_Real aShiftAlongAxisLength = aVMin * std::cos(aSemiAngle); // Required, because R1 does not equal to gp_Cone.RefRadius() in general case, and gp_Cone.Location() corresponds to the latter one.
auto aShiftAlongAxis = gp_Vec(aAx3.Direction().XYZ());
aShiftAlongAxis *= aShiftAlongAxisLength;
aAx3.Translate(aShiftAlongAxis);
aP0=aAx3.Location();
aInfo.SetLocation(aP0);
aInfo.SetPosition(aAx3);
aR1 = aCone.RefRadius() + aVMin * std::sin(aSemiAngle);
aR2 = aCone.RefRadius() + aVMax * std::sin(aSemiAngle);
aInfo.SetRadius1(aR1);
aInfo.SetRadius2(aR2);
aInfo.SetHeight(H);
aInfo.SetKindOfDef(GEOMAlgo_KD_SPECIFIED);
} }
// //
//|||||||||||||||||||||||||||||||||||||||||||||||||||||||||| //||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

View File

@ -112,9 +112,6 @@ class GEOMAlgo_ShapeInfoFiller : public GEOMAlgo_Algo
Standard_EXPORT Standard_EXPORT
void FillDetails(const TopoDS_Face& aF,const gp_Cylinder& aCyl) ; void FillDetails(const TopoDS_Face& aF,const gp_Cylinder& aCyl) ;
Standard_EXPORT
void FillDetails(const TopoDS_Face& aF,const gp_Cone& aCone) ;
Standard_EXPORT Standard_EXPORT
void FillDetails(const TopoDS_Face& aF,const gp_Torus& aTorus) ; void FillDetails(const TopoDS_Face& aF,const gp_Torus& aTorus) ;

View File

@ -627,126 +627,6 @@ void GEOMAlgo_ShapeInfoFiller::FillDetails(const TopoDS_Face& aF,
//function : FillDetails //function : FillDetails
//purpose : //purpose :
//======================================================================= //=======================================================================
void GEOMAlgo_ShapeInfoFiller::FillDetails(const TopoDS_Face& aF,
const gp_Cone& aCone)
{
Standard_Integer aNbV, aNbE, aNbCE, aNbSE, aNbDE, i;
Standard_Real aR[3], aHeight, aRmin, aRmax;
gp_Pnt aPC[3], aPD, aPc, aPX[3];
TopoDS_Vertex aVD;
TopoDS_Edge aE;
TopoDS_Iterator aIt;
TopExp_Explorer aExp;
TopTools_MapOfShape aM;
GEOMAlgo_KindOfShape aKSE;
GEOMAlgo_KindOfName aKNE;
GEOMAlgo_KindOfClosed aKCE;
//
GEOMAlgo_ShapeInfo& aInfo=myMapInfo.ChangeFromKey(aF);
//
aInfo.SetKindOfDef(GEOMAlgo_KD_ARBITRARY);
//
aNbV=aInfo.NbSubShapes(TopAbs_VERTEX);
aNbE=aInfo.NbSubShapes(TopAbs_EDGE);
if (aNbV==2 && aNbE==3) {
i=0;
aNbCE=0;
aNbSE=0;
aNbDE=0;
aExp.Init(aF, TopAbs_EDGE);
for (; aExp.More(); aExp.Next()) {
aE=TopoDS::Edge(aExp.Current());
if(aM.Add(aE)) {
const GEOMAlgo_ShapeInfo& aInfoE=myMapInfo.FindFromKey(aE);
aKNE=aInfoE.KindOfName();
aKCE=aInfoE.KindOfClosed();
aKSE=aInfoE.KindOfShape();
if (aKNE==GEOMAlgo_KN_CIRCLE && aKCE==GEOMAlgo_KC_CLOSED) {
aPC[i]=aInfoE.Location();
aR[i]=aInfoE.Radius1();
//
aIt.Initialize(aE);
if (aIt.More()) {
aVD=*((TopoDS_Vertex*)&aIt.Value());
}
aPX[i]=BRep_Tool::Pnt(aVD);
//
++i;
++aNbCE;
}
else if (aKNE==GEOMAlgo_KN_SEGMENT) {
if (BRep_Tool::IsClosed(aE, aF)) {
++aNbSE;
}
}
else if (aKSE==GEOMAlgo_KS_DEGENERATED) {
aIt.Initialize(aE);
if (aIt.More()) {
aVD=*((TopoDS_Vertex*)&aIt.Value());
}
//
aPD=BRep_Tool::Pnt(aVD);
//
++aNbDE;
}
}
}
//
if ((aNbCE==2 || (aNbCE==1 && aNbDE==1)) && aNbSE==1) {
if (aNbDE==1) {
aPC[1]=aPD;
aR[1]=0.;
}
//
aHeight=aPC[0].Distance(aPC[1]);
//
gp_Ax2 aAx2new;
//
if (aR[0]>aR[1]) {
aRmin=aR[1];
aRmax=aR[0];
aPc=aPC[0];
gp_Vec aVz(aPC[0], aPC[1]);
gp_Vec aVx(aPC[0], aPX[0]);
gp_Dir aDz(aVz);
gp_Dir aDx(aVx);
gp_Ax2 aAx2(aPc, aDz, aDx);
aAx2new=aAx2;
}
else {
aRmin=aR[0];
aRmax=aR[1];
aPc=aPC[1];
gp_Vec aVz(aPC[1], aPC[0]);
gp_Vec aVx(aPC[1], aPX[1]);
gp_Dir aDz(aVz);
gp_Dir aDx(aVx);
gp_Ax2 aAx2(aPc, aDz, aDx);
aAx2new=aAx2;
}
//
gp_Ax3 aAx3(aAx2new);
aInfo.SetLocation(aPc);
aInfo.SetPosition(aAx3);
aInfo.SetRadius1(aRmax);
aInfo.SetRadius2(aRmin);
aInfo.SetHeight(aHeight);
//
aInfo.SetKindOfDef(GEOMAlgo_KD_SPECIFIED);
return;
}//if ((aNbCE==2 || (aNbCE==1 && aNbDE==1)) && aNbSE==1) {
}//if (aNbV==2 && aNbE==3) {
//
aInfo.SetRadius1 (aCone.RefRadius());
//
aRmin=0.; // ZZ
aInfo.SetRadius2(aRmin);
}
//=======================================================================
//function : FillDetails
//purpose :
//=======================================================================
void GEOMAlgo_ShapeInfoFiller::FillDetails(const TopoDS_Face& aF, void GEOMAlgo_ShapeInfoFiller::FillDetails(const TopoDS_Face& aF,
const gp_Torus& ) const gp_Torus& )
{ {