diff --git a/doc/salome/examples/3dsketcher.py b/doc/salome/examples/3dsketcher.py
index 69b779898..29f88e710 100644
--- a/doc/salome/examples/3dsketcher.py
+++ b/doc/salome/examples/3dsketcher.py
@@ -1,7 +1,10 @@
# 3D Sketcher
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# Create a 3D sketcher (wire) on the given points coordinates
diff --git a/doc/salome/examples/advanced_geom_objs_ex01.py b/doc/salome/examples/advanced_geom_objs_ex01.py
index eb3db5fe5..a3b2d5968 100644
--- a/doc/salome/examples/advanced_geom_objs_ex01.py
+++ b/doc/salome/examples/advanced_geom_objs_ex01.py
@@ -1,7 +1,10 @@
# Creation of PipeTShape
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create PipeTShape object
diff --git a/doc/salome/examples/advanced_geom_objs_ex02.py b/doc/salome/examples/advanced_geom_objs_ex02.py
index 2ee301688..442af631e 100644
--- a/doc/salome/examples/advanced_geom_objs_ex02.py
+++ b/doc/salome/examples/advanced_geom_objs_ex02.py
@@ -1,8 +1,10 @@
# Creation of DividedDisk
-import geompy
import salome
+salome.salome_init()
import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create DividedDisk object
diff --git a/doc/salome/examples/advanced_geom_objs_ex03.py b/doc/salome/examples/advanced_geom_objs_ex03.py
index 195cda0dd..915ee1586 100644
--- a/doc/salome/examples/advanced_geom_objs_ex03.py
+++ b/doc/salome/examples/advanced_geom_objs_ex03.py
@@ -1,8 +1,10 @@
# Creation of DividedCylinder
-import geompy
import salome
+salome.salome_init()
import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create DividedCylinder object
diff --git a/doc/salome/examples/angle.py b/doc/salome/examples/angle.py
index 324d72653..1fd60440f 100644
--- a/doc/salome/examples/angle.py
+++ b/doc/salome/examples/angle.py
@@ -2,10 +2,10 @@
import salome
salome.salome_init()
-
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
-import geompy
-geompy.init_geom(salome.myStudy)
OX = geompy.MakeVectorDXDYDZ(10, 0,0)
OXY = geompy.MakeVectorDXDYDZ(10,10,0)
diff --git a/doc/salome/examples/basic_geom_objs_ex01.py b/doc/salome/examples/basic_geom_objs_ex01.py
index 05abb799d..1501633ca 100644
--- a/doc/salome/examples/basic_geom_objs_ex01.py
+++ b/doc/salome/examples/basic_geom_objs_ex01.py
@@ -1,7 +1,10 @@
# Creation of a Point
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/basic_geom_objs_ex02.py b/doc/salome/examples/basic_geom_objs_ex02.py
index 02f87e910..858548f23 100644
--- a/doc/salome/examples/basic_geom_objs_ex02.py
+++ b/doc/salome/examples/basic_geom_objs_ex02.py
@@ -1,7 +1,10 @@
# Creation of a Line
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/basic_geom_objs_ex03.py b/doc/salome/examples/basic_geom_objs_ex03.py
index 510ae18fc..d7bdf2feb 100644
--- a/doc/salome/examples/basic_geom_objs_ex03.py
+++ b/doc/salome/examples/basic_geom_objs_ex03.py
@@ -1,7 +1,10 @@
# Creation of a Circle
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/basic_geom_objs_ex04.py b/doc/salome/examples/basic_geom_objs_ex04.py
index bf7d3e870..51a1304d4 100644
--- a/doc/salome/examples/basic_geom_objs_ex04.py
+++ b/doc/salome/examples/basic_geom_objs_ex04.py
@@ -1,7 +1,10 @@
# Creation of an Ellipse
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/basic_geom_objs_ex05.py b/doc/salome/examples/basic_geom_objs_ex05.py
index 5a82c3b1b..fe24424cc 100644
--- a/doc/salome/examples/basic_geom_objs_ex05.py
+++ b/doc/salome/examples/basic_geom_objs_ex05.py
@@ -1,7 +1,10 @@
# Creation of an Arc
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/basic_geom_objs_ex06.py b/doc/salome/examples/basic_geom_objs_ex06.py
index ba4940c14..3ade40d2b 100644
--- a/doc/salome/examples/basic_geom_objs_ex06.py
+++ b/doc/salome/examples/basic_geom_objs_ex06.py
@@ -1,7 +1,10 @@
# Creation of a Curve
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices and vectors
diff --git a/doc/salome/examples/basic_geom_objs_ex07.py b/doc/salome/examples/basic_geom_objs_ex07.py
index 2de687af0..04673b1f4 100644
--- a/doc/salome/examples/basic_geom_objs_ex07.py
+++ b/doc/salome/examples/basic_geom_objs_ex07.py
@@ -1,7 +1,10 @@
# Creation of a Vector
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/basic_geom_objs_ex08.py b/doc/salome/examples/basic_geom_objs_ex08.py
index 81a8745c5..707540a06 100644
--- a/doc/salome/examples/basic_geom_objs_ex08.py
+++ b/doc/salome/examples/basic_geom_objs_ex08.py
@@ -1,7 +1,10 @@
# Creation of a Plane
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/basic_geom_objs_ex09.py b/doc/salome/examples/basic_geom_objs_ex09.py
index 3934410ee..91fa3ce6d 100644
--- a/doc/salome/examples/basic_geom_objs_ex09.py
+++ b/doc/salome/examples/basic_geom_objs_ex09.py
@@ -1,7 +1,10 @@
# Creation of a Local Coordinate System
+import salome
+salome.salome_init()
import GEOM
-import geompy
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
import SALOMEDS
diff --git a/doc/salome/examples/basic_operations_ex01.py b/doc/salome/examples/basic_operations_ex01.py
index bed9e1c86..b9152729f 100644
--- a/doc/salome/examples/basic_operations_ex01.py
+++ b/doc/salome/examples/basic_operations_ex01.py
@@ -1,7 +1,10 @@
# Partition
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/basic_operations_ex02.py b/doc/salome/examples/basic_operations_ex02.py
index ac9b77b9d..ff102f0d5 100644
--- a/doc/salome/examples/basic_operations_ex02.py
+++ b/doc/salome/examples/basic_operations_ex02.py
@@ -1,7 +1,10 @@
# Archimede
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/basic_operations_ex03.py b/doc/salome/examples/basic_operations_ex03.py
index 39b1dd22b..09ec3dafd 100644
--- a/doc/salome/examples/basic_operations_ex03.py
+++ b/doc/salome/examples/basic_operations_ex03.py
@@ -1,8 +1,11 @@
# Restore presentation parameters and sub-shapes
-import geompy
+import salome
+salome.salome_init()
import GEOM
-import SALOMEDS
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+mport SALOMEDS
# create a box and a cylinder
box = geompy.MakeBoxDXDYDZ(200, 200, 200)
diff --git a/doc/salome/examples/basic_properties.py b/doc/salome/examples/basic_properties.py
index 239655901..ce6e45a9c 100644
--- a/doc/salome/examples/basic_properties.py
+++ b/doc/salome/examples/basic_properties.py
@@ -1,6 +1,10 @@
# Basic Properties
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
# create a box
diff --git a/doc/salome/examples/blocks_operations_ex01.py b/doc/salome/examples/blocks_operations_ex01.py
index 5535f121d..d8040637c 100644
--- a/doc/salome/examples/blocks_operations_ex01.py
+++ b/doc/salome/examples/blocks_operations_ex01.py
@@ -1,7 +1,10 @@
# Multi Transformation
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/blocks_operations_ex02.py b/doc/salome/examples/blocks_operations_ex02.py
index 68fbb01a6..03deab0a6 100644
--- a/doc/salome/examples/blocks_operations_ex02.py
+++ b/doc/salome/examples/blocks_operations_ex02.py
@@ -1,7 +1,10 @@
# Explode on Blocks
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a box and a sphere
diff --git a/doc/salome/examples/blocks_operations_ex03.py b/doc/salome/examples/blocks_operations_ex03.py
index 268a52e10..c38bf6c83 100644
--- a/doc/salome/examples/blocks_operations_ex03.py
+++ b/doc/salome/examples/blocks_operations_ex03.py
@@ -1,7 +1,10 @@
# Propagate
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a box
check_box = geompy.MakeBoxDXDYDZ(200, 200, 200)
diff --git a/doc/salome/examples/boolean_operations_ex01.py b/doc/salome/examples/boolean_operations_ex01.py
index 5f52542c6..01809955e 100644
--- a/doc/salome/examples/boolean_operations_ex01.py
+++ b/doc/salome/examples/boolean_operations_ex01.py
@@ -1,7 +1,10 @@
# Fuse
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/boolean_operations_ex02.py b/doc/salome/examples/boolean_operations_ex02.py
index b7e73b727..90317ba93 100644
--- a/doc/salome/examples/boolean_operations_ex02.py
+++ b/doc/salome/examples/boolean_operations_ex02.py
@@ -1,7 +1,10 @@
# Common
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/boolean_operations_ex03.py b/doc/salome/examples/boolean_operations_ex03.py
index 44c597405..7c97b09f0 100644
--- a/doc/salome/examples/boolean_operations_ex03.py
+++ b/doc/salome/examples/boolean_operations_ex03.py
@@ -1,7 +1,10 @@
# Cut
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/boolean_operations_ex04.py b/doc/salome/examples/boolean_operations_ex04.py
index 9472f7aa1..a7da6a9af 100644
--- a/doc/salome/examples/boolean_operations_ex04.py
+++ b/doc/salome/examples/boolean_operations_ex04.py
@@ -1,7 +1,10 @@
# Section
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/bounding_box.py b/doc/salome/examples/bounding_box.py
index d6480aeac..ed8736b98 100644
--- a/doc/salome/examples/bounding_box.py
+++ b/doc/salome/examples/bounding_box.py
@@ -1,6 +1,10 @@
# Bounding Box
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a box
box = geompy.MakeBoxDXDYDZ(100,30,100)
diff --git a/doc/salome/examples/building_by_blocks_ex01.py b/doc/salome/examples/building_by_blocks_ex01.py
index 16b02d75b..fe93e7c4c 100644
--- a/doc/salome/examples/building_by_blocks_ex01.py
+++ b/doc/salome/examples/building_by_blocks_ex01.py
@@ -1,7 +1,10 @@
# Quadrangle Face
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/building_by_blocks_ex02.py b/doc/salome/examples/building_by_blocks_ex02.py
index ed81f4233..8d40beec5 100644
--- a/doc/salome/examples/building_by_blocks_ex02.py
+++ b/doc/salome/examples/building_by_blocks_ex02.py
@@ -1,7 +1,10 @@
# Hexagonal Solid
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/center_of_mass.py b/doc/salome/examples/center_of_mass.py
index acf5962ff..9e570f318 100644
--- a/doc/salome/examples/center_of_mass.py
+++ b/doc/salome/examples/center_of_mass.py
@@ -1,6 +1,10 @@
# Center of masses
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
# create a box
diff --git a/doc/salome/examples/check_compound_of_blocks.py b/doc/salome/examples/check_compound_of_blocks.py
index 2f1ba9850..26f7c3012 100644
--- a/doc/salome/examples/check_compound_of_blocks.py
+++ b/doc/salome/examples/check_compound_of_blocks.py
@@ -1,7 +1,10 @@
# Check Compound of Blocks
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create boxes
diff --git a/doc/salome/examples/check_self_intersections.py b/doc/salome/examples/check_self_intersections.py
index 44c55d257..8df91b9fe 100644
--- a/doc/salome/examples/check_self_intersections.py
+++ b/doc/salome/examples/check_self_intersections.py
@@ -1,6 +1,10 @@
# Detect Self-intersections
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a box
box = geompy.MakeBoxDXDYDZ(100,30,100)
diff --git a/doc/salome/examples/check_shape.py b/doc/salome/examples/check_shape.py
index b708494b3..30793345e 100644
--- a/doc/salome/examples/check_shape.py
+++ b/doc/salome/examples/check_shape.py
@@ -1,6 +1,10 @@
# Check Shape
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a box
box = geompy.MakeBoxDXDYDZ(100,30,100)
diff --git a/doc/salome/examples/complex_objs_ex01.py b/doc/salome/examples/complex_objs_ex01.py
index a5cf102c8..5a04f3a76 100644
--- a/doc/salome/examples/complex_objs_ex01.py
+++ b/doc/salome/examples/complex_objs_ex01.py
@@ -1,7 +1,10 @@
# Creation of a Prism
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/complex_objs_ex02.py b/doc/salome/examples/complex_objs_ex02.py
index e096551fd..ec9f85729 100644
--- a/doc/salome/examples/complex_objs_ex02.py
+++ b/doc/salome/examples/complex_objs_ex02.py
@@ -1,7 +1,10 @@
# Creation of a Revolution
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/complex_objs_ex03.py b/doc/salome/examples/complex_objs_ex03.py
index ec7767b2a..35ccf0857 100644
--- a/doc/salome/examples/complex_objs_ex03.py
+++ b/doc/salome/examples/complex_objs_ex03.py
@@ -1,7 +1,10 @@
# Creation of a Filling
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
mindeg = 2
diff --git a/doc/salome/examples/complex_objs_ex04.py b/doc/salome/examples/complex_objs_ex04.py
index 72af08f29..4bff05d17 100644
--- a/doc/salome/examples/complex_objs_ex04.py
+++ b/doc/salome/examples/complex_objs_ex04.py
@@ -1,7 +1,10 @@
# Creation of a Pipe
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/complex_objs_ex05.py b/doc/salome/examples/complex_objs_ex05.py
index 724810c58..f38f0816b 100644
--- a/doc/salome/examples/complex_objs_ex05.py
+++ b/doc/salome/examples/complex_objs_ex05.py
@@ -1,7 +1,10 @@
# Creation of a PipeWithDifferentSections
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
Wire_1 = geompy.MakeSketcher("Sketcher:F 0 0:TT 100 0:R 0:C 100 90:T 0 200", [0, 0, 0, 0, 0, 1, 1, 0, -0])
diff --git a/doc/salome/examples/complex_objs_ex06.py b/doc/salome/examples/complex_objs_ex06.py
index 4a3dfe439..caa68c4c0 100644
--- a/doc/salome/examples/complex_objs_ex06.py
+++ b/doc/salome/examples/complex_objs_ex06.py
@@ -1,7 +1,10 @@
# Creation of a PipeWithShellSections
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
gg = salome.ImportComponentGUI("GEOM")
diff --git a/doc/salome/examples/complex_objs_ex07.py b/doc/salome/examples/complex_objs_ex07.py
index 1b37a2e39..d9e72ae96 100644
--- a/doc/salome/examples/complex_objs_ex07.py
+++ b/doc/salome/examples/complex_objs_ex07.py
@@ -1,7 +1,10 @@
# Creation of a PipeShellsWithoutPath
-import geompy
-import math
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import salome
gg = salome.ImportComponentGUI("GEOM")
diff --git a/doc/salome/examples/complex_objs_ex08.py b/doc/salome/examples/complex_objs_ex08.py
index 4777e071b..bb4cac595 100644
--- a/doc/salome/examples/complex_objs_ex08.py
+++ b/doc/salome/examples/complex_objs_ex08.py
@@ -1,4 +1,9 @@
# Creation of a PipeBiNormalAlongVector
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
def MakeHelix(radius, height, rotation, direction):
# - create a helix -
@@ -14,7 +19,6 @@ def MakeHelix(radius, height, rotation, direction):
length_z = height
length_xy = radius*rotation
length = sqrt(length_z*length_z + length_xy*length_xy)
- import geompy
nb_steps = 1
epsilon = 1.0e-6
while 1:
@@ -48,7 +52,6 @@ def MakeSpring(radius, height, rotation, direction, thread_radius, base_rotation
# create a helix
helix = MakeHelix(radius, height, rotation, direction)
# base in the (Ox, Oz) plane
- import geompy
p0 = geompy.MakeVertex(radius-3*thread_radius, 0.0, -thread_radius)
p1 = geompy.MakeVertex(radius+3*thread_radius, 0.0, -thread_radius)
p2 = geompy.MakeVertex(radius+3*thread_radius, 0.0, +thread_radius)
diff --git a/doc/salome/examples/complex_objs_ex09.py b/doc/salome/examples/complex_objs_ex09.py
index 55c347a1f..9615ad1ef 100644
--- a/doc/salome/examples/complex_objs_ex09.py
+++ b/doc/salome/examples/complex_objs_ex09.py
@@ -1,7 +1,10 @@
# Creation of a Middle Path
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# Create a box
Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
diff --git a/doc/salome/examples/complex_objs_ex10.py b/doc/salome/examples/complex_objs_ex10.py
index 8a14455ef..b51281505 100644
--- a/doc/salome/examples/complex_objs_ex10.py
+++ b/doc/salome/examples/complex_objs_ex10.py
@@ -1,7 +1,10 @@
# Creation of Tangent Plane On Face
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# Create Vertexes for curve
Vertex_1 = geompy.MakeVertex(0, 0, 0)
diff --git a/doc/salome/examples/free_boundaries.py b/doc/salome/examples/free_boundaries.py
index 7582f79dc..d36bbbbf7 100644
--- a/doc/salome/examples/free_boundaries.py
+++ b/doc/salome/examples/free_boundaries.py
@@ -1,8 +1,11 @@
# Check Free Boundaries
import os
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create boxes
diff --git a/doc/salome/examples/free_faces.py b/doc/salome/examples/free_faces.py
index 16d705614..2d1de5a00 100644
--- a/doc/salome/examples/free_faces.py
+++ b/doc/salome/examples/free_faces.py
@@ -1,7 +1,10 @@
# Check Free Faces
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/get_non_blocks.py b/doc/salome/examples/get_non_blocks.py
index 267fa870a..87bf934a6 100644
--- a/doc/salome/examples/get_non_blocks.py
+++ b/doc/salome/examples/get_non_blocks.py
@@ -1,7 +1,10 @@
# Get Non Blocks
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create solids
box = geompy.MakeBoxDXDYDZ(100, 100, 100)
diff --git a/doc/salome/examples/import_export.py b/doc/salome/examples/import_export.py
index ecde2442f..158fc6375 100644
--- a/doc/salome/examples/import_export.py
+++ b/doc/salome/examples/import_export.py
@@ -1,7 +1,10 @@
# Import/Export
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# Example of import from IGES using various formats
diff --git a/doc/salome/examples/inertia.py b/doc/salome/examples/inertia.py
index 203a39436..a63608c12 100644
--- a/doc/salome/examples/inertia.py
+++ b/doc/salome/examples/inertia.py
@@ -1,7 +1,10 @@
# Inertia
-import geompy
-import math
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a box
box = geompy.MakeBoxDXDYDZ(100,30,100)
diff --git a/doc/salome/examples/min_distance.py b/doc/salome/examples/min_distance.py
index e6048bba2..e48804b30 100644
--- a/doc/salome/examples/min_distance.py
+++ b/doc/salome/examples/min_distance.py
@@ -1,6 +1,10 @@
# Minimal Distance
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# Create two curves with three closest points
Vertex_1 = geompy.MakeVertex(0, 0, 0)
diff --git a/doc/salome/examples/normal_face.py b/doc/salome/examples/normal_face.py
index 572b0f9f8..91eac0b5a 100644
--- a/doc/salome/examples/normal_face.py
+++ b/doc/salome/examples/normal_face.py
@@ -1,6 +1,10 @@
# Normal to a Face
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
# create a box
diff --git a/doc/salome/examples/notebook_geom.py b/doc/salome/examples/notebook_geom.py
index a84ae87de..5b52d9f2c 100644
--- a/doc/salome/examples/notebook_geom.py
+++ b/doc/salome/examples/notebook_geom.py
@@ -1,7 +1,10 @@
# Using SALOME NoteBook
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import salome_notebook
gg = salome.ImportComponentGUI("GEOM")
diff --git a/doc/salome/examples/point_coordinates.py b/doc/salome/examples/point_coordinates.py
index 802c88ca5..e31569b69 100644
--- a/doc/salome/examples/point_coordinates.py
+++ b/doc/salome/examples/point_coordinates.py
@@ -1,7 +1,11 @@
# Point Coordinates
import math
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a point
point = geompy.MakeVertex(15., 23., 80.)
diff --git a/doc/salome/examples/primitives_ex01.py b/doc/salome/examples/primitives_ex01.py
index 77db019cd..41590a544 100644
--- a/doc/salome/examples/primitives_ex01.py
+++ b/doc/salome/examples/primitives_ex01.py
@@ -1,7 +1,10 @@
# Creation of a Box
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/primitives_ex02.py b/doc/salome/examples/primitives_ex02.py
index ed6a6f9a6..d55d6510f 100644
--- a/doc/salome/examples/primitives_ex02.py
+++ b/doc/salome/examples/primitives_ex02.py
@@ -1,7 +1,10 @@
# Creation of a Cylinder
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
diff --git a/doc/salome/examples/primitives_ex03.py b/doc/salome/examples/primitives_ex03.py
index 21dbc9e7e..4f07701ef 100644
--- a/doc/salome/examples/primitives_ex03.py
+++ b/doc/salome/examples/primitives_ex03.py
@@ -1,7 +1,10 @@
# Creation of a Sphere
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex
diff --git a/doc/salome/examples/primitives_ex04.py b/doc/salome/examples/primitives_ex04.py
index 99a003a4b..4e27ac41c 100644
--- a/doc/salome/examples/primitives_ex04.py
+++ b/doc/salome/examples/primitives_ex04.py
@@ -1,7 +1,10 @@
# Creation of a Torus
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/primitives_ex05.py b/doc/salome/examples/primitives_ex05.py
index b563303b2..61fcc3846 100644
--- a/doc/salome/examples/primitives_ex05.py
+++ b/doc/salome/examples/primitives_ex05.py
@@ -1,7 +1,10 @@
# Creation of a Cone
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/primitives_ex06.py b/doc/salome/examples/primitives_ex06.py
index d3fd53e35..b639ec0ca 100644
--- a/doc/salome/examples/primitives_ex06.py
+++ b/doc/salome/examples/primitives_ex06.py
@@ -1,7 +1,10 @@
# Creation of a Disk
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/primitives_ex07.py b/doc/salome/examples/primitives_ex07.py
index 75dad1e94..e5989dfe4 100644
--- a/doc/salome/examples/primitives_ex07.py
+++ b/doc/salome/examples/primitives_ex07.py
@@ -1,7 +1,10 @@
# Creation of a Rectangle
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/repairing_operations_ex01.py b/doc/salome/examples/repairing_operations_ex01.py
index 8a57db040..dc937caf0 100644
--- a/doc/salome/examples/repairing_operations_ex01.py
+++ b/doc/salome/examples/repairing_operations_ex01.py
@@ -1,7 +1,10 @@
# Shape Processing
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices, an edge, an arc, a wire, a face and a prism
diff --git a/doc/salome/examples/repairing_operations_ex02.py b/doc/salome/examples/repairing_operations_ex02.py
index f5ee65caf..344ec4bff 100644
--- a/doc/salome/examples/repairing_operations_ex02.py
+++ b/doc/salome/examples/repairing_operations_ex02.py
@@ -1,7 +1,10 @@
# Suppress Faces
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a box
diff --git a/doc/salome/examples/repairing_operations_ex03.py b/doc/salome/examples/repairing_operations_ex03.py
index 50eec1126..8b8baedbd 100644
--- a/doc/salome/examples/repairing_operations_ex03.py
+++ b/doc/salome/examples/repairing_operations_ex03.py
@@ -1,7 +1,10 @@
# Close Contour
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices and vectors
diff --git a/doc/salome/examples/repairing_operations_ex04.py b/doc/salome/examples/repairing_operations_ex04.py
index fad69131c..242b17231 100644
--- a/doc/salome/examples/repairing_operations_ex04.py
+++ b/doc/salome/examples/repairing_operations_ex04.py
@@ -1,7 +1,10 @@
# Suppress Internal Wires
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/repairing_operations_ex05.py b/doc/salome/examples/repairing_operations_ex05.py
index b7534ab65..e5fef2bb5 100644
--- a/doc/salome/examples/repairing_operations_ex05.py
+++ b/doc/salome/examples/repairing_operations_ex05.py
@@ -1,8 +1,10 @@
# Suppress Holes
-import geompy
import salome
+salome.salome_init()
import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/repairing_operations_ex06.py b/doc/salome/examples/repairing_operations_ex06.py
index e6120a7a6..8935962bf 100644
--- a/doc/salome/examples/repairing_operations_ex06.py
+++ b/doc/salome/examples/repairing_operations_ex06.py
@@ -1,7 +1,10 @@
# Sewing
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
gg = salome.ImportComponentGUI("GEOM")
diff --git a/doc/salome/examples/repairing_operations_ex07.py b/doc/salome/examples/repairing_operations_ex07.py
index 6cc688a4e..1a7ff79a4 100644
--- a/doc/salome/examples/repairing_operations_ex07.py
+++ b/doc/salome/examples/repairing_operations_ex07.py
@@ -1,7 +1,10 @@
# Glue Faces
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create boxes
diff --git a/doc/salome/examples/repairing_operations_ex08.py b/doc/salome/examples/repairing_operations_ex08.py
index a39d11088..933298eef 100644
--- a/doc/salome/examples/repairing_operations_ex08.py
+++ b/doc/salome/examples/repairing_operations_ex08.py
@@ -1,7 +1,10 @@
# Glue Edges
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create boxes
diff --git a/doc/salome/examples/repairing_operations_ex09.py b/doc/salome/examples/repairing_operations_ex09.py
index e94b1aa03..2875051d2 100644
--- a/doc/salome/examples/repairing_operations_ex09.py
+++ b/doc/salome/examples/repairing_operations_ex09.py
@@ -1,7 +1,10 @@
# Limit Tolerance
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# import initial topology with bad tolerances (more than 1e-07)
diff --git a/doc/salome/examples/repairing_operations_ex10.py b/doc/salome/examples/repairing_operations_ex10.py
index 7849a7cf5..898991b4e 100644
--- a/doc/salome/examples/repairing_operations_ex10.py
+++ b/doc/salome/examples/repairing_operations_ex10.py
@@ -1,7 +1,10 @@
# Add Point on Edge
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create vertices
p1 = geompy.MakeVertex(0,0,50)
diff --git a/doc/salome/examples/repairing_operations_ex11.py b/doc/salome/examples/repairing_operations_ex11.py
index 396881c72..1b50e6ffd 100644
--- a/doc/salome/examples/repairing_operations_ex11.py
+++ b/doc/salome/examples/repairing_operations_ex11.py
@@ -1,7 +1,10 @@
# Fuse Collinear Edges within a Wire
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create vertices
p1 = geompy.MakeVertex(0, 0, 0)
diff --git a/doc/salome/examples/sketcher.py b/doc/salome/examples/sketcher.py
index 8ca1f98ce..6cd355da9 100644
--- a/doc/salome/examples/sketcher.py
+++ b/doc/salome/examples/sketcher.py
@@ -1,7 +1,10 @@
# 2D Sketcher
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/tolerance.py b/doc/salome/examples/tolerance.py
index 639a676cf..ac72a3031 100644
--- a/doc/salome/examples/tolerance.py
+++ b/doc/salome/examples/tolerance.py
@@ -1,6 +1,10 @@
# Tolerance
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a box
box = geompy.MakeBoxDXDYDZ(100,30,100)
diff --git a/doc/salome/examples/topological_geom_objs_ex01.py b/doc/salome/examples/topological_geom_objs_ex01.py
index 77c1d1807..257819c3d 100644
--- a/doc/salome/examples/topological_geom_objs_ex01.py
+++ b/doc/salome/examples/topological_geom_objs_ex01.py
@@ -1,7 +1,10 @@
# Creation of an Edge
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
#
diff --git a/doc/salome/examples/topological_geom_objs_ex02.py b/doc/salome/examples/topological_geom_objs_ex02.py
index 62806d770..eb12ea6a5 100644
--- a/doc/salome/examples/topological_geom_objs_ex02.py
+++ b/doc/salome/examples/topological_geom_objs_ex02.py
@@ -1,7 +1,10 @@
# Creation of a Wire
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/topological_geom_objs_ex03.py b/doc/salome/examples/topological_geom_objs_ex03.py
index 7b1600153..db2f060a9 100644
--- a/doc/salome/examples/topological_geom_objs_ex03.py
+++ b/doc/salome/examples/topological_geom_objs_ex03.py
@@ -1,7 +1,10 @@
# Creation of a Face
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices
diff --git a/doc/salome/examples/topological_geom_objs_ex04.py b/doc/salome/examples/topological_geom_objs_ex04.py
index b85e553f2..31a938dda 100644
--- a/doc/salome/examples/topological_geom_objs_ex04.py
+++ b/doc/salome/examples/topological_geom_objs_ex04.py
@@ -1,7 +1,10 @@
# Creation of a Shell
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
#create vertices
diff --git a/doc/salome/examples/topological_geom_objs_ex05.py b/doc/salome/examples/topological_geom_objs_ex05.py
index 700236b03..67bf79084 100644
--- a/doc/salome/examples/topological_geom_objs_ex05.py
+++ b/doc/salome/examples/topological_geom_objs_ex05.py
@@ -1,7 +1,10 @@
# Creation of a Solid
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
#create vertices
diff --git a/doc/salome/examples/topological_geom_objs_ex06.py b/doc/salome/examples/topological_geom_objs_ex06.py
index 071730b52..7ae16d8e6 100644
--- a/doc/salome/examples/topological_geom_objs_ex06.py
+++ b/doc/salome/examples/topological_geom_objs_ex06.py
@@ -1,7 +1,10 @@
# Creation of a Compound
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/transformation_operations_ex01.py b/doc/salome/examples/transformation_operations_ex01.py
index 678afa9e2..5a01039fd 100644
--- a/doc/salome/examples/transformation_operations_ex01.py
+++ b/doc/salome/examples/transformation_operations_ex01.py
@@ -1,7 +1,10 @@
# Translation
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a vertex and a vector
diff --git a/doc/salome/examples/transformation_operations_ex02.py b/doc/salome/examples/transformation_operations_ex02.py
index 7abbb7873..564e1409d 100644
--- a/doc/salome/examples/transformation_operations_ex02.py
+++ b/doc/salome/examples/transformation_operations_ex02.py
@@ -1,7 +1,10 @@
# Rotation
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
gg = salome.ImportComponentGUI("GEOM")
diff --git a/doc/salome/examples/transformation_operations_ex03.py b/doc/salome/examples/transformation_operations_ex03.py
index 3d250fd48..6870a3529 100644
--- a/doc/salome/examples/transformation_operations_ex03.py
+++ b/doc/salome/examples/transformation_operations_ex03.py
@@ -1,7 +1,10 @@
# Modify Location
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
gg = salome.ImportComponentGUI("GEOM")
diff --git a/doc/salome/examples/transformation_operations_ex04.py b/doc/salome/examples/transformation_operations_ex04.py
index 28e8b308a..ebcd1f48d 100644
--- a/doc/salome/examples/transformation_operations_ex04.py
+++ b/doc/salome/examples/transformation_operations_ex04.py
@@ -1,7 +1,10 @@
# Mirror Image
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a box
diff --git a/doc/salome/examples/transformation_operations_ex05.py b/doc/salome/examples/transformation_operations_ex05.py
index 7b906b969..948fa0087 100644
--- a/doc/salome/examples/transformation_operations_ex05.py
+++ b/doc/salome/examples/transformation_operations_ex05.py
@@ -1,7 +1,10 @@
# Scale Transform
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a box and a sphere
diff --git a/doc/salome/examples/transformation_operations_ex06.py b/doc/salome/examples/transformation_operations_ex06.py
index f6c2adfd4..64f8b6615 100644
--- a/doc/salome/examples/transformation_operations_ex06.py
+++ b/doc/salome/examples/transformation_operations_ex06.py
@@ -1,7 +1,10 @@
# Offset Surface
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a box and a sphere
diff --git a/doc/salome/examples/transformation_operations_ex07.py b/doc/salome/examples/transformation_operations_ex07.py
index c1efc39e3..206b93e80 100644
--- a/doc/salome/examples/transformation_operations_ex07.py
+++ b/doc/salome/examples/transformation_operations_ex07.py
@@ -1,7 +1,10 @@
# Projection
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a cylindric face and a curve(edge)
cylinder = geompy.MakeCylinderRH(100, 300)
diff --git a/doc/salome/examples/transformation_operations_ex08.py b/doc/salome/examples/transformation_operations_ex08.py
index fb103f950..c26774d66 100644
--- a/doc/salome/examples/transformation_operations_ex08.py
+++ b/doc/salome/examples/transformation_operations_ex08.py
@@ -1,7 +1,10 @@
# Multi Translation
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create vertices and vectors
diff --git a/doc/salome/examples/transformation_operations_ex09.py b/doc/salome/examples/transformation_operations_ex09.py
index 665a2acb3..3467b5be6 100644
--- a/doc/salome/examples/transformation_operations_ex09.py
+++ b/doc/salome/examples/transformation_operations_ex09.py
@@ -1,7 +1,10 @@
# Multi Rotation
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
import math
diff --git a/doc/salome/examples/transformation_operations_ex10.py b/doc/salome/examples/transformation_operations_ex10.py
index cd2527331..17747db1b 100644
--- a/doc/salome/examples/transformation_operations_ex10.py
+++ b/doc/salome/examples/transformation_operations_ex10.py
@@ -1,7 +1,10 @@
# Fillet 2D
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create a face in OXY plane
diff --git a/doc/salome/examples/transformation_operations_ex11.py b/doc/salome/examples/transformation_operations_ex11.py
index f3b4bd095..0bf3de12b 100644
--- a/doc/salome/examples/transformation_operations_ex11.py
+++ b/doc/salome/examples/transformation_operations_ex11.py
@@ -1,7 +1,10 @@
# Fillet 1D
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create box
diff --git a/doc/salome/examples/transformation_operations_ex12.py b/doc/salome/examples/transformation_operations_ex12.py
index 1f0f31c97..a59eda05f 100644
--- a/doc/salome/examples/transformation_operations_ex12.py
+++ b/doc/salome/examples/transformation_operations_ex12.py
@@ -1,7 +1,10 @@
# Fillet
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
radius = 10.
ShapeTypeEdge = geompy.ShapeType["EDGE"]
diff --git a/doc/salome/examples/transformation_operations_ex13.py b/doc/salome/examples/transformation_operations_ex13.py
index ecc896e2b..ba857a05b 100644
--- a/doc/salome/examples/transformation_operations_ex13.py
+++ b/doc/salome/examples/transformation_operations_ex13.py
@@ -1,7 +1,10 @@
# Chamfer
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
d1 = 10.
d2 = 10.
diff --git a/doc/salome/examples/viewing_geom_objs_ex01.py b/doc/salome/examples/viewing_geom_objs_ex01.py
index 473c7f15a..0458d42bf 100644
--- a/doc/salome/examples/viewing_geom_objs_ex01.py
+++ b/doc/salome/examples/viewing_geom_objs_ex01.py
@@ -1,7 +1,10 @@
# Changing Display Mode
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
box = geompy.MakeBox(0,0,0, 50,50,50)
box2 = geompy.MakeBox(-50,-50,-50, 0,0,0)
diff --git a/doc/salome/examples/viewing_geom_objs_ex02.py b/doc/salome/examples/viewing_geom_objs_ex02.py
index fd8243d2f..b8629d61c 100644
--- a/doc/salome/examples/viewing_geom_objs_ex02.py
+++ b/doc/salome/examples/viewing_geom_objs_ex02.py
@@ -1,7 +1,10 @@
# Changing Color
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
box = geompy.MakeBox(0,0,0, 50,50,50)
sphere = geompy.MakeSphere(50,50,50, 30)
diff --git a/doc/salome/examples/viewing_geom_objs_ex03.py b/doc/salome/examples/viewing_geom_objs_ex03.py
index 381f0e9ae..9932eeec6 100644
--- a/doc/salome/examples/viewing_geom_objs_ex03.py
+++ b/doc/salome/examples/viewing_geom_objs_ex03.py
@@ -1,7 +1,10 @@
# Changing Transparency
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
box = geompy.MakeBox(0,0,0, 50,50,50)
sphere = geompy.MakeSphere(50,50,50, 30)
diff --git a/doc/salome/examples/viewing_geom_objs_ex04.py b/doc/salome/examples/viewing_geom_objs_ex04.py
index f31edefee..cbfcf40e6 100644
--- a/doc/salome/examples/viewing_geom_objs_ex04.py
+++ b/doc/salome/examples/viewing_geom_objs_ex04.py
@@ -1,8 +1,10 @@
# Set Point Marker
import salome
-import geompy
+salome.salome_init()
import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
texture = geompy.LoadTexture(os.getenv("DATA_DIR")+"/Textures/texture1.dat")
diff --git a/doc/salome/examples/whatis.py b/doc/salome/examples/whatis.py
index 42e7e4e4d..632ab6226 100644
--- a/doc/salome/examples/whatis.py
+++ b/doc/salome/examples/whatis.py
@@ -1,6 +1,10 @@
# What Is
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a box
box = geompy.MakeBoxDXDYDZ(100,30,100)
diff --git a/doc/salome/examples/working_with_groups_ex01.py b/doc/salome/examples/working_with_groups_ex01.py
index 821862f4a..26678d58f 100644
--- a/doc/salome/examples/working_with_groups_ex01.py
+++ b/doc/salome/examples/working_with_groups_ex01.py
@@ -1,7 +1,10 @@
# Creation of a group
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create two vertices
diff --git a/doc/salome/examples/working_with_groups_ex02.py b/doc/salome/examples/working_with_groups_ex02.py
index 4c415babe..6531cbfc9 100644
--- a/doc/salome/examples/working_with_groups_ex02.py
+++ b/doc/salome/examples/working_with_groups_ex02.py
@@ -1,7 +1,10 @@
# Adding an object to the group
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create two vertices
diff --git a/doc/salome/examples/working_with_groups_ex03.py b/doc/salome/examples/working_with_groups_ex03.py
index 2c8a3d5f3..0170d54ed 100644
--- a/doc/salome/examples/working_with_groups_ex03.py
+++ b/doc/salome/examples/working_with_groups_ex03.py
@@ -1,7 +1,10 @@
# Removing an object from the group
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
gg = salome.ImportComponentGUI("GEOM")
# create two vertices
diff --git a/doc/salome/examples/working_with_groups_ex04.py b/doc/salome/examples/working_with_groups_ex04.py
index 945ae61fc..af9fc6f12 100644
--- a/doc/salome/examples/working_with_groups_ex04.py
+++ b/doc/salome/examples/working_with_groups_ex04.py
@@ -1,7 +1,10 @@
# Union Groups
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a box and some groups of faces on it
Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
diff --git a/doc/salome/examples/working_with_groups_ex05.py b/doc/salome/examples/working_with_groups_ex05.py
index 422c67274..50af27d5e 100644
--- a/doc/salome/examples/working_with_groups_ex05.py
+++ b/doc/salome/examples/working_with_groups_ex05.py
@@ -1,7 +1,10 @@
# Intersect Groups
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a box and some groups of faces on it
Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
diff --git a/doc/salome/examples/working_with_groups_ex06.py b/doc/salome/examples/working_with_groups_ex06.py
index 65c4fe21e..27fb6d509 100644
--- a/doc/salome/examples/working_with_groups_ex06.py
+++ b/doc/salome/examples/working_with_groups_ex06.py
@@ -1,7 +1,10 @@
# Cut Groups
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# create a box and some groups of faces on it
Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
diff --git a/doc/salome/gui/GEOM/Makefile.am b/doc/salome/gui/GEOM/Makefile.am
index 3b96e0abd..e8290f44e 100755
--- a/doc/salome/gui/GEOM/Makefile.am
+++ b/doc/salome/gui/GEOM/Makefile.am
@@ -30,10 +30,6 @@ guidocdir = $(docdir)/gui/GEOM
guidoc_DATA = images/head.png static/SALOME_BOA_PA.pdf
usr_docs: doxyfile_tui doxyfile_py doxyfile
- echo "===========================================" ; \
- echo "Replacing geompyDC by geompy" ; \
- echo "===========================================" ; \
- $(KERNEL_ROOT_DIR)/bin/salome/prepare_generating_doc.py geompy.py $(top_srcdir)/src/GEOM_SWIG/geompyDC.py geompy ; \
echo "===========================================" ; \
echo "Generating examples documentation" ; \
echo "===========================================" ; \
diff --git a/doc/salome/gui/GEOM/doxyfile_py.in b/doc/salome/gui/GEOM/doxyfile_py.in
index bd50daa50..94e36663f 100755
--- a/doc/salome/gui/GEOM/doxyfile_py.in
+++ b/doc/salome/gui/GEOM/doxyfile_py.in
@@ -60,7 +60,7 @@ HIDE_FRIEND_COMPOUNDS = NO
HIDE_IN_BODY_DOCS = NO
INTERNAL_DOCS = YES
CASE_SENSE_NAMES = YES
-HIDE_SCOPE_NAMES = NO
+HIDE_SCOPE_NAMES = YES
SHOW_INCLUDE_FILES = YES
INLINE_INFO = YES
SORT_MEMBER_DOCS = NO
@@ -99,7 +99,7 @@ EXAMPLE_RECURSIVE = NO
#---------------------------------------------------------------------------
#Input related options
#---------------------------------------------------------------------------
-INPUT = geompy.py @top_srcdir@/src/GEOM_SWIG/gsketcher.py @top_srcdir@/idl/GEOM_Gen.idl
+INPUT = @top_srcdir@/src/GEOM_SWIG/geomBuilder.py @top_srcdir@/src/GEOM_SWIG/gsketcher.py @top_srcdir@/idl/GEOM_Gen.idl
FILE_PATTERNS =
IMAGE_PATH = @srcdir@/images
EXAMPLE_PATH = @top_srcdir@/src/GEOM_SWIG
diff --git a/doc/salome/gui/GEOM/input/geometrical_object_properties.doc b/doc/salome/gui/GEOM/input/geometrical_object_properties.doc
index a5b55449a..2d9653716 100644
--- a/doc/salome/gui/GEOM/input/geometrical_object_properties.doc
+++ b/doc/salome/gui/GEOM/input/geometrical_object_properties.doc
@@ -73,7 +73,12 @@ that allows converting the geometrical object id value to its string representat
For example, the output of the following code:
\code
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
box = geompy.MakeBoxDXDYDZ(10,10,10)
type = geompy.ShapeIdToType(box.GetType())
print type
@@ -94,8 +99,12 @@ of the \b GEOM_Object interface.
For example:
\code
-import geompy
+import salome
+salome.salome_init()
import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
box = geompy.MakeBoxDXDYDZ(10,10,10)
type = box.GetShapeType()
print type == GEOM.SOLID
diff --git a/doc/salome/gui/GEOM/input/geompy.doc b/doc/salome/gui/GEOM/input/geompy.doc
index f34f87fe1..c6411b7de 100644
--- a/doc/salome/gui/GEOM/input/geompy.doc
+++ b/doc/salome/gui/GEOM/input/geompy.doc
@@ -1,15 +1,20 @@
/*!
-\page geompy_page Python Interface geompy.py
+\page geompy_page Python Interface geomBuilder.py
\n Please, see
-structured documentation for geompy.py,
+structured documentation for geomBuilder.py,
where all package functionality is separated in groups by purpose.
-\n Also you can find any function in the \ref geompy
-"linear documentation for geompy.py".
+\n Also you can find any function in the \ref GEOM_SWIG.geomBuilder
+"linear documentation for geomBuilder.py".
-By the links below you can find sample scripts for all operations
+\n
+\anchor tui_sample_geom_script
+
GEOM Python script example
+\tui_script{GEOM_box.py}
+
+\n By the links below you can find sample scripts for all operations
provided by Geometry module.
diff --git a/src/GEOM_PY/geomtools.py b/src/GEOM_PY/geomtools.py
index 5a2062330..572b58be8 100644
--- a/src/GEOM_PY/geomtools.py
+++ b/src/GEOM_PY/geomtools.py
@@ -52,17 +52,17 @@ def getGeompy(studyId = None):
if studyId is None:
studyId = getActiveStudyId()
if not _geompys.has_key(studyId):
- import geompyDC
+ from salome.geom import geomBuilder
_geompys[studyId] = salome.lcc.FindOrLoadComponent("FactoryServer",
"GEOM")
- _geompys[studyId].ShapeType = geompyDC.ShapeType
- _geompys[studyId].GEOM = geompyDC.GEOM
- _geompys[studyId].kind = geompyDC.kind
- _geompys[studyId].info = geompyDC.info
- _geompys[studyId].PackData = geompyDC.PackData
- _geompys[studyId].ReadTexture = geompyDC.ReadTexture
+ _geompys[studyId].ShapeType = geomBuilder.ShapeType
+ _geompys[studyId].GEOM = geomBuilder.GEOM
+ _geompys[studyId].kind = geomBuilder.kind
+ _geompys[studyId].info = geomBuilder.info
+ _geompys[studyId].PackData = geomBuilder.PackData
+ _geompys[studyId].ReadTexture = geomBuilder.ReadTexture
study = salome.myStudyManager.GetStudyByID(studyId)
- _geompys[studyId].init_geom(study)
+ _geompys[studyId] = geomBuilder.New(study)
return _geompys[studyId]
diff --git a/src/GEOM_PY/sketcher.py b/src/GEOM_PY/sketcher.py
index aeba6b43b..70998e569 100644
--- a/src/GEOM_PY/sketcher.py
+++ b/src/GEOM_PY/sketcher.py
@@ -38,7 +38,8 @@ Example::
wire = mysketcher.getGeomWire()
# Put it in the study
- import geompy
+ from salome.geom import geomBuilder
+ geompy = geomBuilder.New(salome.myStudy)
geompy.addToStudy( wire, 'mysketch' )
Additionnal examples can be found as unit tests in the source code.
@@ -46,7 +47,11 @@ Additionnal examples can be found as unit tests in the source code.
geompyEnable = True
try:
- import geompy
+ import salome
+ salome.salome_init()
+ import GEOM
+ from salome.geom import geomBuilder
+ geompy = geomBuilder.New(salome.myStudy)
except:
geompyEnable = False
diff --git a/src/GEOM_PY/structelem/__init__.py b/src/GEOM_PY/structelem/__init__.py
index be6557887..11c4eaede 100644
--- a/src/GEOM_PY/structelem/__init__.py
+++ b/src/GEOM_PY/structelem/__init__.py
@@ -414,7 +414,11 @@ class StructuralElement:
def TEST_CreateGeometry():
- import geompy
+ import salome
+ salome.salome_init()
+ import GEOM
+ from salome.geom import geomBuilder
+ geompy = geomBuilder.New(salome.myStudy)
import SALOMEDS
geompy.init_geom(salome.myStudy)
Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
diff --git a/src/GEOM_SWIG/GEOM_Nut.py b/src/GEOM_SWIG/GEOM_Nut.py
index 66ff092f3..76f7752ee 100755
--- a/src/GEOM_SWIG/GEOM_Nut.py
+++ b/src/GEOM_SWIG/GEOM_Nut.py
@@ -26,11 +26,15 @@
#Auhtor :MASLOV Eugeny, KOVALTCHUK Alexey
#####################################################################
#
-import geompy
-import salome
import os
import math
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
#Sketcher_1 creation
Sketcher_1 = geompy.MakeSketcher("Sketcher:F 100 -57.7:TT 100 57.7:TT 0 115.47:TT -100 57.7:TT -100 -57.7:TT 0 -115.47:WW")
geompy.addToStudy(Sketcher_1, "Sketcher_1")
diff --git a/src/GEOM_SWIG/GEOM_ObjectInfo.py b/src/GEOM_SWIG/GEOM_ObjectInfo.py
index fb2ab3e15..24edd3415 100644
--- a/src/GEOM_SWIG/GEOM_ObjectInfo.py
+++ b/src/GEOM_SWIG/GEOM_ObjectInfo.py
@@ -24,9 +24,10 @@
# Module : GEOM
#
import salome
-import geompy
-
-geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# Create several objects
obj1 = geompy.MakeVertex(0.,0.,0.)
@@ -45,13 +46,13 @@ obj4_entry = geompy.addToStudy(obj4, "Object4")
obj5_entry = geompy.addToStudy(obj5, "Object5")
# Get information about objects
-hasInfo = geom.hasObjectInfo()
+hasInfo = geompy.hasObjectInfo()
print "Check if GEOM module provides information about its objects: ", hasInfo
if hasInfo == True:
- print "Information about first object: ", geom.getObjectInfo(salome.myStudyId, obj1_entry)
- print "Information about second object: ", geom.getObjectInfo(salome.myStudyId, obj2_entry)
- print "Information about third object: ", geom.getObjectInfo(salome.myStudyId, obj3_entry)
- print "Information about fourth object: ", geom.getObjectInfo(salome.myStudyId, obj4_entry)
- print "Information about fifth object: ", geom.getObjectInfo(salome.myStudyId, obj5_entry)
+ print "Information about first object: ", geompy.getObjectInfo(salome.myStudyId, obj1_entry)
+ print "Information about second object: ", geompy.getObjectInfo(salome.myStudyId, obj2_entry)
+ print "Information about third object: ", geompy.getObjectInfo(salome.myStudyId, obj3_entry)
+ print "Information about fourth object: ", geompy.getObjectInfo(salome.myStudyId, obj4_entry)
+ print "Information about fifth object: ", geompy.getObjectInfo(salome.myStudyId, obj5_entry)
salome.sg.updateObjBrowser(1)
diff --git a/src/GEOM_SWIG/GEOM_Partition1.py b/src/GEOM_SWIG/GEOM_Partition1.py
index c99748582..4e210626a 100755
--- a/src/GEOM_SWIG/GEOM_Partition1.py
+++ b/src/GEOM_SWIG/GEOM_Partition1.py
@@ -43,8 +43,11 @@ colis_center = sqrt(2.0)*colis_step/2
# --
-import geompy
-geom = geompy.geom
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
boolean_common = 1
boolean_cut = 2
diff --git a/src/GEOM_SWIG/GEOM_Partition2.py b/src/GEOM_SWIG/GEOM_Partition2.py
index 838693dbb..a9bf7aa01 100755
--- a/src/GEOM_SWIG/GEOM_Partition2.py
+++ b/src/GEOM_SWIG/GEOM_Partition2.py
@@ -30,8 +30,12 @@
# Geometrie avec une galerie perpendiculaire
# --------------------------------------------
#
-import geompy
-geom = geompy.geom
+
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
vecx = geompy.MakeVectorDXDYDZ(1.,0.,0.)
vecy = geompy.MakeVectorDXDYDZ(0.,1.,0.)
diff --git a/src/GEOM_SWIG/GEOM_Partition3.py b/src/GEOM_SWIG/GEOM_Partition3.py
index 7fcbc8019..567a9add7 100755
--- a/src/GEOM_SWIG/GEOM_Partition3.py
+++ b/src/GEOM_SWIG/GEOM_Partition3.py
@@ -27,8 +27,11 @@
# import callovo_01_GEOM
# reload(callovo_01_GEOM)
#
-import geompy
-geom = geompy.geom
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
vecx = geompy.MakeVectorDXDYDZ(1.,0.,0.)
diff --git a/src/GEOM_SWIG/GEOM_Partition4.py b/src/GEOM_SWIG/GEOM_Partition4.py
index b0240a5e7..208a32302 100755
--- a/src/GEOM_SWIG/GEOM_Partition4.py
+++ b/src/GEOM_SWIG/GEOM_Partition4.py
@@ -49,8 +49,11 @@ gmDz = 100.0
# --
-import geompy
-geom = geompy.geom
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# -- Construction de backfill
diff --git a/src/GEOM_SWIG/GEOM_Partition5.py b/src/GEOM_SWIG/GEOM_Partition5.py
index 8c22f0db4..e57a8478b 100755
--- a/src/GEOM_SWIG/GEOM_Partition5.py
+++ b/src/GEOM_SWIG/GEOM_Partition5.py
@@ -28,8 +28,11 @@
# reload(gallery_01_GEOM)
# -- Import geompy pour piloter GEOM par script
#
-import geompy
-geom = geompy.geom
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# -- Dimensions de la boite entiˆre
diff --git a/src/GEOM_SWIG/GEOM_Sketcher.py b/src/GEOM_SWIG/GEOM_Sketcher.py
index ade5407af..658a73bf5 100644
--- a/src/GEOM_SWIG/GEOM_Sketcher.py
+++ b/src/GEOM_SWIG/GEOM_Sketcher.py
@@ -26,7 +26,11 @@
# Author : Damien COQUERET, Open CASCADE
# Module : GEOM
#
-import geompy
+import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
#SKETCHER INFOS
#Init Sketcher
diff --git a/src/GEOM_SWIG/GEOM_blocks.py b/src/GEOM_SWIG/GEOM_blocks.py
index 6ad689eb0..71b00c66e 100644
--- a/src/GEOM_SWIG/GEOM_blocks.py
+++ b/src/GEOM_SWIG/GEOM_blocks.py
@@ -27,9 +27,12 @@
# Module : GEOM
#
import salome
-import geompy
-import math
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+import math
import GEOM_Spanner
isBlocksTest = 0 # False
diff --git a/src/GEOM_SWIG/GEOM_box.py b/src/GEOM_SWIG/GEOM_box.py
new file mode 100644
index 000000000..1d9864b2f
--- /dev/null
+++ b/src/GEOM_SWIG/GEOM_box.py
@@ -0,0 +1,16 @@
+# --- salome initialization
+import salome
+salome.salome_init()
+
+# --- geom Python interface
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
+# --- Create a box and publish it into the salome study
+Box_1 = geompy.MakeBoxDXDYDZ(200, 200, 200)
+geompy.addToStudy( Box_1, 'Box_1' )
+
+# --- update the study object browser
+if salome.sg.hasDesktop():
+ salome.sg.updateObjBrowser(1)
diff --git a/src/GEOM_SWIG/GEOM_cyl2complementary.py b/src/GEOM_SWIG/GEOM_cyl2complementary.py
index 07ff303bb..fcb3d9fda 100755
--- a/src/GEOM_SWIG/GEOM_cyl2complementary.py
+++ b/src/GEOM_SWIG/GEOM_cyl2complementary.py
@@ -32,7 +32,11 @@
# ------
#
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
geomgui = salome.ImportComponentGUI("GEOM")
import salome_ComponentGUI
def addToStudy(shape, name):
diff --git a/src/GEOM_SWIG/GEOM_example.py b/src/GEOM_SWIG/GEOM_example.py
index b4b66046e..c84b7c5e4 100644
--- a/src/GEOM_SWIG/GEOM_example.py
+++ b/src/GEOM_SWIG/GEOM_example.py
@@ -27,7 +27,10 @@
# Module : GEOM
#
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
ind = 0
boxlist = []
diff --git a/src/GEOM_SWIG/GEOM_example2.py b/src/GEOM_SWIG/GEOM_example2.py
index accb3eb6d..6797c82d7 100644
--- a/src/GEOM_SWIG/GEOM_example2.py
+++ b/src/GEOM_SWIG/GEOM_example2.py
@@ -27,7 +27,10 @@
# Module : GEOM
#
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
diff --git a/src/GEOM_SWIG/GEOM_example3.py b/src/GEOM_SWIG/GEOM_example3.py
index 2537a9fe5..15b41c946 100644
--- a/src/GEOM_SWIG/GEOM_example3.py
+++ b/src/GEOM_SWIG/GEOM_example3.py
@@ -27,19 +27,20 @@
# Module : GEOM
#
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
from time import sleep
import salome_ComponentGUI
-geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
-myBuilder = salome.myStudy.NewBuilder()
gg = salome.ImportComponentGUI("GEOM")
-BasicOp = geom.GetIBasicOperations(salome.myStudyId)
-PrimOp = geom.GetI3DPrimOperations(salome.myStudyId)
-InsertOp = geom.GetIInsertOperations(salome.myStudyId)
-TrsfOp = geom.GetITransformOperations(salome.myStudyId)
+BasicOp = geompy.GetIBasicOperations(salome.myStudyId)
+PrimOp = geompy.GetI3DPrimOperations(salome.myStudyId)
+InsertOp = geompy.GetIInsertOperations(salome.myStudyId)
+TrsfOp = geompy.GetITransformOperations(salome.myStudyId)
point0 = BasicOp.MakePointXYZ(0.,0.,0.)
pointz1 = BasicOp.MakePointXYZ(0.,0.,1.)
@@ -83,6 +84,7 @@ shapeList.append(torus2)
idList.append(id_torus1)
idList.append(id_torus2)
+print shapeList
cage = geompy.MakeCompound(shapeList)
id_cage = geompy.addToStudy(cage,"cage")
if not isinstance(gg, type(salome_ComponentGUI)):
diff --git a/src/GEOM_SWIG/GEOM_example4.py b/src/GEOM_SWIG/GEOM_example4.py
index 701d40b72..e92d45d96 100755
--- a/src/GEOM_SWIG/GEOM_example4.py
+++ b/src/GEOM_SWIG/GEOM_example4.py
@@ -24,30 +24,15 @@
# GEOM GEOM_SWIG : binding of C++ omplementaion with Python
# File : GEOM_example4.py
# Module : GEOM
-#import SMESH
-#import smeshpy
#
import salome
-from salome import sg
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
import math
-import geompy
-
-geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
-myBuilder = salome.myStudy.NewBuilder()
-#from geompy import gg
-
-#smeshgui = salome.ImportComponentGUI("SMESH")
-#smeshgui.Init(salome.myStudyId);
-
-ShapeTypeCompSolid = 1
-ShapeTypeSolid = 2
-ShapeTypeShell = 3
-ShapeTypeFace = 4
-ShapeTypeWire = 5
-ShapeTypeEdge = 6
-ShapeTypeVertex = 7
-
pi=math.pi
# ---------------------------------------------
diff --git a/src/GEOM_SWIG/GEOM_example5.py b/src/GEOM_SWIG/GEOM_example5.py
index 767596185..2ba66cc0c 100644
--- a/src/GEOM_SWIG/GEOM_example5.py
+++ b/src/GEOM_SWIG/GEOM_example5.py
@@ -27,12 +27,13 @@
# Module : GEOM
#
import salome
-import geompy
-
-geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
#Create Points
-BasicOp = geom.GetIBasicOperations(salome.myStudyId)
+BasicOp = geompy.GetIBasicOperations(salome.myStudyId)
Vertex1 = BasicOp.MakePointXYZ(0., 0., 0.)
Vertex2 = BasicOp.MakePointXYZ(100., 20., 30.)
Vertex3 = BasicOp.MakePointXYZ(150., 100., -25.)
diff --git a/src/GEOM_SWIG/GEOM_example6.py b/src/GEOM_SWIG/GEOM_example6.py
index e168d341c..9959d8ad5 100755
--- a/src/GEOM_SWIG/GEOM_example6.py
+++ b/src/GEOM_SWIG/GEOM_example6.py
@@ -24,7 +24,10 @@
# Module : GEOM
#
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
ind = 1
circlelist = []
diff --git a/src/GEOM_SWIG/GEOM_example7.py b/src/GEOM_SWIG/GEOM_example7.py
index fa7179665..fa5f3a677 100644
--- a/src/GEOM_SWIG/GEOM_example7.py
+++ b/src/GEOM_SWIG/GEOM_example7.py
@@ -22,10 +22,12 @@
# Author : Vadim SANDLER, Open CASCADE S.A.S. (vadim.sandler@opencascade.com)
# ---
#
-import salome
-import geompy
import os
+import salome
+salome.salome_init()
import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
data_dir = os.getenv('DATA_DIR')
if data_dir:
diff --git a/src/GEOM_SWIG/GEOM_moteur.py b/src/GEOM_SWIG/GEOM_moteur.py
index 436030004..de0141119 100644
--- a/src/GEOM_SWIG/GEOM_moteur.py
+++ b/src/GEOM_SWIG/GEOM_moteur.py
@@ -27,12 +27,12 @@
# Module : GEOM
#
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
import math
-geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
-myBuilder = salome.myStudy.NewBuilder()
-
#Variables modifiables
PosX = 0 #Position du cylindre dans l'espace
PosY = 0 #Il est oriente suivant Z
@@ -56,7 +56,7 @@ PosCour = PosZ + HauteurT * 4 / 7
PosRot = PosZ + 0.9 * HauteurT
#Points
-BasicOp = geom.GetIBasicOperations(salome.myStudyId)
+BasicOp = geompy.GetIBasicOperations(salome.myStudyId)
OO = BasicOp.MakePointXYZ(0, 0, 0)
P0 = BasicOp.MakePointXYZ(0, 0, 1)
P1 = BasicOp.MakePointXYZ(PosX, PosY, PosZ)
diff --git a/src/GEOM_SWIG/GEOM_shellSolid.py b/src/GEOM_SWIG/GEOM_shellSolid.py
index bc935d538..1972a6128 100755
--- a/src/GEOM_SWIG/GEOM_shellSolid.py
+++ b/src/GEOM_SWIG/GEOM_shellSolid.py
@@ -32,9 +32,10 @@
# -------
#
import salome
-import SALOMEDS
-
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# Interface with geometry
# -----------------------
@@ -42,8 +43,6 @@ import geompy
#geom = salome.lcc.FindOrLoadComponent("FactoryServer", "GEOM")
geomgui = salome.ImportComponentGUI("GEOM")
-geom = geompy
-
# Interface with study
# --------------------
@@ -58,23 +57,23 @@ def setName(obj):
def MakeVertex(x, y, z):
- v = geom.MakeVertex(x, y, z)
+ v = geompy.MakeVertex(x, y, z)
setName(v)
return v
def MakeEdge(v1, v2):
- e = geom.MakeEdge(v1, v2)
+ e = geompy.MakeEdge(v1, v2)
setName(e)
return e
def MakeArc(f, p, t):
- e = geom.MakeArc(f, p, t)
+ e = geompy.MakeArc(f, p, t)
setName(e)
return e
def MakeArcCenter(c, f, t):
p = fkl(c, f, t)
- e = geom.MakeArc(f, p, t)
+ e = geompy.MakeArc(f, p, t)
setName(e)
return e
@@ -89,8 +88,8 @@ def MakeQuadFace(e1, e2, e3, e4):
l.append(e2)
l.append(e3)
l.append(e4)
- w = geom.MakeWire(l)
- f = geom.MakeFace(w, 1)
+ w = geompy.MakeWire(l)
+ f = geompy.MakeFace(w, 1)
setName(f)
return f
@@ -112,8 +111,8 @@ def MakeQuadFaceVertex(v1, v2, v3, v4):
l.append(e)
e = MakeEdge(v4, v1)
l.append(e)
- w = geom.MakeWire(l)
- f = geom.MakeFace(w, 1)
+ w = geompy.MakeWire(l)
+ f = geompy.MakeFace(w, 1)
setName(f)
return f
@@ -131,11 +130,11 @@ def MakeHexaSolid(f1, f2, f3, f4, f5, f6):
l.append(f4)
l.append(f5)
l.append(f6)
- s = geom.MakeShell(l)
+ s = geompy.MakeShell(l)
# FKL: bad shell
l = []
l.append(s)
- s = geom.MakeSolid(l)
+ s = geompy.MakeSolid(l)
# FKL: MakeSolid crash
setName(s)
return s
@@ -155,8 +154,8 @@ def MakeRevolution(g, pt, ve, angle):
Creates a face by rotation of an edge with an angle around an axis defined by a point and a vector or
creates a solid by rotation of a face with an angle around an axis defined by a point and a vector
"""
- axis = geom.MakeAxisStruct(pt.x, pt.y, pt.z, ve.x, ve.y, ve.z)
- s = geom.MakeRevolution(g, axis, angle)
+ axis = geompy.MakeAxisStruct(pt.x, pt.y, pt.z, ve.x, ve.y, ve.z)
+ s = geompy.MakeRevolution(g, axis, angle)
setName(s)
return s
@@ -167,7 +166,7 @@ def MakeSewing(ls):
Creates a face by sewing common edges between a list of faces or
Creates a solid by sewing common faces between a list of solids
"""
- s = geom.MakeSewing(ls)
+ s = geompy.MakeSewing(ls)
setName(s)
return s
@@ -178,7 +177,7 @@ def MakeCommon(s1, s2):
Creates the common face between 2 faces or
Creates the common solid between 2 solids
"""
- s = geom.MakeBoolean(s1, s2, 1)
+ s = geompy.MakeBoolean(s1, s2, 1)
setName(s)
return s
@@ -188,7 +187,7 @@ def MakeFuse(s1, s2):
"""
Fuses 2 faces or 2 solids
"""
- s = geom.MakeBoolean(s1, s2, 3)
+ s = geompy.MakeBoolean(s1, s2, 3)
setName(s)
return s
@@ -198,7 +197,7 @@ def MakeCut(s1, s2):
"""
Cuts 2 faces or 2 solids
"""
- s = geom.MakeBoolean(s1, s2, 2)
+ s = geompy.MakeBoolean(s1, s2, 2)
setName(s)
return s
@@ -214,7 +213,7 @@ def MakePrism(s, v):
Creates a face defined by a edge and along a vector
Creates a solid defined by a face and along a vector
"""
- r = geom.MakePrism(s, point(0, 0, 0), v)
+ r = geompy.MakePrism(s, point(0, 0, 0), v)
setName(r)
return r
@@ -224,7 +223,7 @@ def MakeScaleTransform(s, center, factor):
"""
Creates a homothety of a geometric object
"""
- r = geom.MakeScaleTransform(s, center, factor)
+ r = geompy.MakeScaleTransform(s, center, factor)
setName(r)
return r
@@ -237,7 +236,7 @@ def MakeTranslation(s, vx, vy, vz):
"""
Translates a vertex, an edge, a face or a solid
"""
- r = geom.MakeTranslation(s, vx, vy, vz)
+ r = geompy.MakeTranslation(s, vx, vy, vz)
setName(r)
return r
@@ -247,8 +246,8 @@ def MakeRotation(g, pt, ve, angle):
"""
Creates a rotation of the geometric object with an angle around an axis defined by a point and a vector
"""
- axis = geom.MakeAxisStruct(pt.x, pt.y, pt.z, ve.x, ve.y, ve.z)
- s = geom.MakeRotation(g, axis, angle)
+ axis = geompy.MakeAxisStruct(pt.x, pt.y, pt.z, ve.x, ve.y, ve.z)
+ s = geompy.MakeRotation(g, axis, angle)
setName(s)
return s
@@ -275,7 +274,7 @@ def MakeMirrorByPlane(s, pt, ve):
Creates a symmetric object by plane symetry defined by a point and a normal vector
"""
p = plane(pt, ve)
- r = geom.MakeMirrorByplane(s, p)
+ r = geompy.MakeMirrorByplane(s, p)
setName(r)
return r
@@ -349,37 +348,35 @@ def CheckHexaSolid(s):
# ------------------
def point(x, y, z):
- p = geom.MakeVertex(x, y, z)
+ p = geompy.MakeVertex(x, y, z)
return p
def plane(pt, dir):
- p = geom.MakePlane(pt, d, 100)
+ p = geompy.MakePlane(pt, d, 100)
return p
# Solid
# -----
def MakeCylinder(center, dir, radius, height):
- s = geom.MakeCylinder(center, dir, radius, height)
+ s = geompy.MakeCylinder(center, dir, radius, height)
setName(s)
return s
def MakeBox(p1, p2):
- s = geom.MakeBoxTwoPnt(p1, p2)
+ s = geompy.MakeBoxTwoPnt(p1, p2)
setName(s)
return s
# Compound
# --------
-ShapeType = {"COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE":5, "EDGE":6, "VERTEX":7, "SHAPE":8}
-
def MakePartitionList(solids, tools):
"""
Creates a list of shape by a partition of a list of solids by a list of tools
"""
- p = geom.Partition(solids, tools, [], [], ShapeType["SHAPE"]);
- l = geom.SubShapeAll(p, ShapeType["SHAPE"])
+ p = geompy.Partition(solids, tools, [], [], geompy.ShapeType["SHAPE"]);
+ l = geompy.SubShapeAll(p, geompy.ShapeType["SHAPE"])
return l
def MakePartition(solids, tools):
@@ -392,25 +389,25 @@ def MakePartition(solids, tools):
return c
def BlockMakeMultiTranslation1D(shape, dir, step, times):
- m = geom.MakeMultiTranslation1D(shape, dir, step, times)
+ m = geompy.MakeMultiTranslation1D(shape, dir, step, times)
c = MakeGlueFaces(m, 1.e-5)
setName(c)
return c
def BlockMakeMultiTranslation2D(shape, dir1, step1, times1, dir2, step2, times2):
- m = geom.MakeMultiTranslation2D(shape, dir1, step1, times1, dir2, step2, times2)
+ m = geompy.MakeMultiTranslation2D(shape, dir1, step1, times1, dir2, step2, times2)
c = MakeGlueFaces(m, 1.e-5)
setName(c)
return c
def BlockMakeMultiRotation1D(shape, dir, point, times):
- m = geom.MakeMultiRotation1D(shape, dir, point, times)
+ m = geompy.MakeMultiRotation1D(shape, dir, point, times)
c = MakeGlueFaces(m, 1.e-5)
setName(c)
return c
def BlockMakeMultiRotation2D(shape, dir, point, angle, times1, step, times2):
- m = geom.MakeMultiRotation2D(shape, dir, point, angle, times1, step, times2)
+ m = geompy.MakeMultiRotation2D(shape, dir, point, angle, times1, step, times2)
c = MakeGlueFaces(m, 1.e-5)
setName(c)
return c
@@ -422,21 +419,21 @@ def MakeCompound(ls):
"""
Creates a compound defined by a list
"""
- c = geom.MakeCompound(ls)
+ c = geompy.MakeCompound(ls)
return c
def MakeSewingShape(s, eps):
"""
Creates a shape fully sewed
"""
- r = geom.MakeSewingShape(s, eps)
+ r = geompy.MakeSewingShape(s, eps)
return r
def MakeGlueFaces(s, eps):
"""
Touched faces are replaced by one
"""
- r = geom.MakeGlueFaces(s, eps)
+ r = geompy.MakeGlueFaces(s, eps)
return r
@@ -697,4 +694,4 @@ piece = MakeCompound(l)
# ------------
idpiece = addToStudy(piece, "Cubes2pyGibi")
-#geom.InsertOp.Export(piece,"piece.brep", "BREP")
+#geompy.InsertOp.Export(piece,"piece.brep", "BREP")
diff --git a/src/GEOM_SWIG/GEOM_tube_geom.py b/src/GEOM_SWIG/GEOM_tube_geom.py
index fe81b8419..7268dc050 100755
--- a/src/GEOM_SWIG/GEOM_tube_geom.py
+++ b/src/GEOM_SWIG/GEOM_tube_geom.py
@@ -31,7 +31,10 @@
# Geometrie du cas test
#
import salome
-from geompy import *
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
#
# base de l'assemblage
@@ -41,16 +44,16 @@ l_base = 150.
h_base = 75.
e_base = 6.
-base_bot = MakeBox(0.,0.,0.,L_base,l_base,e_base)
-base_top = MakeTranslation(base_bot,0.,0.,h_base-e_base)
-base_front = MakeBox(0,0,0,L_base,e_base,h_base)
-base_rear = MakeTranslation(base_front,0.,l_base,0.)
+base_bot = geompy.MakeBox(0.,0.,0.,L_base,l_base,e_base)
+base_top = geompy.MakeTranslation(base_bot,0.,0.,h_base-e_base)
+base_front = geompy.MakeBox(0,0,0,L_base,e_base,h_base)
+base_rear = geompy.MakeTranslation(base_front,0.,l_base,0.)
-tmp = MakeBoolean(base_top,base_rear,3)
-tmp = MakeBoolean(tmp,base_bot,3)
-base = MakeBoolean(tmp,base_front,3)
+tmp = geompy.MakeBoolean(base_top,base_rear,3)
+tmp = geompy.MakeBoolean(tmp,base_bot,3)
+base = geompy.MakeBoolean(tmp,base_front,3)
-addToStudy(base,"base")
+geompy.addToStudy(base,"base")
#
# traverse
#
@@ -59,103 +62,103 @@ h_trav = 300.
e_trav = 7.
marge = 15.
-flange_left = MakeBox(0.,0.,0,e_trav,L_trav,h_trav)
-flange_right = MakeTranslation(flange_left,L_trav-e_trav,0.,0.)
-flange_front = MakeBox(0.,0.,0,L_trav,e_trav,h_trav)
-flange_rear = MakeTranslation(flange_front,0.,L_trav-e_trav,0.)
+flange_left = geompy.MakeBox(0.,0.,0,e_trav,L_trav,h_trav)
+flange_right = geompy.MakeTranslation(flange_left,L_trav-e_trav,0.,0.)
+flange_front = geompy.MakeBox(0.,0.,0,L_trav,e_trav,h_trav)
+flange_rear = geompy.MakeTranslation(flange_front,0.,L_trav-e_trav,0.)
-tmp = MakeBoolean(flange_left,flange_rear,3)
-tmp = MakeBoolean(tmp,flange_right,3)
-flange = MakeBoolean(tmp,flange_front,3)
+tmp = geompy.MakeBoolean(flange_left,flange_rear,3)
+tmp = geompy.MakeBoolean(tmp,flange_right,3)
+flange = geompy.MakeBoolean(tmp,flange_front,3)
#
# left chamfer
#
import math
length = e_trav/math.sin(math.pi/4.)
-p1 = MakeVertex(0,0,0)
-p2 = MakeVertex(0,1,0)
-yaxis = MakeVector(p1, p2)
-cut_left = MakeBox(0.,-marge,0.,-length,L_trav+marge,length)
-cut_left = MakeRotation(cut_left,yaxis,-math.pi/4.)
-cut_left = MakeTranslation(cut_left,e_trav,0.,0.)
+p1 = geompy.MakeVertex(0,0,0)
+p2 = geompy.MakeVertex(0,1,0)
+yaxis = geompy.MakeVector(p1, p2)
+cut_left = geompy.MakeBox(0.,-marge,0.,-length,L_trav+marge,length)
+cut_left = geompy.MakeRotation(cut_left,yaxis,-math.pi/4.)
+cut_left = geompy.MakeTranslation(cut_left,e_trav,0.,0.)
#
# right chamfer
#
-symPlaneYZ = MakePlane(
- MakeVertex(L_trav/2.,0.,0.),
- MakeVector(p1,MakeVertex(1.,0.,0.)), 10000. )
-cut_right = MakeMirrorByPlane(cut_left,symPlaneYZ)
+symPlaneYZ = geompy.MakePlane(
+ geompy.MakeVertex(L_trav/2.,0.,0.),
+ geompy.MakeVector(p1,geompy.MakeVertex(1.,0.,0.)), 10000. )
+cut_right = geompy.MakeMirrorByPlane(cut_left,symPlaneYZ)
#
# front chamfer
#
-xaxis = MakeVector(p1,MakeVertex(1.,0.,0.))
-cut_front = MakeBox(-marge,0.,0.,L_trav+marge,length,length)
-cut_front = MakeRotation(cut_front,xaxis,3.*math.pi/4.)
-cut_front = MakeTranslation(cut_front,0.,e_trav,0.)
+xaxis = geompy.MakeVector(p1,geompy.MakeVertex(1.,0.,0.))
+cut_front = geompy.MakeBox(-marge,0.,0.,L_trav+marge,length,length)
+cut_front = geompy.MakeRotation(cut_front,xaxis,3.*math.pi/4.)
+cut_front = geompy.MakeTranslation(cut_front,0.,e_trav,0.)
#
# rear chamfer
#
-symPlaneXZ = MakePlane(
- MakeVertex(0.,L_trav/2.,0.),
- MakeVector(p1,MakeVertex(0.,1.,0.)), 10000. )
-cut_rear = MakeMirrorByPlane(cut_front,symPlaneXZ)
+symPlaneXZ = geompy.MakePlane(
+ geompy.MakeVertex(0.,L_trav/2.,0.),
+ geompy.MakeVector(p1,geompy.MakeVertex(0.,1.,0.)), 10000. )
+cut_rear = geompy.MakeMirrorByPlane(cut_front,symPlaneXZ)
#
# chamfer
#
-trav = MakeBoolean(flange,cut_left,2)
-trav = MakeBoolean(trav,cut_right,2)
-trav = MakeBoolean(trav,cut_front,2)
-trav = MakeBoolean(trav,cut_rear,2)
-trav = MakeTranslation(trav,
+trav = geompy.MakeBoolean(flange,cut_left,2)
+trav = geompy.MakeBoolean(trav,cut_right,2)
+trav = geompy.MakeBoolean(trav,cut_front,2)
+trav = geompy.MakeBoolean(trav,cut_rear,2)
+trav = geompy.MakeTranslation(trav,
L_base/2.-L_trav/2.,
l_base/2.-L_trav/2.,
h_base)
-addToStudy(trav,"trav")
+geompy.addToStudy(trav,"trav")
#
# Welding
#
-ground = MakeBox(-1000.,-1000.,0.,1000.,1000.,-1000.)
-weld_left = MakeBoolean(cut_left,ground,2)
-weld_right = MakeBoolean(cut_right,ground,2)
-weld_front = MakeBoolean(cut_front,ground,2)
-weld_rear = MakeBoolean(cut_rear,ground,2)
+ground = geompy.MakeBox(-1000.,-1000.,0.,1000.,1000.,-1000.)
+weld_left = geompy.MakeBoolean(cut_left,ground,2)
+weld_right = geompy.MakeBoolean(cut_right,ground,2)
+weld_front = geompy.MakeBoolean(cut_front,ground,2)
+weld_rear = geompy.MakeBoolean(cut_rear,ground,2)
#
# Assembly
#
-coarse_weld = MakeBoolean(weld_left,weld_rear,3)
-coarse_weld = MakeBoolean(coarse_weld,weld_right,3)
-coarse_weld = MakeBoolean(coarse_weld,weld_front,3)
+coarse_weld = geompy.MakeBoolean(weld_left,weld_rear,3)
+coarse_weld = geompy.MakeBoolean(coarse_weld,weld_right,3)
+coarse_weld = geompy.MakeBoolean(coarse_weld,weld_front,3)
#
# Cleaners
#
-left_cleaner = MakeBox(0.,-10*marge,0.,-10.*marge,10.*marge,10.*marge)
-left_cleaner = MakeRotation(left_cleaner,yaxis,math.pi/4.)
-left_cleaner = MakeTranslation(left_cleaner,-e_trav-2.*marge,0.,-2.*marge)
+left_cleaner = geompy.MakeBox(0.,-10*marge,0.,-10.*marge,10.*marge,10.*marge)
+left_cleaner = geompy.MakeRotation(left_cleaner,yaxis,math.pi/4.)
+left_cleaner = geompy.MakeTranslation(left_cleaner,-e_trav-2.*marge,0.,-2.*marge)
-right_cleaner = MakeMirrorByPlane(left_cleaner,symPlaneYZ)
+right_cleaner = geompy.MakeMirrorByPlane(left_cleaner,symPlaneYZ)
-front_cleaner = MakeBox(-10*marge,0.,0.,10.*marge,10.*marge,10.*marge)
-front_cleaner = MakeRotation(front_cleaner,xaxis,3.*math.pi/4.)
-front_cleaner = MakeTranslation(front_cleaner,0.,2.*marge-e_trav,2.*marge)
+front_cleaner = geompy.MakeBox(-10*marge,0.,0.,10.*marge,10.*marge,10.*marge)
+front_cleaner = geompy.MakeRotation(front_cleaner,xaxis,3.*math.pi/4.)
+front_cleaner = geompy.MakeTranslation(front_cleaner,0.,2.*marge-e_trav,2.*marge)
-rear_cleaner = MakeMirrorByPlane(front_cleaner,symPlaneXZ)
+rear_cleaner = geompy.MakeMirrorByPlane(front_cleaner,symPlaneXZ)
#
# Welding
#
-weld = MakeBoolean(coarse_weld,left_cleaner,2)
-weld = MakeBoolean(weld,rear_cleaner,2)
-weld = MakeBoolean(weld,right_cleaner,2)
-weld = MakeBoolean(weld,front_cleaner,2)
-weld = MakeTranslation(weld,
+weld = geompy.MakeBoolean(coarse_weld,left_cleaner,2)
+weld = geompy.MakeBoolean(weld,rear_cleaner,2)
+weld = geompy.MakeBoolean(weld,right_cleaner,2)
+weld = geompy.MakeBoolean(weld,front_cleaner,2)
+weld = geompy.MakeTranslation(weld,
L_base/2.-L_trav/2.,
l_base/2.-L_trav/2.,
h_base)
-weldId = addToStudy(weld,"weld")
+weldId = geompy.addToStudy(weld,"weld")
#
# Assembly
#
-assemblage = Partition([base ,weld ,trav])
-assemblageId = addToStudy(assemblage, "assemblage")
+assemblage = geompy.Partition([base ,weld ,trav])
+assemblageId = geompy.addToStudy(assemblage, "assemblage")
salome.sg.updateObjBrowser(1)
#
# Display
diff --git a/src/GEOM_SWIG/GEOM_tube_geom_gg2.py b/src/GEOM_SWIG/GEOM_tube_geom_gg2.py
index ee57b7b6c..02373dd73 100755
--- a/src/GEOM_SWIG/GEOM_tube_geom_gg2.py
+++ b/src/GEOM_SWIG/GEOM_tube_geom_gg2.py
@@ -30,8 +30,11 @@
#==============================================================================
# Geometrie du cas test
#
-from geompy import *
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
#
# base de l'assemblage
#
@@ -40,16 +43,16 @@ l_base = 150.
h_base = 75.
e_base = 6.
-base_bot = MakeBox(0.,0.,0.,L_base,l_base,e_base)
-base_top = MakeTranslation(base_bot,0.,0.,h_base-e_base)
-base_front = MakeBox(0,0,0,L_base,e_base,h_base)
-base_rear = MakeTranslation(base_front,0.,l_base,0.)
+base_bot = geompy.MakeBox(0.,0.,0.,L_base,l_base,e_base)
+base_top = geompy.MakeTranslation(base_bot,0.,0.,h_base-e_base)
+base_front = geompy.MakeBox(0,0,0,L_base,e_base,h_base)
+base_rear = geompy.MakeTranslation(base_front,0.,l_base,0.)
-tmp = MakeBoolean(base_top,base_rear,3)
-tmp = MakeBoolean(tmp,base_bot,3)
-base = MakeBoolean(tmp,base_front,3)
+tmp = geompy.MakeBoolean(base_top,base_rear,3)
+tmp = geompy.MakeBoolean(tmp,base_bot,3)
+base = geompy.MakeBoolean(tmp,base_front,3)
-baseId = addToStudy(base,"base")
+baseId = geompy.addToStudy(base,"base")
#
# traverse
#
@@ -58,112 +61,112 @@ h_trav = 300.
e_trav = 7.
marge = 15.
-flange_left = MakeBox(0.,0.,0,e_trav,L_trav,h_trav)
-flange_right = MakeTranslation(flange_left,L_trav-e_trav,0.,0.)
-flange_front = MakeBox(0.,0.,0,L_trav,e_trav,h_trav)
-flange_rear = MakeTranslation(flange_front,0.,L_trav-e_trav,0.)
+flange_left = geompy.MakeBox(0.,0.,0,e_trav,L_trav,h_trav)
+flange_right = geompy.MakeTranslation(flange_left,L_trav-e_trav,0.,0.)
+flange_front = geompy.MakeBox(0.,0.,0,L_trav,e_trav,h_trav)
+flange_rear = geompy.MakeTranslation(flange_front,0.,L_trav-e_trav,0.)
-tmp = MakeBoolean(flange_left,flange_rear,3)
-tmp = MakeBoolean(tmp,flange_right,3)
-flange = MakeBoolean(tmp,flange_front,3)
+tmp = geompy.MakeBoolean(flange_left,flange_rear,3)
+tmp = geompy.MakeBoolean(tmp,flange_right,3)
+flange = geompy.MakeBoolean(tmp,flange_front,3)
#
# left chamfer
#
import math
length = e_trav/math.sin(math.pi/4.)
-yaxis = MakeVectorDXDYDZ(0.,1.,0.)
-cut_left = MakeBox(0.,-marge,0.,-length,L_trav+marge,length)
-cut_left = MakeRotation(cut_left,yaxis,-math.pi/4.)
-cut_left = MakeTranslation(cut_left,e_trav,0.,0.)
+yaxis = geompy.MakeVectorDXDYDZ(0.,1.,0.)
+cut_left = geompy.MakeBox(0.,-marge,0.,-length,L_trav+marge,length)
+cut_left = geompy.MakeRotation(cut_left,yaxis,-math.pi/4.)
+cut_left = geompy.MakeTranslation(cut_left,e_trav,0.,0.)
#
# right chamfer
#
-symPlaneYZ = MakePlane(
- MakeVertex(L_trav/2.,0.,0.),
- MakeVectorDXDYDZ(1.,0.,0.), 10000. )
-cut_right = MakeMirrorByPlane(cut_left,symPlaneYZ)
+symPlaneYZ = geompy.MakePlane(
+ geompy.MakeVertex(L_trav/2.,0.,0.),
+ geompy.MakeVectorDXDYDZ(1.,0.,0.), 10000. )
+cut_right = geompy.MakeMirrorByPlane(cut_left,symPlaneYZ)
#
# front chamfer
#
-xaxis = MakeVectorDXDYDZ(1.,0.,0.)
-cut_front = MakeBox(-marge,0.,0.,L_trav+marge,length,length)
-cut_front = MakeRotation(cut_front,xaxis,3.*math.pi/4.)
-cut_front = MakeTranslation(cut_front,0.,e_trav,0.)
+xaxis = geompy.MakeVectorDXDYDZ(1.,0.,0.)
+cut_front = geompy.MakeBox(-marge,0.,0.,L_trav+marge,length,length)
+cut_front = geompy.MakeRotation(cut_front,xaxis,3.*math.pi/4.)
+cut_front = geompy.MakeTranslation(cut_front,0.,e_trav,0.)
#
# rear chamfer
#
-symPlaneXZ = MakePlane(
- MakeVertex(0.,L_trav/2.,0.),
- MakeVectorDXDYDZ(0.,1.,0.), 10000. )
-cut_rear = MakeMirrorByPlane(cut_front,symPlaneXZ)
+symPlaneXZ = geompy.MakePlane(
+ geompy.MakeVertex(0.,L_trav/2.,0.),
+ geompy.MakeVectorDXDYDZ(0.,1.,0.), 10000. )
+cut_rear = geompy.MakeMirrorByPlane(cut_front,symPlaneXZ)
#
# chamfer
#
-trav = MakeBoolean(flange,cut_left,2)
-trav = MakeBoolean(trav,cut_right,2)
-trav = MakeBoolean(trav,cut_front,2)
-trav = MakeBoolean(trav,cut_rear,2)
-trav = MakeTranslation(trav,
+trav = geompy.MakeBoolean(flange,cut_left,2)
+trav = geompy.MakeBoolean(trav,cut_right,2)
+trav = geompy.MakeBoolean(trav,cut_front,2)
+trav = geompy.MakeBoolean(trav,cut_rear,2)
+trav = geompy.MakeTranslation(trav,
L_base/2.-L_trav/2.,
l_base/2.-L_trav/2.,
h_base)
-travId = addToStudy(trav,"trav")
+travId = geompy.addToStudy(trav,"trav")
#
# Welding
#
-ground = MakeBox(-1000.,-1000.,0.,1000.,1000.,-1000.)
-weld_left = MakeBoolean(cut_left,ground,2)
-weld_right = MakeBoolean(cut_right,ground,2)
-weld_front = MakeBoolean(cut_front,ground,2)
-weld_rear = MakeBoolean(cut_rear,ground,2)
+ground = geompy.MakeBox(-1000.,-1000.,0.,1000.,1000.,-1000.)
+weld_left = geompy.MakeBoolean(cut_left,ground,2)
+weld_right = geompy.MakeBoolean(cut_right,ground,2)
+weld_front = geompy.MakeBoolean(cut_front,ground,2)
+weld_rear = geompy.MakeBoolean(cut_rear,ground,2)
#
# Assembly
#
-coarse_weld = MakeBoolean(weld_left,weld_rear,3)
-coarse_weld = MakeBoolean(coarse_weld,weld_right,3)
-coarse_weld = MakeBoolean(coarse_weld,weld_front,3)
+coarse_weld = geompy.MakeBoolean(weld_left,weld_rear,3)
+coarse_weld = geompy.MakeBoolean(coarse_weld,weld_right,3)
+coarse_weld = geompy.MakeBoolean(coarse_weld,weld_front,3)
#
# Cleaners
#
-left_cleaner = MakeBox(0.,-10*marge,0.,-10.*marge,10.*marge,10.*marge)
-left_cleaner = MakeRotation(left_cleaner,yaxis,math.pi/4.)
-left_cleaner = MakeTranslation(left_cleaner,-e_trav-2.*marge,0.,-2.*marge)
+left_cleaner = geompy.MakeBox(0.,-10*marge,0.,-10.*marge,10.*marge,10.*marge)
+left_cleaner = geompy.MakeRotation(left_cleaner,yaxis,math.pi/4.)
+left_cleaner = geompy.MakeTranslation(left_cleaner,-e_trav-2.*marge,0.,-2.*marge)
-right_cleaner = MakeMirrorByPlane(left_cleaner,symPlaneYZ)
+right_cleaner = geompy.MakeMirrorByPlane(left_cleaner,symPlaneYZ)
-front_cleaner = MakeBox(-10*marge,0.,0.,10.*marge,10.*marge,10.*marge)
-front_cleaner = MakeRotation(front_cleaner,xaxis,3.*math.pi/4.)
-front_cleaner = MakeTranslation(front_cleaner,0.,2.*marge-e_trav,2.*marge)
+front_cleaner = geompy.MakeBox(-10*marge,0.,0.,10.*marge,10.*marge,10.*marge)
+front_cleaner = geompy.MakeRotation(front_cleaner,xaxis,3.*math.pi/4.)
+front_cleaner = geompy.MakeTranslation(front_cleaner,0.,2.*marge-e_trav,2.*marge)
-rear_cleaner = MakeMirrorByPlane(front_cleaner,symPlaneXZ)
+rear_cleaner = geompy.MakeMirrorByPlane(front_cleaner,symPlaneXZ)
#
# Welding
#
-weld = MakeBoolean(coarse_weld,left_cleaner,2)
-weld = MakeBoolean(weld,rear_cleaner,2)
-weld = MakeBoolean(weld,right_cleaner,2)
-weld = MakeBoolean(weld,front_cleaner,2)
-weld = MakeTranslation(weld,
+weld = geompy.MakeBoolean(coarse_weld,left_cleaner,2)
+weld = geompy.MakeBoolean(weld,rear_cleaner,2)
+weld = geompy.MakeBoolean(weld,right_cleaner,2)
+weld = geompy.MakeBoolean(weld,front_cleaner,2)
+weld = geompy.MakeTranslation(weld,
L_base/2.-L_trav/2.,
l_base/2.-L_trav/2.,
h_base)
-weldId = addToStudy(weld,"weld")
+weldId = geompy.addToStudy(weld,"weld")
#
# Assembly
#
#assemblage = MakePartition([base.,weld.GetName()])
-assemblage = MakePartition([base,weld])
-addToStudy(assemblage, "base+weld")
+assemblage = geompy.MakePartition([base,weld])
+geompy.addToStudy(assemblage, "base+weld")
#print assemblage.GetName()
#print trav.GetName()
-#assemblage = MakePartition([assemblage.GetName(),trav.GetName()])
-assemblage = MakePartition([assemblage,trav])
-assemblageId = addToStudy(assemblage, "assemblage")
+#assemblage = geompy.MakePartition([assemblage.GetName(),trav.GetName()])
+assemblage = geompy.MakePartition([assemblage,trav])
+assemblageId = geompy.addToStudy(assemblage, "assemblage")
#
# Display
#
-gg = ImportComponentGUI("GEOM")
+gg = salome.ImportComponentGUI("GEOM")
import salome_ComponentGUI
if not isinstance(gg, type(salome_ComponentGUI)):
gg.initGeomGen()
diff --git a/src/GEOM_SWIG/GEOM_usinggeom.py b/src/GEOM_SWIG/GEOM_usinggeom.py
index b62e7ce75..9ae0924e9 100644
--- a/src/GEOM_SWIG/GEOM_usinggeom.py
+++ b/src/GEOM_SWIG/GEOM_usinggeom.py
@@ -26,7 +26,10 @@
# Author : Damien COQUERET, Open CASCADE
# Module : GEOM
#
-import geompy
+import salome
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
import math
import GEOM_TestAll
diff --git a/src/GEOM_SWIG/Makefile.am b/src/GEOM_SWIG/Makefile.am
index 551ec18c5..16d568ba4 100644
--- a/src/GEOM_SWIG/Makefile.am
+++ b/src/GEOM_SWIG/Makefile.am
@@ -35,6 +35,7 @@ include $(top_srcdir)/adm_local/unix/make_common_starter.am
dist_salomescript_DATA = \
geompy.py \
GEOM_Spanner.py \
+ GEOM_box.py \
GEOM_blocks.py \
GEOM_example.py \
GEOM_example2.py \
diff --git a/src/GEOM_SWIG/PAL_MESH_019_020_geometry.py b/src/GEOM_SWIG/PAL_MESH_019_020_geometry.py
index 72a71c35e..de26bc95a 100755
--- a/src/GEOM_SWIG/PAL_MESH_019_020_geometry.py
+++ b/src/GEOM_SWIG/PAL_MESH_019_020_geometry.py
@@ -27,8 +27,11 @@
#GUI test scenario :PAL-MESH-019 (geometry part), PAL-MESH-020 (geometry part)
#####################################################################################
#
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
#Points creation (2.2)
Vertex_1 = geompy.MakeVertex(0, 0, 0)
diff --git a/src/GEOM_SWIG/PAL_MESH_028_geometry.py b/src/GEOM_SWIG/PAL_MESH_028_geometry.py
index d6815151e..b61ddcbbc 100755
--- a/src/GEOM_SWIG/PAL_MESH_028_geometry.py
+++ b/src/GEOM_SWIG/PAL_MESH_028_geometry.py
@@ -27,12 +27,15 @@
#GUI test scenario :PAL-MESH-028 (geometry part)
#####################################################################
#
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
+
import os
#Initialization
-salome.salome_init(1)
#Points construction (2.1)
Vertices = [geompy.MakeVertex(0, 0, 0), geompy.MakeVertex(200, 0, 0), geompy.MakeVertex(200, 200, 0), geompy.MakeVertex(0, 200, 0), geompy.MakeVertex(50, 50, 200), geompy.MakeVertex(150, 50, 200), geompy.MakeVertex(150, 150, 200), geompy.MakeVertex(50, 150, 200)]
diff --git a/src/GEOM_SWIG/PAL_MESH_030_geometry.py b/src/GEOM_SWIG/PAL_MESH_030_geometry.py
index 8480121c3..c93670835 100755
--- a/src/GEOM_SWIG/PAL_MESH_030_geometry.py
+++ b/src/GEOM_SWIG/PAL_MESH_030_geometry.py
@@ -28,7 +28,10 @@
#==============================================================================
#
import salome
-import geompy
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
# Stage 2: "Creation of geometry"
diff --git a/src/GEOM_SWIG/PAL_MESH_033_geometry.py b/src/GEOM_SWIG/PAL_MESH_033_geometry.py
index d624639c6..77ed94c1a 100755
--- a/src/GEOM_SWIG/PAL_MESH_033_geometry.py
+++ b/src/GEOM_SWIG/PAL_MESH_033_geometry.py
@@ -27,8 +27,11 @@
#GUI test scenario :PAL-MESH-033 (geometry part)
#####################################################################
#
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
#Points creation (2.2)
Vertex_1 = geompy.MakeVertex(0, 0, 0)
diff --git a/src/GEOM_SWIG/PAL_MESH_035_geometry.py b/src/GEOM_SWIG/PAL_MESH_035_geometry.py
index 9b3a28054..d32a602cc 100755
--- a/src/GEOM_SWIG/PAL_MESH_035_geometry.py
+++ b/src/GEOM_SWIG/PAL_MESH_035_geometry.py
@@ -27,8 +27,11 @@
#GUI test scenario :PAL-MESH-035 (geometry part)
#####################################################################
#
-import geompy
import salome
+salome.salome_init()
+import GEOM
+from salome.geom import geomBuilder
+geompy = geomBuilder.New(salome.myStudy)
#Box creation (2.2)
Box_1 = geompy.MakeBoxDXDYDZ(200, 400, 300)
diff --git a/src/GEOM_SWIG/batchmode_geompy.py b/src/GEOM_SWIG/batchmode_geompy.py
deleted file mode 100644
index 0dfacfaaf..000000000
--- a/src/GEOM_SWIG/batchmode_geompy.py
+++ /dev/null
@@ -1,30 +0,0 @@
-# -*- coding: iso-8859-1 -*-
-# Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE
-#
-# Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
-# CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
-#
-# This library is free software; you can redistribute it and/or
-# modify it under the terms of the GNU Lesser General Public
-# License as published by the Free Software Foundation; either
-# version 2.1 of the License.
-#
-# This library is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-# Lesser General Public License for more details.
-#
-# You should have received a copy of the GNU Lesser General Public
-# License along with this library; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-#
-# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
-#
-
-# GEOM GEOM_SWIG : binding of C++ implementaion with Python
-# File : batchmode_geompy.py
-# Author : Paul RASCLE, EDF
-# Module : GEOM
-# From Salome version 3.2.0 geompy package suits for work in batch mode
-#
-from geompy import *
diff --git a/src/GEOM_SWIG/geomBuilder.py b/src/GEOM_SWIG/geomBuilder.py
index b8b86e39a..7b39d5f2a 100644
--- a/src/GEOM_SWIG/geomBuilder.py
+++ b/src/GEOM_SWIG/geomBuilder.py
@@ -199,11 +199,6 @@ import os
from salome.geom.gsketcher import Sketcher3D
-## Enumeration ShapeType as a dictionary. \n
-## Topological types of shapes (like Open Cascade types). See GEOM::shape_type for details.
-# @ingroup l1_geomBuilder_auxiliary
-ShapeType = {"AUTO":-1, "COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE":5, "EDGE":6, "VERTEX":7, "SHAPE":8}
-
# service function
def _toListOfNames(_names, _size=-1):
l = []
@@ -501,6 +496,11 @@ created = False
class geomBuilder(object, GEOM._objref_GEOM_Gen):
+ ## Enumeration ShapeType as a dictionary. \n
+ ## Topological types of shapes (like Open Cascade types). See GEOM::shape_type for details.
+ # @ingroup l1_geomBuilder_auxiliary
+ ShapeType = {"AUTO":-1, "COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE":5, "EDGE":6, "VERTEX":7, "SHAPE":8}
+
def __new__(cls):
global engine
global geom
@@ -4259,7 +4259,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
Quantity of solids.
"""
# Example: see GEOM_TestOthers.py
- nb_solids = self.ShapesOp.NumberOfSubShapes(theShape, ShapeType["SOLID"])
+ nb_solids = self.ShapesOp.NumberOfSubShapes(theShape, self.ShapeType["SOLID"])
RaiseIfFailed("NumberOfSolids", self.ShapesOp)
return nb_solids
@@ -6644,7 +6644,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
New GEOM.GEOM_Object, containing the result shapes.
"""
# Example: see GEOM_TestAll.py
- if Limit == ShapeType["AUTO"]:
+ if Limit == self.ShapeType["AUTO"]:
# automatic detection of the most appropriate shape limit type
lim = GEOM.SHAPE
for s in ListShapes: lim = min( lim, s.GetMaxShapeType() )
@@ -6692,7 +6692,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
Returns:
New GEOM.GEOM_Object, containing the result shapes.
"""
- if Limit == ShapeType["AUTO"]:
+ if Limit == self.ShapeType["AUTO"]:
# automatic detection of the most appropriate shape limit type
lim = GEOM.SHAPE
for s in ListShapes: lim = min( lim, s.GetMaxShapeType() )
@@ -8232,7 +8232,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
# Example: see GEOM_TestAll.py
theR,Parameters = ParseParameters(theR)
anObj = None
- if theShapeType == ShapeType["EDGE"]:
+ if theShapeType == self.ShapeType["EDGE"]:
anObj = self.LocalOp.MakeFilletEdges(theShape, theR, theListShapes)
RaiseIfFailed("MakeFilletEdges", self.LocalOp)
else:
@@ -8259,7 +8259,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
"""
theR1,theR2,Parameters = ParseParameters(theR1,theR2)
anObj = None
- if theShapeType == ShapeType["EDGE"]:
+ if theShapeType == self.ShapeType["EDGE"]:
anObj = self.LocalOp.MakeFilletEdgesR1R2(theShape, theR1, theR2, theListShapes)
RaiseIfFailed("MakeFilletEdgesR1R2", self.LocalOp)
else:
@@ -8636,7 +8636,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
# Example: see GEOM_TestOthers.py
anObj = None
# note: auto-publishing is done in self.MakeChamferEdge() or self.MakeChamferFaces()
- if aShapeType == ShapeType["EDGE"]:
+ if aShapeType == self.ShapeType["EDGE"]:
anObj = self.MakeChamferEdge(aShape,d1,d2,ListShape[0],ListShape[1],theName)
else:
anObj = self.MakeChamferFaces(aShape,d1,d2,ListShape,theName)
@@ -9361,11 +9361,11 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
"""
# Example: see GEOM_TestMeasures.py
aDict = {}
- for typeSh in ShapeType:
+ for typeSh in self.ShapeType:
if typeSh in ( "AUTO", "SHAPE" ): continue
- listSh = self.SubShapeAllIDs(theShape, ShapeType[typeSh])
+ listSh = self.SubShapeAllIDs(theShape, self.ShapeType[typeSh])
Nb = len(listSh)
- if EnumToLong(theShape.GetShapeType()) == ShapeType[typeSh]:
+ if EnumToLong(theShape.GetShapeType()) == self.ShapeType[typeSh]:
Nb = Nb + 1
pass
aDict[typeSh] = Nb
@@ -9481,7 +9481,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
New GEOM.GEOM_Object, containing the created vertex.
"""
# Example: see GEOM_TestMeasures.py
- nb_vert = self.ShapesOp.NumberOfSubShapes(theShape, ShapeType["VERTEX"])
+ nb_vert = self.ShapesOp.NumberOfSubShapes(theShape, self.ShapeType["VERTEX"])
# note: auto-publishing is done in self.GetVertexByIndex()
anObj = self.GetVertexByIndex(theShape, (nb_vert-1), theName)
RaiseIfFailed("GetLastVertex", self.MeasuOp)
@@ -11426,7 +11426,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
Returns:
a newly created GEOM group of edges.
"""
- edges = self.SubShapeAll(theShape, ShapeType["EDGE"])
+ edges = self.SubShapeAll(theShape, self.ShapeType["EDGE"])
edges_in_range = []
for edge in edges:
Props = self.BasicProperties(edge)
@@ -11444,7 +11444,7 @@ class geomBuilder(object, GEOM._objref_GEOM_Gen):
return None
# note: auto-publishing is done in self.CreateGroup()
- group_edges = self.CreateGroup(theShape, ShapeType["EDGE"], theName)
+ group_edges = self.CreateGroup(theShape, self.ShapeType["EDGE"], theName)
self.UnionList(group_edges, edges_in_range)
return group_edges
@@ -11965,7 +11965,36 @@ import omniORB
# Register the new proxy for GEOM_Gen
omniORB.registerObjref(GEOM._objref_GEOM_Gen._NP_RepositoryId, geomBuilder)
+## Create a new geomBuilder instance.The geomBuilder class provides the Python
+# interface to GEOM operations.
+#
+# Typical use is:
+# \code
+# import salome
+# salome.salome_init()
+# from salome.geom import geomBuilder
+# geompy = geomBuilder.New(salome.myStudy)
+# \endcode
+# @param study SALOME study, generally obtained by salome.myStudy.
+# @param instance CORBA proxy of GEOM Engine. If None, the default Engine is used.
+# @return geomBuilder instance
def New( study, instance=None):
+ """
+ Create a new geomBuilder instance.The geomBuilder class provides the Python
+ interface to GEOM operations.
+
+ Typical use is:
+ import salome
+ salome.salome_init()
+ from salome.geom import geomBuilder
+ geompy = geomBuilder.New(salome.myStudy)
+
+ Parameters:
+ study SALOME study, generally obtained by salome.myStudy.
+ instance CORBA proxy of GEOM Engine. If None, the default Engine is used.
+ Returns:
+ geomBuilder instance
+ """
#print "New geomBuilder ", study, instance
global engine
global geom
diff --git a/src/GEOM_SWIG/geompyDC.py b/src/GEOM_SWIG/geompyDC.py
deleted file mode 100644
index 78ba5dab7..000000000
--- a/src/GEOM_SWIG/geompyDC.py
+++ /dev/null
@@ -1,12034 +0,0 @@
-# -*- coding: iso-8859-1 -*-
-# Copyright (C) 2007-2012 CEA/DEN, EDF R&D, OPEN CASCADE
-#
-# This library is free software; you can redistribute it and/or
-# modify it under the terms of the GNU Lesser General Public
-# License as published by the Free Software Foundation; either
-# version 2.1 of the License.
-#
-# This library is distributed in the hope that it will be useful,
-# but WITHOUT ANY WARRANTY; without even the implied warranty of
-# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
-# Lesser General Public License for more details.
-#
-# You should have received a copy of the GNU Lesser General Public
-# License along with this library; if not, write to the Free Software
-# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
-#
-# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
-#
-
-# GEOM GEOM_SWIG : binding of C++ implementation with Python
-# File : geompyDC.py
-# Author : Paul RASCLE, EDF
-# Module : GEOM
-
-"""
- \namespace geompyDC
- \brief Module geompyDC
-"""
-
-##
-## @defgroup l1_publish_data Publishing results in SALOME study
-## @{
-##
-## @details
-##
-## By default, all functions of geompy.py Python interface do not publish
-## resulting geometrical objects. This can be done in the Python script
-## by means of geompy.addToStudy() or geompy.addToStudyInFather()
-## functions.
-##
-## However, it is possible to publish result data in the study
-## automatically. For this, almost each function of geompy.py module has
-## an additional @a theName parameter (@c None by default).
-## As soon as non-empty string value is passed to this parameter,
-## the result object is published in the study automatically.
-##
-## For example,
-##
-## @code
-## box = geompy.MakeBoxDXDYDZ(100, 100, 100) # box is not published in the study yet
-## geompy.addToStudy(box, "box") # explicit publishing
-## @endcode
-##
-## can be replaced by one-line instruction
-##
-## @code
-## box = geompy.MakeBoxDXDYDZ(100, 100, 100, theName="box") # box is published in the study with "box" name
-## @endcode
-##
-## ... or simply
-##
-## @code
-## box = geompy.MakeBoxDXDYDZ(100, 100, 100, "box") # box is published in the study with "box" name
-## @endcode
-##
-## Note, that some functions produce more than one geometrical objects. For example,
-## geompy.GetNonBlocks() function returns two objects: group of all non-hexa solids and group of
-## all non-quad faces. For such functions it is possible to specify separate names for results.
-##
-## For example
-##
-## @code
-## # create and publish cylinder
-## cyl = geompy.MakeCylinderRH(100, 100, "cylinder")
-## # get non blocks from cylinder
-## g1, g2 = geompy.GetNonBlocks(cyl, "nonblock")
-## @endcode
-##
-## Above example will publish both result compounds (first with non-hexa solids and
-## second with non-quad faces) as two items, both named "nonblock".
-## However, if second command is invoked as
-##
-## @code
-## g1, g2 = geompy.GetNonBlocks(cyl, ("nonhexa", "nonquad"))
-## @endcode
-##
-## ... the first compound will be published with "nonhexa" name, and second will be named "nonquad".
-##
-## Automatic publication of all results can be also enabled/disabled by means of the function
-## geompy.addToStudyAuto(). The automatic publishing is managed by the numeric parameter passed
-## to this function:
-## - if @a maxNbSubShapes = 0, automatic publishing is disabled.
-## - if @a maxNbSubShapes = -1 (default), automatic publishing is enabled and
-## maximum number of sub-shapes allowed for publishing is unlimited; any negative
-## value passed as parameter has the same effect.
-## - if @a maxNbSubShapes is any positive value, automatic publishing is enabled and
-## maximum number of sub-shapes allowed for publishing is set to specified value.
-##
-## When automatic publishing is enabled, you even do not need to pass @a theName parameter
-## to the functions creating objects, instead default names will be used. However, you
-## can always change the behavior, by passing explicit name to the @a theName parameter
-## and it will be used instead default one.
-## The publishing of the collections of objects will be done according to the above
-## mentioned rules (maximum allowed number of sub-shapes).
-##
-## For example:
-##
-## @code
-## geompy.addToStudyAuto() # enable automatic publication
-## box = geompy.MakeBoxDXDYDZ(100, 100, 100)
-## # the box is created and published in the study with default name
-## geompy.addToStudyAuto(5) # set max allowed number of sub-shapes to 5
-## vertices = geompy.SubShapeAll(box, geompy.ShapeType['VERTEX'])
-## # only 5 first vertices will be published, with default names
-## print len(vertices)
-## # note, that result value still containes all 8 vertices
-## geompy.addToStudyAuto(-1) # disable automatic publication
-## @endcode
-##
-## This feature can be used, for example, for debugging purposes.
-##
-## @note
-## - Use automatic publication feature with caution. When it is enabled, any function of geompy.py module
-## publishes the results in the study, that can lead to the huge size of the study data tree.
-## For example, repeating call of geompy.SubShapeAll() command on the same main shape each time will
-## publish all child objects, that will lead to a lot of duplicated items in the study.
-## - Sub-shapes are automatically published as child items of the parent main shape in the study if main
-## shape was also published before. Otherwise, sub-shapes are published as top-level objects.
-## - Not that some functions of geompy.py module do not have @theName parameter (and, thus, do not support
-## automatic publication). For example, some transformation operations like geompy.TranslateDXDYDZ().
-## Refer to the documentation to check if some function has such possibility.
-##
-## @}
-
-
-## @defgroup l1_geompy_auxiliary Auxiliary data structures and methods
-
-## @defgroup l1_geompyDC_purpose All package methods, grouped by their purpose
-## @{
-## @defgroup l2_import_export Importing/exporting geometrical objects
-## @defgroup l2_creating Creating geometrical objects
-## @{
-## @defgroup l3_basic_go Creating Basic Geometric Objects
-## @{
-## @defgroup l4_curves Creating Curves
-
-## @}
-## @defgroup l3_3d_primitives Creating 3D Primitives
-## @defgroup l3_complex Creating Complex Objects
-## @defgroup l3_groups Working with groups
-## @defgroup l3_blocks Building by blocks
-## @{
-## @defgroup l4_blocks_measure Check and Improve
-
-## @}
-## @defgroup l3_sketcher Sketcher
-## @defgroup l3_advanced Creating Advanced Geometrical Objects
-## @{
-## @defgroup l4_decompose Decompose objects
-## @defgroup l4_decompose_d Decompose objects deprecated methods
-## @defgroup l4_access Access to sub-shapes by their unique IDs inside the main shape
-## @defgroup l4_obtain Access to sub-shapes by a criteria
-## @defgroup l4_advanced Advanced objects creation functions
-
-## @}
-
-## @}
-## @defgroup l2_transforming Transforming geometrical objects
-## @{
-## @defgroup l3_basic_op Basic Operations
-## @defgroup l3_boolean Boolean Operations
-## @defgroup l3_transform Transformation Operations
-## @defgroup l3_transform_d Transformation Operations deprecated methods
-## @defgroup l3_local Local Operations (Fillet, Chamfer and other Features)
-## @defgroup l3_blocks_op Blocks Operations
-## @defgroup l3_healing Repairing Operations
-## @defgroup l3_restore_ss Restore presentation parameters and a tree of sub-shapes
-
-## @}
-## @defgroup l2_measure Using measurement tools
-
-## @}
-
-# initialize SALOME session in try/except block
-# to avoid problems in some cases, e.g. when generating documentation
-try:
- import salome
- salome.salome_init()
- from salome import *
-except:
- pass
-
-from salome_notebook import *
-
-import GEOM
-import math
-import os
-
-from gsketcher import Sketcher3D
-
-## Enumeration ShapeType as a dictionary. \n
-## Topological types of shapes (like Open Cascade types). See GEOM::shape_type for details.
-# @ingroup l1_geompyDC_auxiliary
-ShapeType = {"AUTO":-1, "COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE":5, "EDGE":6, "VERTEX":7, "SHAPE":8}
-
-# service function
-def _toListOfNames(_names, _size=-1):
- l = []
- import types
- if type(_names) in [types.ListType, types.TupleType]:
- for i in _names: l.append(i)
- elif _names:
- l.append(_names)
- if l and len(l) < _size:
- for i in range(len(l), _size): l.append("%s_%d"%(l[0],i))
- return l
-
-## Raise an Error, containing the Method_name, if Operation is Failed
-## @ingroup l1_geompyDC_auxiliary
-def RaiseIfFailed (Method_name, Operation):
- if Operation.IsDone() == 0 and Operation.GetErrorCode() != "NOT_FOUND_ANY":
- raise RuntimeError, Method_name + " : " + Operation.GetErrorCode()
-
-## Return list of variables value from salome notebook
-## @ingroup l1_geompyDC_auxiliary
-def ParseParameters(*parameters):
- Result = []
- StringResult = []
- for parameter in parameters:
- if isinstance(parameter, list):
- lResults = ParseParameters(*parameter)
- if len(lResults) > 0:
- Result.append(lResults[:-1])
- StringResult += lResults[-1].split(":")
- pass
- pass
- else:
- if isinstance(parameter,str):
- if notebook.isVariable(parameter):
- Result.append(notebook.get(parameter))
- else:
- raise RuntimeError, "Variable with name '" + parameter + "' doesn't exist!!!"
- pass
- else:
- Result.append(parameter)
- pass
- StringResult.append(str(parameter))
- pass
- pass
- if Result:
- Result.append(":".join(StringResult))
- else:
- Result = ":".join(StringResult)
- return Result
-
-## Return list of variables value from salome notebook
-## @ingroup l1_geompyDC_auxiliary
-def ParseList(list):
- Result = []
- StringResult = ""
- for parameter in list:
- if isinstance(parameter,str) and notebook.isVariable(parameter):
- Result.append(str(notebook.get(parameter)))
- pass
- else:
- Result.append(str(parameter))
- pass
-
- StringResult = StringResult + str(parameter)
- StringResult = StringResult + ":"
- pass
- StringResult = StringResult[:len(StringResult)-1]
- return Result, StringResult
-
-## Return list of variables value from salome notebook
-## @ingroup l1_geompyDC_auxiliary
-def ParseSketcherCommand(command):
- Result = ""
- StringResult = ""
- sections = command.split(":")
- for section in sections:
- parameters = section.split(" ")
- paramIndex = 1
- for parameter in parameters:
- if paramIndex > 1 and parameter.find("'") != -1:
- parameter = parameter.replace("'","")
- if notebook.isVariable(parameter):
- Result = Result + str(notebook.get(parameter)) + " "
- pass
- else:
- raise RuntimeError, "Variable with name '" + parameter + "' doesn't exist!!!"
- pass
- pass
- else:
- Result = Result + str(parameter) + " "
- pass
- if paramIndex > 1:
- StringResult = StringResult + parameter
- StringResult = StringResult + ":"
- pass
- paramIndex = paramIndex + 1
- pass
- Result = Result[:len(Result)-1] + ":"
- pass
- Result = Result[:len(Result)-1]
- return Result, StringResult
-
-## Helper function which can be used to pack the passed string to the byte data.
-## Only '1' an '0' symbols are valid for the string. The missing bits are replaced by zeroes.
-## If the string contains invalid symbol (neither '1' nor '0'), the function raises an exception.
-## For example,
-## \code
-## val = PackData("10001110") # val = 0xAE
-## val = PackData("1") # val = 0x80
-## \endcode
-## @param data unpacked data - a string containing '1' and '0' symbols
-## @return data packed to the byte stream
-## @ingroup l1_geompyDC_auxiliary
-def PackData(data):
- """
- Helper function which can be used to pack the passed string to the byte data.
- Only '1' an '0' symbols are valid for the string. The missing bits are replaced by zeroes.
- If the string contains invalid symbol (neither '1' nor '0'), the function raises an exception.
-
- Parameters:
- data unpacked data - a string containing '1' and '0' symbols
-
- Returns:
- data packed to the byte stream
-
- Example of usage:
- val = PackData("10001110") # val = 0xAE
- val = PackData("1") # val = 0x80
- """
- bytes = len(data)/8
- if len(data)%8: bytes += 1
- res = ""
- for b in range(bytes):
- d = data[b*8:(b+1)*8]
- val = 0
- for i in range(8):
- val *= 2
- if i < len(d):
- if d[i] == "1": val += 1
- elif d[i] != "0":
- raise "Invalid symbol %s" % d[i]
- pass
- pass
- res += chr(val)
- pass
- return res
-
-## Read bitmap texture from the text file.
-## In that file, any non-zero symbol represents '1' opaque pixel of the bitmap.
-## A zero symbol ('0') represents transparent pixel of the texture bitmap.
-## The function returns width and height of the pixmap in pixels and byte stream representing
-## texture bitmap itself.
-##
-## This function can be used to read the texture to the byte stream in order to pass it to
-## the AddTexture() function of geompyDC class.
-## For example,
-## \code
-## import geompyDC
-## geompy = geompyDC.geomInstance(salome.myStudy)
-## texture = geompy.readtexture('mytexture.dat')
-## texture = geompy.AddTexture(*texture)
-## obj.SetMarkerTexture(texture)
-## \endcode
-## @param fname texture file name
-## @return sequence of tree values: texture's width, height in pixels and its byte stream
-## @ingroup l1_geompyDC_auxiliary
-def ReadTexture(fname):
- """
- Read bitmap texture from the text file.
- In that file, any non-zero symbol represents '1' opaque pixel of the bitmap.
- A zero symbol ('0') represents transparent pixel of the texture bitmap.
- The function returns width and height of the pixmap in pixels and byte stream representing
- texture bitmap itself.
- This function can be used to read the texture to the byte stream in order to pass it to
- the AddTexture() function of geompyDC class.
-
- Parameters:
- fname texture file name
-
- Returns:
- sequence of tree values: texture's width, height in pixels and its byte stream
-
- Example of usage:
- import geompyDC
- geompy = geompyDC.geomInstance(salome.myStudy)
- texture = geompy.readtexture('mytexture.dat')
- texture = geompy.AddTexture(*texture)
- obj.SetMarkerTexture(texture)
- """
- try:
- f = open(fname)
- lines = [ l.strip() for l in f.readlines()]
- f.close()
- maxlen = 0
- if lines: maxlen = max([len(x) for x in lines])
- lenbytes = maxlen/8
- if maxlen%8: lenbytes += 1
- bytedata=""
- for line in lines:
- if len(line)%8:
- lenline = (len(line)/8+1)*8
- pass
- else:
- lenline = (len(line)/8)*8
- pass
- for i in range(lenline/8):
- byte=""
- for j in range(8):
- if i*8+j < len(line) and line[i*8+j] != "0": byte += "1"
- else: byte += "0"
- pass
- bytedata += PackData(byte)
- pass
- for i in range(lenline/8, lenbytes):
- bytedata += PackData("0")
- pass
- return lenbytes*8, len(lines), bytedata
- except:
- pass
- return 0, 0, ""
-
-## Returns a long value from enumeration type
-# Can be used for CORBA enumerator types like GEOM.shape_type
-# @param theItem enumeration type
-# @ingroup l1_geompyDC_auxiliary
-def EnumToLong(theItem):
- """
- Returns a long value from enumeration type
- Can be used for CORBA enumerator types like geompyDC.ShapeType
-
- Parameters:
- theItem enumeration type
- """
- ret = theItem
- if hasattr(theItem, "_v"): ret = theItem._v
- return ret
-
-## Kinds of shape in terms of GEOM.GEOM_IKindOfShape.shape_kind enumeration
-# and a list of parameters, describing the shape.
-# List of parameters, describing the shape:
-# - COMPOUND: [nb_solids nb_faces nb_edges nb_vertices]
-# - COMPSOLID: [nb_solids nb_faces nb_edges nb_vertices]
-#
-# - SHELL: [info.CLOSED / info.UNCLOSED nb_faces nb_edges nb_vertices]
-#
-# - WIRE: [info.CLOSED / info.UNCLOSED nb_edges nb_vertices]
-#
-# - SPHERE: [xc yc zc R]
-# - CYLINDER: [xb yb zb dx dy dz R H]
-# - BOX: [xc yc zc ax ay az]
-# - ROTATED_BOX: [xc yc zc zx zy zz xx xy xz ax ay az]
-# - TORUS: [xc yc zc dx dy dz R_1 R_2]
-# - CONE: [xb yb zb dx dy dz R_1 R_2 H]
-# - POLYHEDRON: [nb_faces nb_edges nb_vertices]
-# - SOLID: [nb_faces nb_edges nb_vertices]
-#
-# - SPHERE2D: [xc yc zc R]
-# - CYLINDER2D: [xb yb zb dx dy dz R H]
-# - TORUS2D: [xc yc zc dx dy dz R_1 R_2]
-# - CONE2D: [xc yc zc dx dy dz R_1 R_2 H]
-# - DISK_CIRCLE: [xc yc zc dx dy dz R]
-# - DISK_ELLIPSE: [xc yc zc dx dy dz R_1 R_2]
-# - POLYGON: [xo yo zo dx dy dz nb_edges nb_vertices]
-# - PLANE: [xo yo zo dx dy dz]
-# - PLANAR: [xo yo zo dx dy dz nb_edges nb_vertices]
-# - FACE: [nb_edges nb_vertices]
-#
-# - CIRCLE: [xc yc zc dx dy dz R]
-# - ARC_CIRCLE: [xc yc zc dx dy dz R x1 y1 z1 x2 y2 z2]
-# - ELLIPSE: [xc yc zc dx dy dz R_1 R_2]
-# - ARC_ELLIPSE: [xc yc zc dx dy dz R_1 R_2 x1 y1 z1 x2 y2 z2]
-# - LINE: [xo yo zo dx dy dz]
-# - SEGMENT: [x1 y1 z1 x2 y2 z2]
-# - EDGE: [nb_vertices]
-#
-# - VERTEX: [x y z]
-# @ingroup l1_geompyDC_auxiliary
-kind = GEOM.GEOM_IKindOfShape
-
-## Information about closed/unclosed state of shell or wire
-# @ingroup l1_geompyDC_auxiliary
-class info:
- """
- Information about closed/unclosed state of shell or wire
- """
- UNKNOWN = 0
- CLOSED = 1
- UNCLOSED = 2
-
-# Warning: geom is a singleton
-geom = None
-engine = None
-doLcc = False
-created = False
-
-class geompyDC(object, GEOM._objref_GEOM_Gen):
-
- def __new__(cls):
- global engine
- global geom
- global doLcc
- global created
- print "__new__ ", engine, geom, doLcc, created
- if geom is None:
- # geom engine is either retrieved from engine, or created
- geom = engine
- # Following test avoids a recursive loop
- if doLcc:
- if geom is not None:
- # geom engine not created: existing engine found
- doLcc = False
- if doLcc and not created:
- doLcc = False
- created = True
- # FindOrLoadComponent called:
- # 1. CORBA resolution of server
- # 2. the __new__ method is called again
- print "FindOrLoadComponent ", engine, geom, doLcc, created
- geom = lcc.FindOrLoadComponent( "FactoryServer", "GEOM" )
- else:
- # FindOrLoadComponent not called
- if geom is None:
- # geompyDC instance is created from lcc.FindOrLoadComponent
- created = True
- print "super ", engine, geom, doLcc, created
- geom = super(geompyDC,cls).__new__(cls)
- else:
- # geom engine not created: existing engine found
- print "existing ", engine, geom, doLcc, created
- pass
-
- return geom
-
- return geom
-
- def __init__(self):
- #global created
- #print "-------- geompyDC __init__ --- ", created, self
- GEOM._objref_GEOM_Gen.__init__(self)
- self.myMaxNbSubShapesAllowed = 0 # auto-publishing is disabled by default
- self.myBuilder = None
- self.myStudyId = 0
- self.father = None
-
- self.BasicOp = None
- self.CurvesOp = None
- self.PrimOp = None
- self.ShapesOp = None
- self.HealOp = None
- self.InsertOp = None
- self.BoolOp = None
- self.TrsfOp = None
- self.LocalOp = None
- self.MeasuOp = None
- self.BlocksOp = None
- self.GroupOp = None
- self.AdvOp = None
- pass
-
- ## @addtogroup l1_geompyDC_auxiliary
- ## Process object publication in the study, as follows:
- # - if @a theName is specified (not None), the object is published in the study
- # with this name, not taking into account "auto-publishing" option;
- # - if @a theName is NOT specified, the object is published in the study
- # (using default name, which can be customized using @a theDefaultName parameter)
- # only if auto-publishing is switched on.
- #
- # @param theObj object, a subject for publishing
- # @param theName object name for study
- # @param theDefaultName default name for the auto-publishing
- #
- # @sa addToStudyAuto()
- def _autoPublish(self, theObj, theName, theDefaultName="noname"):
- # ---
- def _item_name(_names, _defname, _idx=-1):
- if not _names: _names = _defname
- if type(_names) in [types.ListType, types.TupleType]:
- if _idx >= 0:
- if _idx >= len(_names) or not _names[_idx]:
- if type(_defname) not in [types.ListType, types.TupleType]:
- _name = "%s_%d"%(_defname, _idx+1)
- elif len(_defname) > 0 and _idx >= 0 and _idx < len(_defname):
- _name = _defname[_idx]
- else:
- _name = "%noname_%d"%(dn, _idx+1)
- pass
- else:
- _name = _names[_idx]
- pass
- else:
- # must be wrong usage
- _name = _names[0]
- pass
- else:
- if _idx >= 0:
- _name = "%s_%d"%(_names, _idx+1)
- else:
- _name = _names
- pass
- return _name
- # ---
- if not theObj:
- return # null object
- if not theName and not self.myMaxNbSubShapesAllowed:
- return # nothing to do: auto-publishing is disabled
- if not theName and not theDefaultName:
- return # neither theName nor theDefaultName is given
- import types
- if type(theObj) in [types.ListType, types.TupleType]:
- # list of objects is being published
- idx = 0
- for obj in theObj:
- if not obj: continue # bad object
- ###if obj.GetStudyEntry(): continue # already published
- name = _item_name(theName, theDefaultName, idx)
- if obj.IsMainShape() or not obj.GetMainShape().GetStudyEntry():
- self.addToStudy(obj, name) # "%s_%d"%(aName, idx)
- else:
- self.addToStudyInFather(obj.GetMainShape(), obj, name) # "%s_%d"%(aName, idx)
- pass
- idx = idx+1
- if not theName and idx == self.myMaxNbSubShapesAllowed: break
- pass
- pass
- else:
- # single object is published
- ###if theObj.GetStudyEntry(): return # already published
- name = _item_name(theName, theDefaultName)
- if theObj.IsMainShape():
- self.addToStudy(theObj, name)
- else:
- self.addToStudyInFather(theObj.GetMainShape(), theObj, name)
- pass
- pass
- pass
-
- ## @addtogroup l1_geompy_auxiliary
- ## @{
- def init_geom(self,theStudy):
- self.myStudy = theStudy
- self.myStudyId = self.myStudy._get_StudyId()
- self.myBuilder = self.myStudy.NewBuilder()
- self.father = self.myStudy.FindComponent("GEOM")
- if self.father is None:
- self.father = self.myBuilder.NewComponent("GEOM")
- A1 = self.myBuilder.FindOrCreateAttribute(self.father, "AttributeName")
- FName = A1._narrow(SALOMEDS.AttributeName)
- FName.SetValue("Geometry")
- A2 = self.myBuilder.FindOrCreateAttribute(self.father, "AttributePixMap")
- aPixmap = A2._narrow(SALOMEDS.AttributePixMap)
- aPixmap.SetPixMap("ICON_OBJBROWSER_Geometry")
- self.myBuilder.DefineComponentInstance(self.father,self)
- pass
- self.BasicOp = self.GetIBasicOperations (self.myStudyId)
- self.CurvesOp = self.GetICurvesOperations (self.myStudyId)
- self.PrimOp = self.GetI3DPrimOperations (self.myStudyId)
- self.ShapesOp = self.GetIShapesOperations (self.myStudyId)
- self.HealOp = self.GetIHealingOperations (self.myStudyId)
- self.InsertOp = self.GetIInsertOperations (self.myStudyId)
- self.BoolOp = self.GetIBooleanOperations (self.myStudyId)
- self.TrsfOp = self.GetITransformOperations(self.myStudyId)
- self.LocalOp = self.GetILocalOperations (self.myStudyId)
- self.MeasuOp = self.GetIMeasureOperations (self.myStudyId)
- self.BlocksOp = self.GetIBlocksOperations (self.myStudyId)
- self.GroupOp = self.GetIGroupOperations (self.myStudyId)
- self.AdvOp = self.GetIAdvancedOperations (self.myStudyId)
- pass
-
- ## Enable / disable results auto-publishing
- #
- # The automatic publishing is managed in the following way:
- # - if @a maxNbSubShapes = 0, automatic publishing is disabled.
- # - if @a maxNbSubShapes = -1 (default), automatic publishing is enabled and
- # maximum number of sub-shapes allowed for publishing is unlimited; any negative
- # value passed as parameter has the same effect.
- # - if @a maxNbSubShapes is any positive value, automatic publishing is enabled and
- # maximum number of sub-shapes allowed for publishing is set to specified value.
- #
- # @param maxNbSubShapes maximum number of sub-shapes allowed for publishing.
- # @ingroup l1_publish_data
- def addToStudyAuto(self, maxNbSubShapes=-1):
- """
- Enable / disable results auto-publishing
-
- The automatic publishing is managed in the following way:
- - if @a maxNbSubShapes = 0, automatic publishing is disabled;
- - if @a maxNbSubShapes = -1 (default), automatic publishing is enabled and
- maximum number of sub-shapes allowed for publishing is unlimited; any negative
- value passed as parameter has the same effect.
- - if @a maxNbSubShapes is any positive value, automatic publishing is enabled and
- maximum number of sub-shapes allowed for publishing is set to this value.
-
- Parameters:
- maxNbSubShapes maximum number of sub-shapes allowed for publishing.
-
- Example of usage:
- geompy.addToStudyAuto() # enable auto-publishing
- geompy.MakeBoxDXDYDZ(100) # box is created and published with default name
- geompy.addToStudyAuto(0) # disable auto-publishing
- """
- self.myMaxNbSubShapesAllowed = max(-1, maxNbSubShapes)
- pass
-
- ## Dump component to the Python script
- # This method overrides IDL function to allow default values for the parameters.
- def DumpPython(self, theStudy, theIsPublished=True, theIsMultiFile=True):
- """
- Dump component to the Python script
- This method overrides IDL function to allow default values for the parameters.
- """
- return GEOM._objref_GEOM_Gen.DumpPython(self, theStudy, theIsPublished, theIsMultiFile)
-
- ## Get name for sub-shape aSubObj of shape aMainObj
- #
- # @ref swig_SubShapeName "Example"
- def SubShapeName(self,aSubObj, aMainObj):
- """
- Get name for sub-shape aSubObj of shape aMainObj
- """
- # Example: see GEOM_TestAll.py
-
- #aSubId = orb.object_to_string(aSubObj)
- #aMainId = orb.object_to_string(aMainObj)
- #index = gg.getIndexTopology(aSubId, aMainId)
- #name = gg.getShapeTypeString(aSubId) + "_%d"%(index)
- index = self.ShapesOp.GetTopologyIndex(aMainObj, aSubObj)
- name = self.ShapesOp.GetShapeTypeString(aSubObj) + "_%d"%(index)
- return name
-
- ## Publish in study aShape with name aName
- #
- # \param aShape the shape to be published
- # \param aName the name for the shape
- # \param doRestoreSubShapes if True, finds and publishes also
- # sub-shapes of aShape, corresponding to its arguments
- # and published sub-shapes of arguments
- # \param theArgs,theFindMethod,theInheritFirstArg see RestoreSubShapes() for
- # these arguments description
- # \return study entry of the published shape in form of string
- #
- # @ingroup l1_publish_data
- # @ref swig_all_addtostudy "Example"
- def addToStudy(self, aShape, aName, doRestoreSubShapes=False,
- theArgs=[], theFindMethod=GEOM.FSM_GetInPlace, theInheritFirstArg=False):
- """
- Publish in study aShape with name aName
-
- Parameters:
- aShape the shape to be published
- aName the name for the shape
- doRestoreSubShapes if True, finds and publishes also
- sub-shapes of aShape, corresponding to its arguments
- and published sub-shapes of arguments
- theArgs,theFindMethod,theInheritFirstArg see geompy.RestoreSubShapes() for
- these arguments description
-
- Returns:
- study entry of the published shape in form of string
-
- Example of usage:
- id_block1 = geompy.addToStudy(Block1, "Block 1")
- """
- # Example: see GEOM_TestAll.py
- try:
- aSObject = self.AddInStudy(self.myStudy, aShape, aName, None)
- if aSObject and aName: aSObject.SetAttrString("AttributeName", aName)
- if doRestoreSubShapes:
- self.RestoreSubShapesSO(self.myStudy, aSObject, theArgs,
- theFindMethod, theInheritFirstArg, True )
- except:
- print "addToStudy() failed"
- return ""
- return aShape.GetStudyEntry()
-
- ## Publish in study aShape with name aName as sub-object of previously published aFather
- # \param aFather previously published object
- # \param aShape the shape to be published as sub-object of aFather
- # \param aName the name for the shape
- #
- # \return study entry of the published shape in form of string
- #
- # @ingroup l1_publish_data
- # @ref swig_all_addtostudyInFather "Example"
- def addToStudyInFather(self, aFather, aShape, aName):
- """
- Publish in study aShape with name aName as sub-object of previously published aFather
-
- Parameters:
- aFather previously published object
- aShape the shape to be published as sub-object of aFather
- aName the name for the shape
-
- Returns:
- study entry of the published shape in form of string
- """
- # Example: see GEOM_TestAll.py
- try:
- aSObject = self.AddInStudy(self.myStudy, aShape, aName, aFather)
- if aSObject and aName: aSObject.SetAttrString("AttributeName", aName)
- except:
- print "addToStudyInFather() failed"
- return ""
- return aShape.GetStudyEntry()
-
- ## Unpublish object in study
- #
- # \param obj the object to be unpublished
- def hideInStudy(self, obj):
- """
- Unpublish object in study
-
- Parameters:
- obj the object to be unpublished
- """
- ior = salome.orb.object_to_string(obj)
- aSObject = self.myStudy.FindObjectIOR(ior)
- if aSObject is not None:
- genericAttribute = self.myBuilder.FindOrCreateAttribute(aSObject, "AttributeDrawable")
- drwAttribute = genericAttribute._narrow(SALOMEDS.AttributeDrawable)
- drwAttribute.SetDrawable(False)
- pass
-
- # end of l1_geompyDC_auxiliary
- ## @}
-
- ## @addtogroup l3_restore_ss
- ## @{
-
- ## Publish sub-shapes, standing for arguments and sub-shapes of arguments
- # To be used from python scripts out of addToStudy() (non-default usage)
- # \param theObject published GEOM.GEOM_Object, arguments of which will be published
- # \param theArgs list of GEOM.GEOM_Object, operation arguments to be published.
- # If this list is empty, all operation arguments will be published
- # \param theFindMethod method to search sub-shapes, corresponding to arguments and
- # their sub-shapes. Value from enumeration GEOM.find_shape_method.
- # \param theInheritFirstArg set properties of the first argument for theObject.
- # Do not publish sub-shapes in place of arguments, but only
- # in place of sub-shapes of the first argument,
- # because the whole shape corresponds to the first argument.
- # Mainly to be used after transformations, but it also can be
- # usefull after partition with one object shape, and some other
- # operations, where only the first argument has to be considered.
- # If theObject has only one argument shape, this flag is automatically
- # considered as True, not regarding really passed value.
- # \param theAddPrefix add prefix "from_" to names of restored sub-shapes,
- # and prefix "from_subshapes_of_" to names of partially restored sub-shapes.
- # \return list of published sub-shapes
- #
- # @ref tui_restore_prs_params "Example"
- def RestoreSubShapes (self, theObject, theArgs=[], theFindMethod=GEOM.FSM_GetInPlace,
- theInheritFirstArg=False, theAddPrefix=True):
- """
- Publish sub-shapes, standing for arguments and sub-shapes of arguments
- To be used from python scripts out of geompy.addToStudy (non-default usage)
-
- Parameters:
- theObject published GEOM.GEOM_Object, arguments of which will be published
- theArgs list of GEOM.GEOM_Object, operation arguments to be published.
- If this list is empty, all operation arguments will be published
- theFindMethod method to search sub-shapes, corresponding to arguments and
- their sub-shapes. Value from enumeration GEOM.find_shape_method.
- theInheritFirstArg set properties of the first argument for theObject.
- Do not publish sub-shapes in place of arguments, but only
- in place of sub-shapes of the first argument,
- because the whole shape corresponds to the first argument.
- Mainly to be used after transformations, but it also can be
- usefull after partition with one object shape, and some other
- operations, where only the first argument has to be considered.
- If theObject has only one argument shape, this flag is automatically
- considered as True, not regarding really passed value.
- theAddPrefix add prefix "from_" to names of restored sub-shapes,
- and prefix "from_subshapes_of_" to names of partially restored sub-shapes.
- Returns:
- list of published sub-shapes
- """
- # Example: see GEOM_TestAll.py
- return self.RestoreSubShapesO(self.myStudy, theObject, theArgs,
- theFindMethod, theInheritFirstArg, theAddPrefix)
-
- ## Publish sub-shapes, standing for arguments and sub-shapes of arguments
- # To be used from python scripts out of addToStudy() (non-default usage)
- # \param theObject published GEOM.GEOM_Object, arguments of which will be published
- # \param theArgs list of GEOM.GEOM_Object, operation arguments to be published.
- # If this list is empty, all operation arguments will be published
- # \param theFindMethod method to search sub-shapes, corresponding to arguments and
- # their sub-shapes. Value from enumeration GEOM::find_shape_method.
- # \param theInheritFirstArg set properties of the first argument for theObject.
- # Do not publish sub-shapes in place of arguments, but only
- # in place of sub-shapes of the first argument,
- # because the whole shape corresponds to the first argument.
- # Mainly to be used after transformations, but it also can be
- # usefull after partition with one object shape, and some other
- # operations, where only the first argument has to be considered.
- # If theObject has only one argument shape, this flag is automatically
- # considered as True, not regarding really passed value.
- # \param theAddPrefix add prefix "from_" to names of restored sub-shapes,
- # and prefix "from_subshapes_of_" to names of partially restored sub-shapes.
- # \return list of published sub-shapes
- #
- # @ref tui_restore_prs_params "Example"
- def RestoreGivenSubShapes (self, theObject, theArgs=[], theFindMethod=GEOM.FSM_GetInPlace,
- theInheritFirstArg=False, theAddPrefix=True):
- """
- Publish sub-shapes, standing for arguments and sub-shapes of arguments
- To be used from python scripts out of geompy.addToStudy() (non-default usage)
-
- Parameters:
- theObject published GEOM.GEOM_Object, arguments of which will be published
- theArgs list of GEOM.GEOM_Object, operation arguments to be published.
- If this list is empty, all operation arguments will be published
- theFindMethod method to search sub-shapes, corresponding to arguments and
- their sub-shapes. Value from enumeration GEOM::find_shape_method.
- theInheritFirstArg set properties of the first argument for theObject.
- Do not publish sub-shapes in place of arguments, but only
- in place of sub-shapes of the first argument,
- because the whole shape corresponds to the first argument.
- Mainly to be used after transformations, but it also can be
- usefull after partition with one object shape, and some other
- operations, where only the first argument has to be considered.
- If theObject has only one argument shape, this flag is automatically
- considered as True, not regarding really passed value.
- theAddPrefix add prefix "from_" to names of restored sub-shapes,
- and prefix "from_subshapes_of_" to names of partially restored sub-shapes.
-
- Returns:
- list of published sub-shapes
- """
- # Example: see GEOM_TestAll.py
- return self.RestoreGivenSubShapesO(self.myStudy, theObject, theArgs,
- theFindMethod, theInheritFirstArg, theAddPrefix)
-
- # end of l3_restore_ss
- ## @}
-
- ## @addtogroup l3_basic_go
- ## @{
-
- ## Create point by three coordinates.
- # @param theX The X coordinate of the point.
- # @param theY The Y coordinate of the point.
- # @param theZ The Z coordinate of the point.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created point.
- #
- # @ref tui_creation_point "Example"
- def MakeVertex(self, theX, theY, theZ, theName=None):
- """
- Create point by three coordinates.
-
- Parameters:
- theX The X coordinate of the point.
- theY The Y coordinate of the point.
- theZ The Z coordinate of the point.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created point.
- """
- # Example: see GEOM_TestAll.py
- theX,theY,theZ,Parameters = ParseParameters(theX, theY, theZ)
- anObj = self.BasicOp.MakePointXYZ(theX, theY, theZ)
- RaiseIfFailed("MakePointXYZ", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Create a point, distant from the referenced point
- # on the given distances along the coordinate axes.
- # @param theReference The referenced point.
- # @param theX Displacement from the referenced point along OX axis.
- # @param theY Displacement from the referenced point along OY axis.
- # @param theZ Displacement from the referenced point along OZ axis.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created point.
- #
- # @ref tui_creation_point "Example"
- def MakeVertexWithRef(self, theReference, theX, theY, theZ, theName=None):
- """
- Create a point, distant from the referenced point
- on the given distances along the coordinate axes.
-
- Parameters:
- theReference The referenced point.
- theX Displacement from the referenced point along OX axis.
- theY Displacement from the referenced point along OY axis.
- theZ Displacement from the referenced point along OZ axis.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created point.
- """
- # Example: see GEOM_TestAll.py
- theX,theY,theZ,Parameters = ParseParameters(theX, theY, theZ)
- anObj = self.BasicOp.MakePointWithReference(theReference, theX, theY, theZ)
- RaiseIfFailed("MakePointWithReference", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Create a point, corresponding to the given parameter on the given curve.
- # @param theRefCurve The referenced curve.
- # @param theParameter Value of parameter on the referenced curve.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created point.
- #
- # @ref tui_creation_point "Example"
- def MakeVertexOnCurve(self, theRefCurve, theParameter, theName=None):
- """
- Create a point, corresponding to the given parameter on the given curve.
-
- Parameters:
- theRefCurve The referenced curve.
- theParameter Value of parameter on the referenced curve.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created point.
-
- Example of usage:
- p_on_arc = geompy.MakeVertexOnCurve(Arc, 0.25)
- """
- # Example: see GEOM_TestAll.py
- theParameter, Parameters = ParseParameters(theParameter)
- anObj = self.BasicOp.MakePointOnCurve(theRefCurve, theParameter)
- RaiseIfFailed("MakePointOnCurve", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Create a point by projection give coordinates on the given curve
- # @param theRefCurve The referenced curve.
- # @param theX X-coordinate in 3D space
- # @param theY Y-coordinate in 3D space
- # @param theZ Z-coordinate in 3D space
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created point.
- #
- # @ref tui_creation_point "Example"
- def MakeVertexOnCurveByCoord(self, theRefCurve, theX, theY, theZ, theName=None):
- """
- Create a point by projection give coordinates on the given curve
-
- Parameters:
- theRefCurve The referenced curve.
- theX X-coordinate in 3D space
- theY Y-coordinate in 3D space
- theZ Z-coordinate in 3D space
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created point.
-
- Example of usage:
- p_on_arc3 = geompy.MakeVertexOnCurveByCoord(Arc, 100, -10, 10)
- """
- # Example: see GEOM_TestAll.py
- theX, theY, theZ, Parameters = ParseParameters(theX, theY, theZ)
- anObj = self.BasicOp.MakePointOnCurveByCoord(theRefCurve, theX, theY, theZ)
- RaiseIfFailed("MakeVertexOnCurveByCoord", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Create a point, corresponding to the given length on the given curve.
- # @param theRefCurve The referenced curve.
- # @param theLength Length on the referenced curve. It can be negative.
- # @param theStartPoint Point allowing to choose the direction for the calculation
- # of the length. If None, start from the first point of theRefCurve.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created point.
- #
- # @ref tui_creation_point "Example"
- def MakeVertexOnCurveByLength(self, theRefCurve, theLength, theStartPoint = None, theName=None):
- """
- Create a point, corresponding to the given length on the given curve.
-
- Parameters:
- theRefCurve The referenced curve.
- theLength Length on the referenced curve. It can be negative.
- theStartPoint Point allowing to choose the direction for the calculation
- of the length. If None, start from the first point of theRefCurve.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created point.
- """
- # Example: see GEOM_TestAll.py
- theLength, Parameters = ParseParameters(theLength)
- anObj = self.BasicOp.MakePointOnCurveByLength(theRefCurve, theLength, theStartPoint)
- RaiseIfFailed("MakePointOnCurveByLength", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Create a point, corresponding to the given parameters on the
- # given surface.
- # @param theRefSurf The referenced surface.
- # @param theUParameter Value of U-parameter on the referenced surface.
- # @param theVParameter Value of V-parameter on the referenced surface.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created point.
- #
- # @ref swig_MakeVertexOnSurface "Example"
- def MakeVertexOnSurface(self, theRefSurf, theUParameter, theVParameter, theName=None):
- """
- Create a point, corresponding to the given parameters on the
- given surface.
-
- Parameters:
- theRefSurf The referenced surface.
- theUParameter Value of U-parameter on the referenced surface.
- theVParameter Value of V-parameter on the referenced surface.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created point.
-
- Example of usage:
- p_on_face = geompy.MakeVertexOnSurface(Face, 0.1, 0.8)
- """
- theUParameter, theVParameter, Parameters = ParseParameters(theUParameter, theVParameter)
- # Example: see GEOM_TestAll.py
- anObj = self.BasicOp.MakePointOnSurface(theRefSurf, theUParameter, theVParameter)
- RaiseIfFailed("MakePointOnSurface", self.BasicOp)
- anObj.SetParameters(Parameters);
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Create a point by projection give coordinates on the given surface
- # @param theRefSurf The referenced surface.
- # @param theX X-coordinate in 3D space
- # @param theY Y-coordinate in 3D space
- # @param theZ Z-coordinate in 3D space
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created point.
- #
- # @ref swig_MakeVertexOnSurfaceByCoord "Example"
- def MakeVertexOnSurfaceByCoord(self, theRefSurf, theX, theY, theZ, theName=None):
- """
- Create a point by projection give coordinates on the given surface
-
- Parameters:
- theRefSurf The referenced surface.
- theX X-coordinate in 3D space
- theY Y-coordinate in 3D space
- theZ Z-coordinate in 3D space
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created point.
-
- Example of usage:
- p_on_face2 = geompy.MakeVertexOnSurfaceByCoord(Face, 0., 0., 0.)
- """
- theX, theY, theZ, Parameters = ParseParameters(theX, theY, theZ)
- # Example: see GEOM_TestAll.py
- anObj = self.BasicOp.MakePointOnSurfaceByCoord(theRefSurf, theX, theY, theZ)
- RaiseIfFailed("MakeVertexOnSurfaceByCoord", self.BasicOp)
- anObj.SetParameters(Parameters);
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Create a point, which lays on the given face.
- # The point will lay in arbitrary place of the face.
- # The only condition on it is a non-zero distance to the face boundary.
- # Such point can be used to uniquely identify the face inside any
- # shape in case, when the shape does not contain overlapped faces.
- # @param theFace The referenced face.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created point.
- #
- # @ref swig_MakeVertexInsideFace "Example"
- def MakeVertexInsideFace (self, theFace, theName=None):
- """
- Create a point, which lays on the given face.
- The point will lay in arbitrary place of the face.
- The only condition on it is a non-zero distance to the face boundary.
- Such point can be used to uniquely identify the face inside any
- shape in case, when the shape does not contain overlapped faces.
-
- Parameters:
- theFace The referenced face.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created point.
-
- Example of usage:
- p_on_face = geompy.MakeVertexInsideFace(Face)
- """
- # Example: see GEOM_TestAll.py
- anObj = self.BasicOp.MakePointOnFace(theFace)
- RaiseIfFailed("MakeVertexInsideFace", self.BasicOp)
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Create a point on intersection of two lines.
- # @param theRefLine1, theRefLine2 The referenced lines.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created point.
- #
- # @ref swig_MakeVertexOnLinesIntersection "Example"
- def MakeVertexOnLinesIntersection(self, theRefLine1, theRefLine2, theName=None):
- """
- Create a point on intersection of two lines.
-
- Parameters:
- theRefLine1, theRefLine2 The referenced lines.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created point.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.BasicOp.MakePointOnLinesIntersection(theRefLine1, theRefLine2)
- RaiseIfFailed("MakePointOnLinesIntersection", self.BasicOp)
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Create a tangent, corresponding to the given parameter on the given curve.
- # @param theRefCurve The referenced curve.
- # @param theParameter Value of parameter on the referenced curve.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created tangent.
- #
- # @ref swig_MakeTangentOnCurve "Example"
- def MakeTangentOnCurve(self, theRefCurve, theParameter, theName=None):
- """
- Create a tangent, corresponding to the given parameter on the given curve.
-
- Parameters:
- theRefCurve The referenced curve.
- theParameter Value of parameter on the referenced curve.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created tangent.
-
- Example of usage:
- tan_on_arc = geompy.MakeTangentOnCurve(Arc, 0.7)
- """
- anObj = self.BasicOp.MakeTangentOnCurve(theRefCurve, theParameter)
- RaiseIfFailed("MakeTangentOnCurve", self.BasicOp)
- self._autoPublish(anObj, theName, "tangent")
- return anObj
-
- ## Create a tangent plane, corresponding to the given parameter on the given face.
- # @param theFace The face for which tangent plane should be built.
- # @param theParameterV vertical value of the center point (0.0 - 1.0).
- # @param theParameterU horisontal value of the center point (0.0 - 1.0).
- # @param theTrimSize the size of plane.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created tangent.
- #
- # @ref swig_MakeTangentPlaneOnFace "Example"
- def MakeTangentPlaneOnFace(self, theFace, theParameterU, theParameterV, theTrimSize, theName=None):
- """
- Create a tangent plane, corresponding to the given parameter on the given face.
-
- Parameters:
- theFace The face for which tangent plane should be built.
- theParameterV vertical value of the center point (0.0 - 1.0).
- theParameterU horisontal value of the center point (0.0 - 1.0).
- theTrimSize the size of plane.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created tangent.
-
- Example of usage:
- an_on_face = geompy.MakeTangentPlaneOnFace(tan_extrusion, 0.7, 0.5, 150)
- """
- anObj = self.BasicOp.MakeTangentPlaneOnFace(theFace, theParameterU, theParameterV, theTrimSize)
- RaiseIfFailed("MakeTangentPlaneOnFace", self.BasicOp)
- self._autoPublish(anObj, theName, "tangent")
- return anObj
-
- ## Create a vector with the given components.
- # @param theDX X component of the vector.
- # @param theDY Y component of the vector.
- # @param theDZ Z component of the vector.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created vector.
- #
- # @ref tui_creation_vector "Example"
- def MakeVectorDXDYDZ(self, theDX, theDY, theDZ, theName=None):
- """
- Create a vector with the given components.
-
- Parameters:
- theDX X component of the vector.
- theDY Y component of the vector.
- theDZ Z component of the vector.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created vector.
- """
- # Example: see GEOM_TestAll.py
- theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
- anObj = self.BasicOp.MakeVectorDXDYDZ(theDX, theDY, theDZ)
- RaiseIfFailed("MakeVectorDXDYDZ", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "vector")
- return anObj
-
- ## Create a vector between two points.
- # @param thePnt1 Start point for the vector.
- # @param thePnt2 End point for the vector.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created vector.
- #
- # @ref tui_creation_vector "Example"
- def MakeVector(self, thePnt1, thePnt2, theName=None):
- """
- Create a vector between two points.
-
- Parameters:
- thePnt1 Start point for the vector.
- thePnt2 End point for the vector.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created vector.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.BasicOp.MakeVectorTwoPnt(thePnt1, thePnt2)
- RaiseIfFailed("MakeVectorTwoPnt", self.BasicOp)
- self._autoPublish(anObj, theName, "vector")
- return anObj
-
- ## Create a line, passing through the given point
- # and parrallel to the given direction
- # @param thePnt Point. The resulting line will pass through it.
- # @param theDir Direction. The resulting line will be parallel to it.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created line.
- #
- # @ref tui_creation_line "Example"
- def MakeLine(self, thePnt, theDir, theName=None):
- """
- Create a line, passing through the given point
- and parrallel to the given direction
-
- Parameters:
- thePnt Point. The resulting line will pass through it.
- theDir Direction. The resulting line will be parallel to it.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created line.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.BasicOp.MakeLine(thePnt, theDir)
- RaiseIfFailed("MakeLine", self.BasicOp)
- self._autoPublish(anObj, theName, "line")
- return anObj
-
- ## Create a line, passing through the given points
- # @param thePnt1 First of two points, defining the line.
- # @param thePnt2 Second of two points, defining the line.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created line.
- #
- # @ref tui_creation_line "Example"
- def MakeLineTwoPnt(self, thePnt1, thePnt2, theName=None):
- """
- Create a line, passing through the given points
-
- Parameters:
- thePnt1 First of two points, defining the line.
- thePnt2 Second of two points, defining the line.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created line.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.BasicOp.MakeLineTwoPnt(thePnt1, thePnt2)
- RaiseIfFailed("MakeLineTwoPnt", self.BasicOp)
- self._autoPublish(anObj, theName, "line")
- return anObj
-
- ## Create a line on two faces intersection.
- # @param theFace1 First of two faces, defining the line.
- # @param theFace2 Second of two faces, defining the line.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created line.
- #
- # @ref swig_MakeLineTwoFaces "Example"
- def MakeLineTwoFaces(self, theFace1, theFace2, theName=None):
- """
- Create a line on two faces intersection.
-
- Parameters:
- theFace1 First of two faces, defining the line.
- theFace2 Second of two faces, defining the line.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created line.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.BasicOp.MakeLineTwoFaces(theFace1, theFace2)
- RaiseIfFailed("MakeLineTwoFaces", self.BasicOp)
- self._autoPublish(anObj, theName, "line")
- return anObj
-
- ## Create a plane, passing through the given point
- # and normal to the given vector.
- # @param thePnt Point, the plane has to pass through.
- # @param theVec Vector, defining the plane normal direction.
- # @param theTrimSize Half size of a side of quadrangle face, representing the plane.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created plane.
- #
- # @ref tui_creation_plane "Example"
- def MakePlane(self, thePnt, theVec, theTrimSize, theName=None):
- """
- Create a plane, passing through the given point
- and normal to the given vector.
-
- Parameters:
- thePnt Point, the plane has to pass through.
- theVec Vector, defining the plane normal direction.
- theTrimSize Half size of a side of quadrangle face, representing the plane.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created plane.
- """
- # Example: see GEOM_TestAll.py
- theTrimSize, Parameters = ParseParameters(theTrimSize);
- anObj = self.BasicOp.MakePlanePntVec(thePnt, theVec, theTrimSize)
- RaiseIfFailed("MakePlanePntVec", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "plane")
- return anObj
-
- ## Create a plane, passing through the three given points
- # @param thePnt1 First of three points, defining the plane.
- # @param thePnt2 Second of three points, defining the plane.
- # @param thePnt3 Fird of three points, defining the plane.
- # @param theTrimSize Half size of a side of quadrangle face, representing the plane.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created plane.
- #
- # @ref tui_creation_plane "Example"
- def MakePlaneThreePnt(self, thePnt1, thePnt2, thePnt3, theTrimSize, theName=None):
- """
- Create a plane, passing through the three given points
-
- Parameters:
- thePnt1 First of three points, defining the plane.
- thePnt2 Second of three points, defining the plane.
- thePnt3 Fird of three points, defining the plane.
- theTrimSize Half size of a side of quadrangle face, representing the plane.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created plane.
- """
- # Example: see GEOM_TestAll.py
- theTrimSize, Parameters = ParseParameters(theTrimSize);
- anObj = self.BasicOp.MakePlaneThreePnt(thePnt1, thePnt2, thePnt3, theTrimSize)
- RaiseIfFailed("MakePlaneThreePnt", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "plane")
- return anObj
-
- ## Create a plane, similar to the existing one, but with another size of representing face.
- # @param theFace Referenced plane or LCS(Marker).
- # @param theTrimSize New half size of a side of quadrangle face, representing the plane.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created plane.
- #
- # @ref tui_creation_plane "Example"
- def MakePlaneFace(self, theFace, theTrimSize, theName=None):
- """
- Create a plane, similar to the existing one, but with another size of representing face.
-
- Parameters:
- theFace Referenced plane or LCS(Marker).
- theTrimSize New half size of a side of quadrangle face, representing the plane.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created plane.
- """
- # Example: see GEOM_TestAll.py
- theTrimSize, Parameters = ParseParameters(theTrimSize);
- anObj = self.BasicOp.MakePlaneFace(theFace, theTrimSize)
- RaiseIfFailed("MakePlaneFace", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "plane")
- return anObj
-
- ## Create a plane, passing through the 2 vectors
- # with center in a start point of the first vector.
- # @param theVec1 Vector, defining center point and plane direction.
- # @param theVec2 Vector, defining the plane normal direction.
- # @param theTrimSize Half size of a side of quadrangle face, representing the plane.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created plane.
- #
- # @ref tui_creation_plane "Example"
- def MakePlane2Vec(self, theVec1, theVec2, theTrimSize, theName=None):
- """
- Create a plane, passing through the 2 vectors
- with center in a start point of the first vector.
-
- Parameters:
- theVec1 Vector, defining center point and plane direction.
- theVec2 Vector, defining the plane normal direction.
- theTrimSize Half size of a side of quadrangle face, representing the plane.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created plane.
- """
- # Example: see GEOM_TestAll.py
- theTrimSize, Parameters = ParseParameters(theTrimSize);
- anObj = self.BasicOp.MakePlane2Vec(theVec1, theVec2, theTrimSize)
- RaiseIfFailed("MakePlane2Vec", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "plane")
- return anObj
-
- ## Create a plane, based on a Local coordinate system.
- # @param theLCS coordinate system, defining plane.
- # @param theTrimSize Half size of a side of quadrangle face, representing the plane.
- # @param theOrientation OXY, OYZ or OZX orientation - (1, 2 or 3)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created plane.
- #
- # @ref tui_creation_plane "Example"
- def MakePlaneLCS(self, theLCS, theTrimSize, theOrientation, theName=None):
- """
- Create a plane, based on a Local coordinate system.
-
- Parameters:
- theLCS coordinate system, defining plane.
- theTrimSize Half size of a side of quadrangle face, representing the plane.
- theOrientation OXY, OYZ or OZX orientation - (1, 2 or 3)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created plane.
- """
- # Example: see GEOM_TestAll.py
- theTrimSize, Parameters = ParseParameters(theTrimSize);
- anObj = self.BasicOp.MakePlaneLCS(theLCS, theTrimSize, theOrientation)
- RaiseIfFailed("MakePlaneLCS", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "plane")
- return anObj
-
- ## Create a local coordinate system.
- # @param OX,OY,OZ Three coordinates of coordinate system origin.
- # @param XDX,XDY,XDZ Three components of OX direction
- # @param YDX,YDY,YDZ Three components of OY direction
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created coordinate system.
- #
- # @ref swig_MakeMarker "Example"
- def MakeMarker(self, OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ, theName=None):
- """
- Create a local coordinate system.
-
- Parameters:
- OX,OY,OZ Three coordinates of coordinate system origin.
- XDX,XDY,XDZ Three components of OX direction
- YDX,YDY,YDZ Three components of OY direction
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created coordinate system.
- """
- # Example: see GEOM_TestAll.py
- OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ, Parameters = ParseParameters(OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ);
- anObj = self.BasicOp.MakeMarker(OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ)
- RaiseIfFailed("MakeMarker", self.BasicOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "lcs")
- return anObj
-
- ## Create a local coordinate system from shape.
- # @param theShape The initial shape to detect the coordinate system.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created coordinate system.
- #
- # @ref tui_creation_lcs "Example"
- def MakeMarkerFromShape(self, theShape, theName=None):
- """
- Create a local coordinate system from shape.
-
- Parameters:
- theShape The initial shape to detect the coordinate system.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created coordinate system.
- """
- anObj = self.BasicOp.MakeMarkerFromShape(theShape)
- RaiseIfFailed("MakeMarkerFromShape", self.BasicOp)
- self._autoPublish(anObj, theName, "lcs")
- return anObj
-
- ## Create a local coordinate system from point and two vectors.
- # @param theOrigin Point of coordinate system origin.
- # @param theXVec Vector of X direction
- # @param theYVec Vector of Y direction
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created coordinate system.
- #
- # @ref tui_creation_lcs "Example"
- def MakeMarkerPntTwoVec(self, theOrigin, theXVec, theYVec, theName=None):
- """
- Create a local coordinate system from point and two vectors.
-
- Parameters:
- theOrigin Point of coordinate system origin.
- theXVec Vector of X direction
- theYVec Vector of Y direction
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created coordinate system.
-
- """
- anObj = self.BasicOp.MakeMarkerPntTwoVec(theOrigin, theXVec, theYVec)
- RaiseIfFailed("MakeMarkerPntTwoVec", self.BasicOp)
- self._autoPublish(anObj, theName, "lcs")
- return anObj
-
- # end of l3_basic_go
- ## @}
-
- ## @addtogroup l4_curves
- ## @{
-
- ## Create an arc of circle, passing through three given points.
- # @param thePnt1 Start point of the arc.
- # @param thePnt2 Middle point of the arc.
- # @param thePnt3 End point of the arc.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created arc.
- #
- # @ref swig_MakeArc "Example"
- def MakeArc(self, thePnt1, thePnt2, thePnt3, theName=None):
- """
- Create an arc of circle, passing through three given points.
-
- Parameters:
- thePnt1 Start point of the arc.
- thePnt2 Middle point of the arc.
- thePnt3 End point of the arc.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created arc.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.CurvesOp.MakeArc(thePnt1, thePnt2, thePnt3)
- RaiseIfFailed("MakeArc", self.CurvesOp)
- self._autoPublish(anObj, theName, "arc")
- return anObj
-
- ## Create an arc of circle from a center and 2 points.
- # @param thePnt1 Center of the arc
- # @param thePnt2 Start point of the arc. (Gives also the radius of the arc)
- # @param thePnt3 End point of the arc (Gives also a direction)
- # @param theSense Orientation of the arc
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created arc.
- #
- # @ref swig_MakeArc "Example"
- def MakeArcCenter(self, thePnt1, thePnt2, thePnt3, theSense=False, theName=None):
- """
- Create an arc of circle from a center and 2 points.
-
- Parameters:
- thePnt1 Center of the arc
- thePnt2 Start point of the arc. (Gives also the radius of the arc)
- thePnt3 End point of the arc (Gives also a direction)
- theSense Orientation of the arc
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created arc.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.CurvesOp.MakeArcCenter(thePnt1, thePnt2, thePnt3, theSense)
- RaiseIfFailed("MakeArcCenter", self.CurvesOp)
- self._autoPublish(anObj, theName, "arc")
- return anObj
-
- ## Create an arc of ellipse, of center and two points.
- # @param theCenter Center of the arc.
- # @param thePnt1 defines major radius of the arc by distance from Pnt1 to Pnt2.
- # @param thePnt2 defines plane of ellipse and minor radius as distance from Pnt3 to line from Pnt1 to Pnt2.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created arc.
- #
- # @ref swig_MakeArc "Example"
- def MakeArcOfEllipse(self, theCenter, thePnt1, thePnt2, theName=None):
- """
- Create an arc of ellipse, of center and two points.
-
- Parameters:
- theCenter Center of the arc.
- thePnt1 defines major radius of the arc by distance from Pnt1 to Pnt2.
- thePnt2 defines plane of ellipse and minor radius as distance from Pnt3 to line from Pnt1 to Pnt2.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created arc.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.CurvesOp.MakeArcOfEllipse(theCenter, thePnt1, thePnt2)
- RaiseIfFailed("MakeArcOfEllipse", self.CurvesOp)
- self._autoPublish(anObj, theName, "arc")
- return anObj
-
- ## Create a circle with given center, normal vector and radius.
- # @param thePnt Circle center.
- # @param theVec Vector, normal to the plane of the circle.
- # @param theR Circle radius.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created circle.
- #
- # @ref tui_creation_circle "Example"
- def MakeCircle(self, thePnt, theVec, theR, theName=None):
- """
- Create a circle with given center, normal vector and radius.
-
- Parameters:
- thePnt Circle center.
- theVec Vector, normal to the plane of the circle.
- theR Circle radius.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created circle.
- """
- # Example: see GEOM_TestAll.py
- theR, Parameters = ParseParameters(theR)
- anObj = self.CurvesOp.MakeCirclePntVecR(thePnt, theVec, theR)
- RaiseIfFailed("MakeCirclePntVecR", self.CurvesOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "circle")
- return anObj
-
- ## Create a circle with given radius.
- # Center of the circle will be in the origin of global
- # coordinate system and normal vector will be codirected with Z axis
- # @param theR Circle radius.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created circle.
- def MakeCircleR(self, theR, theName=None):
- """
- Create a circle with given radius.
- Center of the circle will be in the origin of global
- coordinate system and normal vector will be codirected with Z axis
-
- Parameters:
- theR Circle radius.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created circle.
- """
- anObj = self.CurvesOp.MakeCirclePntVecR(None, None, theR)
- RaiseIfFailed("MakeCirclePntVecR", self.CurvesOp)
- self._autoPublish(anObj, theName, "circle")
- return anObj
-
- ## Create a circle, passing through three given points
- # @param thePnt1,thePnt2,thePnt3 Points, defining the circle.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created circle.
- #
- # @ref tui_creation_circle "Example"
- def MakeCircleThreePnt(self, thePnt1, thePnt2, thePnt3, theName=None):
- """
- Create a circle, passing through three given points
-
- Parameters:
- thePnt1,thePnt2,thePnt3 Points, defining the circle.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created circle.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.CurvesOp.MakeCircleThreePnt(thePnt1, thePnt2, thePnt3)
- RaiseIfFailed("MakeCircleThreePnt", self.CurvesOp)
- self._autoPublish(anObj, theName, "circle")
- return anObj
-
- ## Create a circle, with given point1 as center,
- # passing through the point2 as radius and laying in the plane,
- # defined by all three given points.
- # @param thePnt1,thePnt2,thePnt3 Points, defining the circle.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created circle.
- #
- # @ref swig_MakeCircle "Example"
- def MakeCircleCenter2Pnt(self, thePnt1, thePnt2, thePnt3, theName=None):
- """
- Create a circle, with given point1 as center,
- passing through the point2 as radius and laying in the plane,
- defined by all three given points.
-
- Parameters:
- thePnt1,thePnt2,thePnt3 Points, defining the circle.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created circle.
- """
- # Example: see GEOM_example6.py
- anObj = self.CurvesOp.MakeCircleCenter2Pnt(thePnt1, thePnt2, thePnt3)
- RaiseIfFailed("MakeCircleCenter2Pnt", self.CurvesOp)
- self._autoPublish(anObj, theName, "circle")
- return anObj
-
- ## Create an ellipse with given center, normal vector and radiuses.
- # @param thePnt Ellipse center.
- # @param theVec Vector, normal to the plane of the ellipse.
- # @param theRMajor Major ellipse radius.
- # @param theRMinor Minor ellipse radius.
- # @param theVecMaj Vector, direction of the ellipse's main axis.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created ellipse.
- #
- # @ref tui_creation_ellipse "Example"
- def MakeEllipse(self, thePnt, theVec, theRMajor, theRMinor, theVecMaj=None, theName=None):
- """
- Create an ellipse with given center, normal vector and radiuses.
-
- Parameters:
- thePnt Ellipse center.
- theVec Vector, normal to the plane of the ellipse.
- theRMajor Major ellipse radius.
- theRMinor Minor ellipse radius.
- theVecMaj Vector, direction of the ellipse's main axis.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created ellipse.
- """
- # Example: see GEOM_TestAll.py
- theRMajor, theRMinor, Parameters = ParseParameters(theRMajor, theRMinor)
- if theVecMaj is not None:
- anObj = self.CurvesOp.MakeEllipseVec(thePnt, theVec, theRMajor, theRMinor, theVecMaj)
- else:
- anObj = self.CurvesOp.MakeEllipse(thePnt, theVec, theRMajor, theRMinor)
- pass
- RaiseIfFailed("MakeEllipse", self.CurvesOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "ellipse")
- return anObj
-
- ## Create an ellipse with given radiuses.
- # Center of the ellipse will be in the origin of global
- # coordinate system and normal vector will be codirected with Z axis
- # @param theRMajor Major ellipse radius.
- # @param theRMinor Minor ellipse radius.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created ellipse.
- def MakeEllipseRR(self, theRMajor, theRMinor, theName=None):
- """
- Create an ellipse with given radiuses.
- Center of the ellipse will be in the origin of global
- coordinate system and normal vector will be codirected with Z axis
-
- Parameters:
- theRMajor Major ellipse radius.
- theRMinor Minor ellipse radius.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created ellipse.
- """
- anObj = self.CurvesOp.MakeEllipse(None, None, theRMajor, theRMinor)
- RaiseIfFailed("MakeEllipse", self.CurvesOp)
- self._autoPublish(anObj, theName, "ellipse")
- return anObj
-
- ## Create a polyline on the set of points.
- # @param thePoints Sequence of points for the polyline.
- # @param theIsClosed If True, build a closed wire.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created polyline.
- #
- # @ref tui_creation_curve "Example"
- def MakePolyline(self, thePoints, theIsClosed=False, theName=None):
- """
- Create a polyline on the set of points.
-
- Parameters:
- thePoints Sequence of points for the polyline.
- theIsClosed If True, build a closed wire.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created polyline.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.CurvesOp.MakePolyline(thePoints, theIsClosed)
- RaiseIfFailed("MakePolyline", self.CurvesOp)
- self._autoPublish(anObj, theName, "polyline")
- return anObj
-
- ## Create bezier curve on the set of points.
- # @param thePoints Sequence of points for the bezier curve.
- # @param theIsClosed If True, build a closed curve.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created bezier curve.
- #
- # @ref tui_creation_curve "Example"
- def MakeBezier(self, thePoints, theIsClosed=False, theName=None):
- """
- Create bezier curve on the set of points.
-
- Parameters:
- thePoints Sequence of points for the bezier curve.
- theIsClosed If True, build a closed curve.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created bezier curve.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.CurvesOp.MakeSplineBezier(thePoints, theIsClosed)
- RaiseIfFailed("MakeSplineBezier", self.CurvesOp)
- self._autoPublish(anObj, theName, "bezier")
- return anObj
-
- ## Create B-Spline curve on the set of points.
- # @param thePoints Sequence of points for the B-Spline curve.
- # @param theIsClosed If True, build a closed curve.
- # @param theDoReordering If TRUE, the algo does not follow the order of
- # \a thePoints but searches for the closest vertex.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created B-Spline curve.
- #
- # @ref tui_creation_curve "Example"
- def MakeInterpol(self, thePoints, theIsClosed=False, theDoReordering=False, theName=None):
- """
- Create B-Spline curve on the set of points.
-
- Parameters:
- thePoints Sequence of points for the B-Spline curve.
- theIsClosed If True, build a closed curve.
- theDoReordering If True, the algo does not follow the order of
- thePoints but searches for the closest vertex.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created B-Spline curve.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.CurvesOp.MakeSplineInterpolation(thePoints, theIsClosed, theDoReordering)
- RaiseIfFailed("MakeInterpol", self.CurvesOp)
- self._autoPublish(anObj, theName, "bspline")
- return anObj
-
- ## Create B-Spline curve on the set of points.
- # @param thePoints Sequence of points for the B-Spline curve.
- # @param theFirstVec Vector object, defining the curve direction at its first point.
- # @param theLastVec Vector object, defining the curve direction at its last point.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created B-Spline curve.
- #
- # @ref tui_creation_curve "Example"
- def MakeInterpolWithTangents(self, thePoints, theFirstVec, theLastVec, theName=None):
- """
- Create B-Spline curve on the set of points.
-
- Parameters:
- thePoints Sequence of points for the B-Spline curve.
- theFirstVec Vector object, defining the curve direction at its first point.
- theLastVec Vector object, defining the curve direction at its last point.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created B-Spline curve.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.CurvesOp.MakeSplineInterpolWithTangents(thePoints, theFirstVec, theLastVec)
- RaiseIfFailed("MakeInterpolWithTangents", self.CurvesOp)
- self._autoPublish(anObj, theName, "bspline")
- return anObj
-
- ## Creates a curve using the parametric definition of the basic points.
- # @param thexExpr parametric equation of the coordinates X.
- # @param theyExpr parametric equation of the coordinates Y.
- # @param thezExpr parametric equation of the coordinates Z.
- # @param theParamMin the minimal value of the parameter.
- # @param theParamMax the maximum value of the parameter.
- # @param theParamStep the number of steps if theNewMethod = True, else step value of the parameter.
- # @param theCurveType the type of the curve.
- # @param theNewMethod flag for switching to the new method if the flag is set to false a deprecated method is used which can lead to a bug.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created curve.
- #
- # @ref tui_creation_curve "Example"
- def MakeCurveParametric(self, thexExpr, theyExpr, thezExpr,
- theParamMin, theParamMax, theParamStep, theCurveType, theNewMethod=False, theName=None ):
- """
- Creates a curve using the parametric definition of the basic points.
-
- Parameters:
- thexExpr parametric equation of the coordinates X.
- theyExpr parametric equation of the coordinates Y.
- thezExpr parametric equation of the coordinates Z.
- theParamMin the minimal value of the parameter.
- theParamMax the maximum value of the parameter.
- theParamStep the number of steps if theNewMethod = True, else step value of the parameter.
- theCurveType the type of the curve.
- theNewMethod flag for switching to the new method if the flag is set to false a deprecated
- method is used which can lead to a bug.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created curve.
- """
- theParamMin,theParamMax,theParamStep,Parameters = ParseParameters(theParamMin,theParamMax,theParamStep)
- if theNewMethod:
- anObj = self.CurvesOp.MakeCurveParametricNew(thexExpr,theyExpr,thezExpr,theParamMin,theParamMax,theParamStep,theCurveType)
- else:
- anObj = self.CurvesOp.MakeCurveParametric(thexExpr,theyExpr,thezExpr,theParamMin,theParamMax,theParamStep,theCurveType)
- RaiseIfFailed("MakeSplineInterpolation", self.CurvesOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "curve")
- return anObj
-
- # end of l4_curves
- ## @}
-
- ## @addtogroup l3_sketcher
- ## @{
-
- ## Create a sketcher (wire or face), following the textual description,
- # passed through theCommand argument. \n
- # Edges of the resulting wire or face will be arcs of circles and/or linear segments. \n
- # Format of the description string have to be the following:
- #
- # "Sketcher[:F x1 y1]:CMD[:CMD[:CMD...]]"
- #
- # Where:
- # - x1, y1 are coordinates of the first sketcher point (zero by default),
- # - CMD is one of
- # - "R angle" : Set the direction by angle
- # - "D dx dy" : Set the direction by DX & DY
- # .
- # \n
- # - "TT x y" : Create segment by point at X & Y
- # - "T dx dy" : Create segment by point with DX & DY
- # - "L length" : Create segment by direction & Length
- # - "IX x" : Create segment by direction & Intersect. X
- # - "IY y" : Create segment by direction & Intersect. Y
- # .
- # \n
- # - "C radius length" : Create arc by direction, radius and length(in degree)
- # - "AA x y": Create arc by point at X & Y
- # - "A dx dy" : Create arc by point with DX & DY
- # - "UU x y radius flag1": Create arc by point at X & Y with given radiUs
- # - "U dx dy radius flag1" : Create arc by point with DX & DY with given radiUs
- # - "EE x y xc yc flag1 flag2": Create arc by point at X & Y with given cEnter coordinates
- # - "E dx dy dxc dyc radius flag1 flag2" : Create arc by point with DX & DY with given cEnter coordinates
- # .
- # \n
- # - "WW" : Close Wire (to finish)
- # - "WF" : Close Wire and build face (to finish)
- # .
- # \n
- # - Flag1 (= reverse) is 0 or 2 ...
- # - if 0 the drawn arc is the one of lower angle (< Pi)
- # - if 2 the drawn arc ius the one of greater angle (> Pi)
- # .
- # \n
- # - Flag2 (= control tolerance) is 0 or 1 ...
- # - if 0 the specified end point can be at a distance of the arc greater than the tolerance (10^-7)
- # - if 1 the wire is built only if the end point is on the arc
- # with a tolerance of 10^-7 on the distance else the creation fails
- #
- # @param theCommand String, defining the sketcher in local
- # coordinates of the working plane.
- # @param theWorkingPlane Nine double values, defining origin,
- # OZ and OX directions of the working plane.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created wire.
- #
- # @ref tui_sketcher_page "Example"
- def MakeSketcher(self, theCommand, theWorkingPlane = [0,0,0, 0,0,1, 1,0,0], theName=None):
- """
- Create a sketcher (wire or face), following the textual description, passed
- through theCommand argument.
- Edges of the resulting wire or face will be arcs of circles and/or linear segments.
- Format of the description string have to be the following:
- "Sketcher[:F x1 y1]:CMD[:CMD[:CMD...]]"
- Where:
- - x1, y1 are coordinates of the first sketcher point (zero by default),
- - CMD is one of
- - "R angle" : Set the direction by angle
- - "D dx dy" : Set the direction by DX & DY
-
- - "TT x y" : Create segment by point at X & Y
- - "T dx dy" : Create segment by point with DX & DY
- - "L length" : Create segment by direction & Length
- - "IX x" : Create segment by direction & Intersect. X
- - "IY y" : Create segment by direction & Intersect. Y
-
- - "C radius length" : Create arc by direction, radius and length(in degree)
- - "AA x y": Create arc by point at X & Y
- - "A dx dy" : Create arc by point with DX & DY
- - "UU x y radius flag1": Create arc by point at X & Y with given radiUs
- - "U dx dy radius flag1" : Create arc by point with DX & DY with given radiUs
- - "EE x y xc yc flag1 flag2": Create arc by point at X & Y with given cEnter coordinates
- - "E dx dy dxc dyc radius flag1 flag2" : Create arc by point with DX & DY with given cEnter coordinates
-
- - "WW" : Close Wire (to finish)
- - "WF" : Close Wire and build face (to finish)
-
- - Flag1 (= reverse) is 0 or 2 ...
- - if 0 the drawn arc is the one of lower angle (< Pi)
- - if 2 the drawn arc ius the one of greater angle (> Pi)
-
- - Flag2 (= control tolerance) is 0 or 1 ...
- - if 0 the specified end point can be at a distance of the arc greater than the tolerance (10^-7)
- - if 1 the wire is built only if the end point is on the arc
- with a tolerance of 10^-7 on the distance else the creation fails
-
- Parameters:
- theCommand String, defining the sketcher in local
- coordinates of the working plane.
- theWorkingPlane Nine double values, defining origin,
- OZ and OX directions of the working plane.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created wire.
- """
- # Example: see GEOM_TestAll.py
- theCommand,Parameters = ParseSketcherCommand(theCommand)
- anObj = self.CurvesOp.MakeSketcher(theCommand, theWorkingPlane)
- RaiseIfFailed("MakeSketcher", self.CurvesOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "wire")
- return anObj
-
- ## Create a sketcher (wire or face), following the textual description,
- # passed through theCommand argument. \n
- # For format of the description string see MakeSketcher() method.\n
- # @param theCommand String, defining the sketcher in local
- # coordinates of the working plane.
- # @param theWorkingPlane Planar Face or LCS(Marker) of the working plane.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created wire.
- #
- # @ref tui_sketcher_page "Example"
- def MakeSketcherOnPlane(self, theCommand, theWorkingPlane, theName=None):
- """
- Create a sketcher (wire or face), following the textual description,
- passed through theCommand argument.
- For format of the description string see geompy.MakeSketcher() method.
-
- Parameters:
- theCommand String, defining the sketcher in local
- coordinates of the working plane.
- theWorkingPlane Planar Face or LCS(Marker) of the working plane.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created wire.
- """
- theCommand,Parameters = ParseSketcherCommand(theCommand)
- anObj = self.CurvesOp.MakeSketcherOnPlane(theCommand, theWorkingPlane)
- RaiseIfFailed("MakeSketcherOnPlane", self.CurvesOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "wire")
- return anObj
-
- ## Create a sketcher wire, following the numerical description,
- # passed through theCoordinates argument. \n
- # @param theCoordinates double values, defining points to create a wire,
- # passing from it.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created wire.
- #
- # @ref tui_3dsketcher_page "Example"
- def Make3DSketcher(self, theCoordinates, theName=None):
- """
- Create a sketcher wire, following the numerical description,
- passed through theCoordinates argument.
-
- Parameters:
- theCoordinates double values, defining points to create a wire,
- passing from it.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM_Object, containing the created wire.
- """
- theCoordinates,Parameters = ParseParameters(theCoordinates)
- anObj = self.CurvesOp.Make3DSketcher(theCoordinates)
- RaiseIfFailed("Make3DSketcher", self.CurvesOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "wire")
- return anObj
-
- ## Obtain a 3D sketcher interface
- # @return An instance of @ref gsketcher.Sketcher3D "Sketcher3D" interface
- #
- # @ref tui_3dsketcher_page "Example"
- def Sketcher3D (self):
- """
- Obtain a 3D sketcher interface.
-
- Example of usage:
- sk = geompy.Sketcher3D()
- sk.addPointsAbsolute(0,0,0, 70,0,0)
- sk.addPointsRelative(0, 0, 130)
- sk.addPointAnglesLength("OXY", 50, 0, 100)
- sk.addPointAnglesLength("OXZ", 30, 80, 130)
- sk.close()
- a3D_Sketcher_1 = sk.wire()
- """
- sk = Sketcher3D (self)
- return sk
-
- # end of l3_sketcher
- ## @}
-
- ## @addtogroup l3_3d_primitives
- ## @{
-
- ## Create a box by coordinates of two opposite vertices.
- #
- # @param x1,y1,z1 double values, defining first point it.
- # @param x2,y2,z2 double values, defining first point it.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created box.
- #
- # @ref tui_creation_box "Example"
- def MakeBox(self, x1, y1, z1, x2, y2, z2, theName=None):
- """
- Create a box by coordinates of two opposite vertices.
-
- Parameters:
- x1,y1,z1 double values, defining first point.
- x2,y2,z2 double values, defining second point.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created box.
- """
- # Example: see GEOM_TestAll.py
- pnt1 = self.MakeVertex(x1,y1,z1)
- pnt2 = self.MakeVertex(x2,y2,z2)
- # note: auto-publishing is done in self.MakeBoxTwoPnt()
- return self.MakeBoxTwoPnt(pnt1, pnt2, theName)
-
- ## Create a box with specified dimensions along the coordinate axes
- # and with edges, parallel to the coordinate axes.
- # Center of the box will be at point (DX/2, DY/2, DZ/2).
- # @param theDX Length of Box edges, parallel to OX axis.
- # @param theDY Length of Box edges, parallel to OY axis.
- # @param theDZ Length of Box edges, parallel to OZ axis.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created box.
- #
- # @ref tui_creation_box "Example"
- def MakeBoxDXDYDZ(self, theDX, theDY, theDZ, theName=None):
- """
- Create a box with specified dimensions along the coordinate axes
- and with edges, parallel to the coordinate axes.
- Center of the box will be at point (DX/2, DY/2, DZ/2).
-
- Parameters:
- theDX Length of Box edges, parallel to OX axis.
- theDY Length of Box edges, parallel to OY axis.
- theDZ Length of Box edges, parallel to OZ axis.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created box.
- """
- # Example: see GEOM_TestAll.py
- theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
- anObj = self.PrimOp.MakeBoxDXDYDZ(theDX, theDY, theDZ)
- RaiseIfFailed("MakeBoxDXDYDZ", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "box")
- return anObj
-
- ## Create a box with two specified opposite vertices,
- # and with edges, parallel to the coordinate axes
- # @param thePnt1 First of two opposite vertices.
- # @param thePnt2 Second of two opposite vertices.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created box.
- #
- # @ref tui_creation_box "Example"
- def MakeBoxTwoPnt(self, thePnt1, thePnt2, theName=None):
- """
- Create a box with two specified opposite vertices,
- and with edges, parallel to the coordinate axes
-
- Parameters:
- thePnt1 First of two opposite vertices.
- thePnt2 Second of two opposite vertices.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created box.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.PrimOp.MakeBoxTwoPnt(thePnt1, thePnt2)
- RaiseIfFailed("MakeBoxTwoPnt", self.PrimOp)
- self._autoPublish(anObj, theName, "box")
- return anObj
-
- ## Create a face with specified dimensions with edges parallel to coordinate axes.
- # @param theH height of Face.
- # @param theW width of Face.
- # @param theOrientation face orientation: 1-OXY, 2-OYZ, 3-OZX
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created face.
- #
- # @ref tui_creation_face "Example"
- def MakeFaceHW(self, theH, theW, theOrientation, theName=None):
- """
- Create a face with specified dimensions with edges parallel to coordinate axes.
-
- Parameters:
- theH height of Face.
- theW width of Face.
- theOrientation face orientation: 1-OXY, 2-OYZ, 3-OZX
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created face.
- """
- # Example: see GEOM_TestAll.py
- theH,theW,Parameters = ParseParameters(theH, theW)
- anObj = self.PrimOp.MakeFaceHW(theH, theW, theOrientation)
- RaiseIfFailed("MakeFaceHW", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "rectangle")
- return anObj
-
- ## Create a face from another plane and two sizes,
- # vertical size and horisontal size.
- # @param theObj Normale vector to the creating face or
- # the face object.
- # @param theH Height (vertical size).
- # @param theW Width (horisontal size).
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created face.
- #
- # @ref tui_creation_face "Example"
- def MakeFaceObjHW(self, theObj, theH, theW, theName=None):
- """
- Create a face from another plane and two sizes,
- vertical size and horisontal size.
-
- Parameters:
- theObj Normale vector to the creating face or
- the face object.
- theH Height (vertical size).
- theW Width (horisontal size).
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM_Object, containing the created face.
- """
- # Example: see GEOM_TestAll.py
- theH,theW,Parameters = ParseParameters(theH, theW)
- anObj = self.PrimOp.MakeFaceObjHW(theObj, theH, theW)
- RaiseIfFailed("MakeFaceObjHW", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "rectangle")
- return anObj
-
- ## Create a disk with given center, normal vector and radius.
- # @param thePnt Disk center.
- # @param theVec Vector, normal to the plane of the disk.
- # @param theR Disk radius.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created disk.
- #
- # @ref tui_creation_disk "Example"
- def MakeDiskPntVecR(self, thePnt, theVec, theR, theName=None):
- """
- Create a disk with given center, normal vector and radius.
-
- Parameters:
- thePnt Disk center.
- theVec Vector, normal to the plane of the disk.
- theR Disk radius.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created disk.
- """
- # Example: see GEOM_TestAll.py
- theR,Parameters = ParseParameters(theR)
- anObj = self.PrimOp.MakeDiskPntVecR(thePnt, theVec, theR)
- RaiseIfFailed("MakeDiskPntVecR", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "disk")
- return anObj
-
- ## Create a disk, passing through three given points
- # @param thePnt1,thePnt2,thePnt3 Points, defining the disk.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created disk.
- #
- # @ref tui_creation_disk "Example"
- def MakeDiskThreePnt(self, thePnt1, thePnt2, thePnt3, theName=None):
- """
- Create a disk, passing through three given points
-
- Parameters:
- thePnt1,thePnt2,thePnt3 Points, defining the disk.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created disk.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.PrimOp.MakeDiskThreePnt(thePnt1, thePnt2, thePnt3)
- RaiseIfFailed("MakeDiskThreePnt", self.PrimOp)
- self._autoPublish(anObj, theName, "disk")
- return anObj
-
- ## Create a disk with specified dimensions along OX-OY coordinate axes.
- # @param theR Radius of Face.
- # @param theOrientation set the orientation belong axis OXY or OYZ or OZX
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created disk.
- #
- # @ref tui_creation_face "Example"
- def MakeDiskR(self, theR, theOrientation, theName=None):
- """
- Create a disk with specified dimensions along OX-OY coordinate axes.
-
- Parameters:
- theR Radius of Face.
- theOrientation set the orientation belong axis OXY or OYZ or OZX
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created disk.
-
- Example of usage:
- Disk3 = geompy.MakeDiskR(100., 1)
- """
- # Example: see GEOM_TestAll.py
- theR,Parameters = ParseParameters(theR)
- anObj = self.PrimOp.MakeDiskR(theR, theOrientation)
- RaiseIfFailed("MakeDiskR", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "disk")
- return anObj
-
- ## Create a cylinder with given base point, axis, radius and height.
- # @param thePnt Central point of cylinder base.
- # @param theAxis Cylinder axis.
- # @param theR Cylinder radius.
- # @param theH Cylinder height.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created cylinder.
- #
- # @ref tui_creation_cylinder "Example"
- def MakeCylinder(self, thePnt, theAxis, theR, theH, theName=None):
- """
- Create a cylinder with given base point, axis, radius and height.
-
- Parameters:
- thePnt Central point of cylinder base.
- theAxis Cylinder axis.
- theR Cylinder radius.
- theH Cylinder height.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created cylinder.
- """
- # Example: see GEOM_TestAll.py
- theR,theH,Parameters = ParseParameters(theR, theH)
- anObj = self.PrimOp.MakeCylinderPntVecRH(thePnt, theAxis, theR, theH)
- RaiseIfFailed("MakeCylinderPntVecRH", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "cylinder")
- return anObj
-
- ## Create a cylinder with given radius and height at
- # the origin of coordinate system. Axis of the cylinder
- # will be collinear to the OZ axis of the coordinate system.
- # @param theR Cylinder radius.
- # @param theH Cylinder height.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created cylinder.
- #
- # @ref tui_creation_cylinder "Example"
- def MakeCylinderRH(self, theR, theH, theName=None):
- """
- Create a cylinder with given radius and height at
- the origin of coordinate system. Axis of the cylinder
- will be collinear to the OZ axis of the coordinate system.
-
- Parameters:
- theR Cylinder radius.
- theH Cylinder height.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created cylinder.
- """
- # Example: see GEOM_TestAll.py
- theR,theH,Parameters = ParseParameters(theR, theH)
- anObj = self.PrimOp.MakeCylinderRH(theR, theH)
- RaiseIfFailed("MakeCylinderRH", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "cylinder")
- return anObj
-
- ## Create a sphere with given center and radius.
- # @param thePnt Sphere center.
- # @param theR Sphere radius.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created sphere.
- #
- # @ref tui_creation_sphere "Example"
- def MakeSpherePntR(self, thePnt, theR, theName=None):
- """
- Create a sphere with given center and radius.
-
- Parameters:
- thePnt Sphere center.
- theR Sphere radius.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created sphere.
- """
- # Example: see GEOM_TestAll.py
- theR,Parameters = ParseParameters(theR)
- anObj = self.PrimOp.MakeSpherePntR(thePnt, theR)
- RaiseIfFailed("MakeSpherePntR", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "sphere")
- return anObj
-
- ## Create a sphere with given center and radius.
- # @param x,y,z Coordinates of sphere center.
- # @param theR Sphere radius.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created sphere.
- #
- # @ref tui_creation_sphere "Example"
- def MakeSphere(self, x, y, z, theR, theName=None):
- """
- Create a sphere with given center and radius.
-
- Parameters:
- x,y,z Coordinates of sphere center.
- theR Sphere radius.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created sphere.
- """
- # Example: see GEOM_TestAll.py
- point = self.MakeVertex(x, y, z)
- # note: auto-publishing is done in self.MakeSpherePntR()
- anObj = self.MakeSpherePntR(point, theR, theName)
- return anObj
-
- ## Create a sphere with given radius at the origin of coordinate system.
- # @param theR Sphere radius.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created sphere.
- #
- # @ref tui_creation_sphere "Example"
- def MakeSphereR(self, theR, theName=None):
- """
- Create a sphere with given radius at the origin of coordinate system.
-
- Parameters:
- theR Sphere radius.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created sphere.
- """
- # Example: see GEOM_TestAll.py
- theR,Parameters = ParseParameters(theR)
- anObj = self.PrimOp.MakeSphereR(theR)
- RaiseIfFailed("MakeSphereR", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "sphere")
- return anObj
-
- ## Create a cone with given base point, axis, height and radiuses.
- # @param thePnt Central point of the first cone base.
- # @param theAxis Cone axis.
- # @param theR1 Radius of the first cone base.
- # @param theR2 Radius of the second cone base.
- # \note If both radiuses are non-zero, the cone will be truncated.
- # \note If the radiuses are equal, a cylinder will be created instead.
- # @param theH Cone height.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created cone.
- #
- # @ref tui_creation_cone "Example"
- def MakeCone(self, thePnt, theAxis, theR1, theR2, theH, theName=None):
- """
- Create a cone with given base point, axis, height and radiuses.
-
- Parameters:
- thePnt Central point of the first cone base.
- theAxis Cone axis.
- theR1 Radius of the first cone base.
- theR2 Radius of the second cone base.
- theH Cone height.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Note:
- If both radiuses are non-zero, the cone will be truncated.
- If the radiuses are equal, a cylinder will be created instead.
-
- Returns:
- New GEOM.GEOM_Object, containing the created cone.
- """
- # Example: see GEOM_TestAll.py
- theR1,theR2,theH,Parameters = ParseParameters(theR1,theR2,theH)
- anObj = self.PrimOp.MakeConePntVecR1R2H(thePnt, theAxis, theR1, theR2, theH)
- RaiseIfFailed("MakeConePntVecR1R2H", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "cone")
- return anObj
-
- ## Create a cone with given height and radiuses at
- # the origin of coordinate system. Axis of the cone will
- # be collinear to the OZ axis of the coordinate system.
- # @param theR1 Radius of the first cone base.
- # @param theR2 Radius of the second cone base.
- # \note If both radiuses are non-zero, the cone will be truncated.
- # \note If the radiuses are equal, a cylinder will be created instead.
- # @param theH Cone height.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created cone.
- #
- # @ref tui_creation_cone "Example"
- def MakeConeR1R2H(self, theR1, theR2, theH, theName=None):
- """
- Create a cone with given height and radiuses at
- the origin of coordinate system. Axis of the cone will
- be collinear to the OZ axis of the coordinate system.
-
- Parameters:
- theR1 Radius of the first cone base.
- theR2 Radius of the second cone base.
- theH Cone height.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Note:
- If both radiuses are non-zero, the cone will be truncated.
- If the radiuses are equal, a cylinder will be created instead.
-
- Returns:
- New GEOM.GEOM_Object, containing the created cone.
- """
- # Example: see GEOM_TestAll.py
- theR1,theR2,theH,Parameters = ParseParameters(theR1,theR2,theH)
- anObj = self.PrimOp.MakeConeR1R2H(theR1, theR2, theH)
- RaiseIfFailed("MakeConeR1R2H", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "cone")
- return anObj
-
- ## Create a torus with given center, normal vector and radiuses.
- # @param thePnt Torus central point.
- # @param theVec Torus axis of symmetry.
- # @param theRMajor Torus major radius.
- # @param theRMinor Torus minor radius.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created torus.
- #
- # @ref tui_creation_torus "Example"
- def MakeTorus(self, thePnt, theVec, theRMajor, theRMinor, theName=None):
- """
- Create a torus with given center, normal vector and radiuses.
-
- Parameters:
- thePnt Torus central point.
- theVec Torus axis of symmetry.
- theRMajor Torus major radius.
- theRMinor Torus minor radius.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created torus.
- """
- # Example: see GEOM_TestAll.py
- theRMajor,theRMinor,Parameters = ParseParameters(theRMajor,theRMinor)
- anObj = self.PrimOp.MakeTorusPntVecRR(thePnt, theVec, theRMajor, theRMinor)
- RaiseIfFailed("MakeTorusPntVecRR", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "torus")
- return anObj
-
- ## Create a torus with given radiuses at the origin of coordinate system.
- # @param theRMajor Torus major radius.
- # @param theRMinor Torus minor radius.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created torus.
- #
- # @ref tui_creation_torus "Example"
- def MakeTorusRR(self, theRMajor, theRMinor, theName=None):
- """
- Create a torus with given radiuses at the origin of coordinate system.
-
- Parameters:
- theRMajor Torus major radius.
- theRMinor Torus minor radius.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created torus.
- """
- # Example: see GEOM_TestAll.py
- theRMajor,theRMinor,Parameters = ParseParameters(theRMajor,theRMinor)
- anObj = self.PrimOp.MakeTorusRR(theRMajor, theRMinor)
- RaiseIfFailed("MakeTorusRR", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "torus")
- return anObj
-
- # end of l3_3d_primitives
- ## @}
-
- ## @addtogroup l3_complex
- ## @{
-
- ## Create a shape by extrusion of the base shape along a vector, defined by two points.
- # @param theBase Base shape to be extruded.
- # @param thePoint1 First end of extrusion vector.
- # @param thePoint2 Second end of extrusion vector.
- # @param theScaleFactor Use it to make prism with scaled second base.
- # Nagative value means not scaled second base.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created prism.
- #
- # @ref tui_creation_prism "Example"
- def MakePrism(self, theBase, thePoint1, thePoint2, theScaleFactor = -1.0, theName=None):
- """
- Create a shape by extrusion of the base shape along a vector, defined by two points.
-
- Parameters:
- theBase Base shape to be extruded.
- thePoint1 First end of extrusion vector.
- thePoint2 Second end of extrusion vector.
- theScaleFactor Use it to make prism with scaled second base.
- Nagative value means not scaled second base.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created prism.
- """
- # Example: see GEOM_TestAll.py
- anObj = None
- Parameters = ""
- if theScaleFactor > 0:
- theScaleFactor,Parameters = ParseParameters(theScaleFactor)
- anObj = self.PrimOp.MakePrismTwoPntWithScaling(theBase, thePoint1, thePoint2, theScaleFactor)
- else:
- anObj = self.PrimOp.MakePrismTwoPnt(theBase, thePoint1, thePoint2)
- RaiseIfFailed("MakePrismTwoPnt", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "prism")
- return anObj
-
- ## Create a shape by extrusion of the base shape along a
- # vector, defined by two points, in 2 Ways (forward/backward).
- # @param theBase Base shape to be extruded.
- # @param thePoint1 First end of extrusion vector.
- # @param thePoint2 Second end of extrusion vector.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created prism.
- #
- # @ref tui_creation_prism "Example"
- def MakePrism2Ways(self, theBase, thePoint1, thePoint2, theName=None):
- """
- Create a shape by extrusion of the base shape along a
- vector, defined by two points, in 2 Ways (forward/backward).
-
- Parameters:
- theBase Base shape to be extruded.
- thePoint1 First end of extrusion vector.
- thePoint2 Second end of extrusion vector.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created prism.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.PrimOp.MakePrismTwoPnt2Ways(theBase, thePoint1, thePoint2)
- RaiseIfFailed("MakePrismTwoPnt", self.PrimOp)
- self._autoPublish(anObj, theName, "prism")
- return anObj
-
- ## Create a shape by extrusion of the base shape along the vector,
- # i.e. all the space, transfixed by the base shape during its translation
- # along the vector on the given distance.
- # @param theBase Base shape to be extruded.
- # @param theVec Direction of extrusion.
- # @param theH Prism dimension along theVec.
- # @param theScaleFactor Use it to make prism with scaled second base.
- # Negative value means not scaled second base.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created prism.
- #
- # @ref tui_creation_prism "Example"
- def MakePrismVecH(self, theBase, theVec, theH, theScaleFactor = -1.0, theName=None):
- """
- Create a shape by extrusion of the base shape along the vector,
- i.e. all the space, transfixed by the base shape during its translation
- along the vector on the given distance.
-
- Parameters:
- theBase Base shape to be extruded.
- theVec Direction of extrusion.
- theH Prism dimension along theVec.
- theScaleFactor Use it to make prism with scaled second base.
- Negative value means not scaled second base.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created prism.
- """
- # Example: see GEOM_TestAll.py
- anObj = None
- Parameters = ""
- if theScaleFactor > 0:
- theH,theScaleFactor,Parameters = ParseParameters(theH,theScaleFactor)
- anObj = self.PrimOp.MakePrismVecHWithScaling(theBase, theVec, theH, theScaleFactor)
- else:
- theH,Parameters = ParseParameters(theH)
- anObj = self.PrimOp.MakePrismVecH(theBase, theVec, theH)
- RaiseIfFailed("MakePrismVecH", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "prism")
- return anObj
-
- ## Create a shape by extrusion of the base shape along the vector,
- # i.e. all the space, transfixed by the base shape during its translation
- # along the vector on the given distance in 2 Ways (forward/backward).
- # @param theBase Base shape to be extruded.
- # @param theVec Direction of extrusion.
- # @param theH Prism dimension along theVec in forward direction.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created prism.
- #
- # @ref tui_creation_prism "Example"
- def MakePrismVecH2Ways(self, theBase, theVec, theH, theName=None):
- """
- Create a shape by extrusion of the base shape along the vector,
- i.e. all the space, transfixed by the base shape during its translation
- along the vector on the given distance in 2 Ways (forward/backward).
-
- Parameters:
- theBase Base shape to be extruded.
- theVec Direction of extrusion.
- theH Prism dimension along theVec in forward direction.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created prism.
- """
- # Example: see GEOM_TestAll.py
- theH,Parameters = ParseParameters(theH)
- anObj = self.PrimOp.MakePrismVecH2Ways(theBase, theVec, theH)
- RaiseIfFailed("MakePrismVecH2Ways", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "prism")
- return anObj
-
- ## Create a shape by extrusion of the base shape along the dx, dy, dz direction
- # @param theBase Base shape to be extruded.
- # @param theDX, theDY, theDZ Directions of extrusion.
- # @param theScaleFactor Use it to make prism with scaled second base.
- # Nagative value means not scaled second base.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created prism.
- #
- # @ref tui_creation_prism "Example"
- def MakePrismDXDYDZ(self, theBase, theDX, theDY, theDZ, theScaleFactor = -1.0, theName=None):
- """
- Create a shape by extrusion of the base shape along the dx, dy, dz direction
-
- Parameters:
- theBase Base shape to be extruded.
- theDX, theDY, theDZ Directions of extrusion.
- theScaleFactor Use it to make prism with scaled second base.
- Nagative value means not scaled second base.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created prism.
- """
- # Example: see GEOM_TestAll.py
- anObj = None
- Parameters = ""
- if theScaleFactor > 0:
- theDX,theDY,theDZ,theScaleFactor,Parameters = ParseParameters(theDX, theDY, theDZ, theScaleFactor)
- anObj = self.PrimOp.MakePrismDXDYDZWithScaling(theBase, theDX, theDY, theDZ, theScaleFactor)
- else:
- theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
- anObj = self.PrimOp.MakePrismDXDYDZ(theBase, theDX, theDY, theDZ)
- RaiseIfFailed("MakePrismDXDYDZ", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "prism")
- return anObj
-
- ## Create a shape by extrusion of the base shape along the dx, dy, dz direction
- # i.e. all the space, transfixed by the base shape during its translation
- # along the vector on the given distance in 2 Ways (forward/backward).
- # @param theBase Base shape to be extruded.
- # @param theDX, theDY, theDZ Directions of extrusion.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created prism.
- #
- # @ref tui_creation_prism "Example"
- def MakePrismDXDYDZ2Ways(self, theBase, theDX, theDY, theDZ, theName=None):
- """
- Create a shape by extrusion of the base shape along the dx, dy, dz direction
- i.e. all the space, transfixed by the base shape during its translation
- along the vector on the given distance in 2 Ways (forward/backward).
-
- Parameters:
- theBase Base shape to be extruded.
- theDX, theDY, theDZ Directions of extrusion.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created prism.
- """
- # Example: see GEOM_TestAll.py
- theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
- anObj = self.PrimOp.MakePrismDXDYDZ2Ways(theBase, theDX, theDY, theDZ)
- RaiseIfFailed("MakePrismDXDYDZ2Ways", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "prism")
- return anObj
-
- ## Create a shape by revolution of the base shape around the axis
- # on the given angle, i.e. all the space, transfixed by the base
- # shape during its rotation around the axis on the given angle.
- # @param theBase Base shape to be rotated.
- # @param theAxis Rotation axis.
- # @param theAngle Rotation angle in radians.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created revolution.
- #
- # @ref tui_creation_revolution "Example"
- def MakeRevolution(self, theBase, theAxis, theAngle, theName=None):
- """
- Create a shape by revolution of the base shape around the axis
- on the given angle, i.e. all the space, transfixed by the base
- shape during its rotation around the axis on the given angle.
-
- Parameters:
- theBase Base shape to be rotated.
- theAxis Rotation axis.
- theAngle Rotation angle in radians.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created revolution.
- """
- # Example: see GEOM_TestAll.py
- theAngle,Parameters = ParseParameters(theAngle)
- anObj = self.PrimOp.MakeRevolutionAxisAngle(theBase, theAxis, theAngle)
- RaiseIfFailed("MakeRevolutionAxisAngle", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "revolution")
- return anObj
-
- ## Create a shape by revolution of the base shape around the axis
- # on the given angle, i.e. all the space, transfixed by the base
- # shape during its rotation around the axis on the given angle in
- # both directions (forward/backward)
- # @param theBase Base shape to be rotated.
- # @param theAxis Rotation axis.
- # @param theAngle Rotation angle in radians.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created revolution.
- #
- # @ref tui_creation_revolution "Example"
- def MakeRevolution2Ways(self, theBase, theAxis, theAngle, theName=None):
- """
- Create a shape by revolution of the base shape around the axis
- on the given angle, i.e. all the space, transfixed by the base
- shape during its rotation around the axis on the given angle in
- both directions (forward/backward).
-
- Parameters:
- theBase Base shape to be rotated.
- theAxis Rotation axis.
- theAngle Rotation angle in radians.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created revolution.
- """
- theAngle,Parameters = ParseParameters(theAngle)
- anObj = self.PrimOp.MakeRevolutionAxisAngle2Ways(theBase, theAxis, theAngle)
- RaiseIfFailed("MakeRevolutionAxisAngle2Ways", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "revolution")
- return anObj
-
- ## Create a filling from the given compound of contours.
- # @param theShape the compound of contours
- # @param theMinDeg a minimal degree of BSpline surface to create
- # @param theMaxDeg a maximal degree of BSpline surface to create
- # @param theTol2D a 2d tolerance to be reached
- # @param theTol3D a 3d tolerance to be reached
- # @param theNbIter a number of iteration of approximation algorithm
- # @param theMethod Kind of method to perform filling operation(see GEOM::filling_oper_method())
- # @param isApprox if True, BSpline curves are generated in the process
- # of surface construction. By default it is False, that means
- # the surface is created using given curves. The usage of
- # Approximation makes the algorithm work slower, but allows
- # building the surface for rather complex cases.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created filling surface.
- #
- # @ref tui_creation_filling "Example"
- def MakeFilling(self, theShape, theMinDeg=2, theMaxDeg=5, theTol2D=0.0001,
- theTol3D=0.0001, theNbIter=0, theMethod=GEOM.FOM_Default, isApprox=0, theName=None):
- """
- Create a filling from the given compound of contours.
-
- Parameters:
- theShape the compound of contours
- theMinDeg a minimal degree of BSpline surface to create
- theMaxDeg a maximal degree of BSpline surface to create
- theTol2D a 2d tolerance to be reached
- theTol3D a 3d tolerance to be reached
- theNbIter a number of iteration of approximation algorithm
- theMethod Kind of method to perform filling operation(see GEOM::filling_oper_method())
- isApprox if True, BSpline curves are generated in the process
- of surface construction. By default it is False, that means
- the surface is created using given curves. The usage of
- Approximation makes the algorithm work slower, but allows
- building the surface for rather complex cases
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created filling surface.
-
- Example of usage:
- filling = geompy.MakeFilling(compound, 2, 5, 0.0001, 0.0001, 5)
- """
- # Example: see GEOM_TestAll.py
- theMinDeg,theMaxDeg,theTol2D,theTol3D,theNbIter,Parameters = ParseParameters(theMinDeg, theMaxDeg, theTol2D, theTol3D, theNbIter)
- anObj = self.PrimOp.MakeFilling(theShape, theMinDeg, theMaxDeg,
- theTol2D, theTol3D, theNbIter,
- theMethod, isApprox)
- RaiseIfFailed("MakeFilling", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "filling")
- return anObj
-
-
- ## Create a filling from the given compound of contours.
- # This method corresponds to MakeFilling with isApprox=True
- # @param theShape the compound of contours
- # @param theMinDeg a minimal degree of BSpline surface to create
- # @param theMaxDeg a maximal degree of BSpline surface to create
- # @param theTol3D a 3d tolerance to be reached
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created filling surface.
- #
- # @ref tui_creation_filling "Example"
- def MakeFillingNew(self, theShape, theMinDeg=2, theMaxDeg=5, theTol3D=0.0001, theName=None):
- """
- Create a filling from the given compound of contours.
- This method corresponds to MakeFilling with isApprox=True
-
- Parameters:
- theShape the compound of contours
- theMinDeg a minimal degree of BSpline surface to create
- theMaxDeg a maximal degree of BSpline surface to create
- theTol3D a 3d tolerance to be reached
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created filling surface.
-
- Example of usage:
- filling = geompy.MakeFillingNew(compound, 2, 5, 0.0001)
- """
- # Example: see GEOM_TestAll.py
- theMinDeg,theMaxDeg,theTol3D,Parameters = ParseParameters(theMinDeg, theMaxDeg, theTol3D)
- anObj = self.PrimOp.MakeFilling(theShape, theMinDeg, theMaxDeg,
- 0, theTol3D, 0, GEOM.FOM_Default, True)
- RaiseIfFailed("MakeFillingNew", self.PrimOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "filling")
- return anObj
-
- ## Create a shell or solid passing through set of sections.Sections should be wires,edges or vertices.
- # @param theSeqSections - set of specified sections.
- # @param theModeSolid - mode defining building solid or shell
- # @param thePreci - precision 3D used for smoothing
- # @param theRuled - mode defining type of the result surfaces (ruled or smoothed).
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created shell or solid.
- #
- # @ref swig_todo "Example"
- def MakeThruSections(self, theSeqSections, theModeSolid, thePreci, theRuled, theName=None):
- """
- Create a shell or solid passing through set of sections.Sections should be wires,edges or vertices.
-
- Parameters:
- theSeqSections - set of specified sections.
- theModeSolid - mode defining building solid or shell
- thePreci - precision 3D used for smoothing
- theRuled - mode defining type of the result surfaces (ruled or smoothed).
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created shell or solid.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.PrimOp.MakeThruSections(theSeqSections,theModeSolid,thePreci,theRuled)
- RaiseIfFailed("MakeThruSections", self.PrimOp)
- self._autoPublish(anObj, theName, "filling")
- return anObj
-
- ## Create a shape by extrusion of the base shape along
- # the path shape. The path shape can be a wire or an edge.
- # @param theBase Base shape to be extruded.
- # @param thePath Path shape to extrude the base shape along it.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created pipe.
- #
- # @ref tui_creation_pipe "Example"
- def MakePipe(self, theBase, thePath, theName=None):
- """
- Create a shape by extrusion of the base shape along
- the path shape. The path shape can be a wire or an edge.
-
- Parameters:
- theBase Base shape to be extruded.
- thePath Path shape to extrude the base shape along it.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created pipe.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.PrimOp.MakePipe(theBase, thePath)
- RaiseIfFailed("MakePipe", self.PrimOp)
- self._autoPublish(anObj, theName, "pipe")
- return anObj
-
- ## Create a shape by extrusion of the profile shape along
- # the path shape. The path shape can be a wire or an edge.
- # the several profiles can be specified in the several locations of path.
- # @param theSeqBases - list of Bases shape to be extruded.
- # @param theLocations - list of locations on the path corresponding
- # specified list of the Bases shapes. Number of locations
- # should be equal to number of bases or list of locations can be empty.
- # @param thePath - Path shape to extrude the base shape along it.
- # @param theWithContact - the mode defining that the section is translated to be in
- # contact with the spine.
- # @param theWithCorrection - defining that the section is rotated to be
- # orthogonal to the spine tangent in the correspondent point
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created pipe.
- #
- # @ref tui_creation_pipe_with_diff_sec "Example"
- def MakePipeWithDifferentSections(self, theSeqBases,
- theLocations, thePath,
- theWithContact, theWithCorrection, theName=None):
- """
- Create a shape by extrusion of the profile shape along
- the path shape. The path shape can be a wire or an edge.
- the several profiles can be specified in the several locations of path.
-
- Parameters:
- theSeqBases - list of Bases shape to be extruded.
- theLocations - list of locations on the path corresponding
- specified list of the Bases shapes. Number of locations
- should be equal to number of bases or list of locations can be empty.
- thePath - Path shape to extrude the base shape along it.
- theWithContact - the mode defining that the section is translated to be in
- contact with the spine(0/1)
- theWithCorrection - defining that the section is rotated to be
- orthogonal to the spine tangent in the correspondent point (0/1)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created pipe.
- """
- anObj = self.PrimOp.MakePipeWithDifferentSections(theSeqBases,
- theLocations, thePath,
- theWithContact, theWithCorrection)
- RaiseIfFailed("MakePipeWithDifferentSections", self.PrimOp)
- self._autoPublish(anObj, theName, "pipe")
- return anObj
-
- ## Create a shape by extrusion of the profile shape along
- # the path shape. The path shape can be a wire or a edge.
- # the several profiles can be specified in the several locations of path.
- # @param theSeqBases - list of Bases shape to be extruded. Base shape must be
- # shell or face. If number of faces in neighbour sections
- # aren't coincided result solid between such sections will
- # be created using external boundaries of this shells.
- # @param theSeqSubBases - list of corresponding sub-shapes of section shapes.
- # This list is used for searching correspondences between
- # faces in the sections. Size of this list must be equal
- # to size of list of base shapes.
- # @param theLocations - list of locations on the path corresponding
- # specified list of the Bases shapes. Number of locations
- # should be equal to number of bases. First and last
- # locations must be coincided with first and last vertexes
- # of path correspondingly.
- # @param thePath - Path shape to extrude the base shape along it.
- # @param theWithContact - the mode defining that the section is translated to be in
- # contact with the spine.
- # @param theWithCorrection - defining that the section is rotated to be
- # orthogonal to the spine tangent in the correspondent point
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created solids.
- #
- # @ref tui_creation_pipe_with_shell_sec "Example"
- def MakePipeWithShellSections(self, theSeqBases, theSeqSubBases,
- theLocations, thePath,
- theWithContact, theWithCorrection, theName=None):
- """
- Create a shape by extrusion of the profile shape along
- the path shape. The path shape can be a wire or a edge.
- the several profiles can be specified in the several locations of path.
-
- Parameters:
- theSeqBases - list of Bases shape to be extruded. Base shape must be
- shell or face. If number of faces in neighbour sections
- aren't coincided result solid between such sections will
- be created using external boundaries of this shells.
- theSeqSubBases - list of corresponding sub-shapes of section shapes.
- This list is used for searching correspondences between
- faces in the sections. Size of this list must be equal
- to size of list of base shapes.
- theLocations - list of locations on the path corresponding
- specified list of the Bases shapes. Number of locations
- should be equal to number of bases. First and last
- locations must be coincided with first and last vertexes
- of path correspondingly.
- thePath - Path shape to extrude the base shape along it.
- theWithContact - the mode defining that the section is translated to be in
- contact with the spine (0/1)
- theWithCorrection - defining that the section is rotated to be
- orthogonal to the spine tangent in the correspondent point (0/1)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created solids.
- """
- anObj = self.PrimOp.MakePipeWithShellSections(theSeqBases, theSeqSubBases,
- theLocations, thePath,
- theWithContact, theWithCorrection)
- RaiseIfFailed("MakePipeWithShellSections", self.PrimOp)
- self._autoPublish(anObj, theName, "pipe")
- return anObj
-
- ## Create a shape by extrusion of the profile shape along
- # the path shape. This function is used only for debug pipe
- # functionality - it is a version of function MakePipeWithShellSections()
- # which give a possibility to recieve information about
- # creating pipe between each pair of sections step by step.
- def MakePipeWithShellSectionsBySteps(self, theSeqBases, theSeqSubBases,
- theLocations, thePath,
- theWithContact, theWithCorrection, theName=None):
- """
- Create a shape by extrusion of the profile shape along
- the path shape. This function is used only for debug pipe
- functionality - it is a version of previous function
- geompy.MakePipeWithShellSections() which give a possibility to
- recieve information about creating pipe between each pair of
- sections step by step.
- """
- res = []
- nbsect = len(theSeqBases)
- nbsubsect = len(theSeqSubBases)
- #print "nbsect = ",nbsect
- for i in range(1,nbsect):
- #print " i = ",i
- tmpSeqBases = [ theSeqBases[i-1], theSeqBases[i] ]
- tmpLocations = [ theLocations[i-1], theLocations[i] ]
- tmpSeqSubBases = []
- if nbsubsect>0: tmpSeqSubBases = [ theSeqSubBases[i-1], theSeqSubBases[i] ]
- anObj = self.PrimOp.MakePipeWithShellSections(tmpSeqBases, tmpSeqSubBases,
- tmpLocations, thePath,
- theWithContact, theWithCorrection)
- if self.PrimOp.IsDone() == 0:
- print "Problems with pipe creation between ",i," and ",i+1," sections"
- RaiseIfFailed("MakePipeWithShellSections", self.PrimOp)
- break
- else:
- print "Pipe between ",i," and ",i+1," sections is OK"
- res.append(anObj)
- pass
- pass
-
- resc = self.MakeCompound(res)
- #resc = self.MakeSewing(res, 0.001)
- #print "resc: ",resc
- self._autoPublish(resc, theName, "pipe")
- return resc
-
- ## Create solids between given sections
- # @param theSeqBases - list of sections (shell or face).
- # @param theLocations - list of corresponding vertexes
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created solids.
- #
- # @ref tui_creation_pipe_without_path "Example"
- def MakePipeShellsWithoutPath(self, theSeqBases, theLocations, theName=None):
- """
- Create solids between given sections
-
- Parameters:
- theSeqBases - list of sections (shell or face).
- theLocations - list of corresponding vertexes
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created solids.
- """
- anObj = self.PrimOp.MakePipeShellsWithoutPath(theSeqBases, theLocations)
- RaiseIfFailed("MakePipeShellsWithoutPath", self.PrimOp)
- self._autoPublish(anObj, theName, "pipe")
- return anObj
-
- ## Create a shape by extrusion of the base shape along
- # the path shape with constant bi-normal direction along the given vector.
- # The path shape can be a wire or an edge.
- # @param theBase Base shape to be extruded.
- # @param thePath Path shape to extrude the base shape along it.
- # @param theVec Vector defines a constant binormal direction to keep the
- # same angle beetween the direction and the sections
- # along the sweep surface.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created pipe.
- #
- # @ref tui_creation_pipe "Example"
- def MakePipeBiNormalAlongVector(self, theBase, thePath, theVec, theName=None):
- """
- Create a shape by extrusion of the base shape along
- the path shape with constant bi-normal direction along the given vector.
- The path shape can be a wire or an edge.
-
- Parameters:
- theBase Base shape to be extruded.
- thePath Path shape to extrude the base shape along it.
- theVec Vector defines a constant binormal direction to keep the
- same angle beetween the direction and the sections
- along the sweep surface.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created pipe.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.PrimOp.MakePipeBiNormalAlongVector(theBase, thePath, theVec)
- RaiseIfFailed("MakePipeBiNormalAlongVector", self.PrimOp)
- self._autoPublish(anObj, theName, "pipe")
- return anObj
-
- ## Makes a thick solid from a face or a shell
- # @param theShape Face or Shell to be thicken
- # @param theThickness Thickness of the resulting solid
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created solid
- #
- def MakeThickSolid(self, theShape, theThickness, theName=None):
- """
- Make a thick solid from a face or a shell
-
- Parameters:
- theShape Face or Shell to be thicken
- theThickness Thickness of the resulting solid
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created solid
- """
- # Example: see GEOM_TestAll.py
- anObj = self.PrimOp.MakeThickening(theShape, theThickness, True)
- RaiseIfFailed("MakeThickening", self.PrimOp)
- self._autoPublish(anObj, theName, "pipe")
- return anObj
-
-
- ## Modifies a face or a shell to make it a thick solid
- # @param theShape Face or Shell to be thicken
- # @param theThickness Thickness of the resulting solid
- #
- # @return The modified shape
- #
- def Thicken(self, theShape, theThickness):
- """
- Modifies a face or a shell to make it a thick solid
-
- Parameters:
- theBase Base shape to be extruded.
- thePath Path shape to extrude the base shape along it.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- The modified shape
- """
- # Example: see GEOM_TestAll.py
- anObj = self.PrimOp.MakeThickening(theShape, theThickness, False)
- RaiseIfFailed("MakeThickening", self.PrimOp)
- return anObj
-
- ## Build a middle path of a pipe-like shape.
- # The path shape can be a wire or an edge.
- # @param theShape It can be closed or unclosed pipe-like shell
- # or a pipe-like solid.
- # @param theBase1, theBase2 Two bases of the supposed pipe. This
- # should be wires or faces of theShape.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @note It is not assumed that exact or approximate copy of theShape
- # can be obtained by applying existing Pipe operation on the
- # resulting "Path" wire taking theBase1 as the base - it is not
- # always possible; though in some particular cases it might work
- # it is not guaranteed. Thus, RestorePath function should not be
- # considered as an exact reverse operation of the Pipe.
- #
- # @return New GEOM.GEOM_Object, containing an edge or wire that represent
- # source pipe's "path".
- #
- # @ref tui_creation_pipe_path "Example"
- def RestorePath (self, theShape, theBase1, theBase2, theName=None):
- """
- Build a middle path of a pipe-like shape.
- The path shape can be a wire or an edge.
-
- Parameters:
- theShape It can be closed or unclosed pipe-like shell
- or a pipe-like solid.
- theBase1, theBase2 Two bases of the supposed pipe. This
- should be wires or faces of theShape.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM_Object, containing an edge or wire that represent
- source pipe's path.
- """
- anObj = self.PrimOp.RestorePath(theShape, theBase1, theBase2)
- RaiseIfFailed("RestorePath", self.PrimOp)
- self._autoPublish(anObj, theName, "path")
- return anObj
-
- ## Build a middle path of a pipe-like shape.
- # The path shape can be a wire or an edge.
- # @param theShape It can be closed or unclosed pipe-like shell
- # or a pipe-like solid.
- # @param listEdges1, listEdges2 Two bases of the supposed pipe. This
- # should be lists of edges of theShape.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @note It is not assumed that exact or approximate copy of theShape
- # can be obtained by applying existing Pipe operation on the
- # resulting "Path" wire taking theBase1 as the base - it is not
- # always possible; though in some particular cases it might work
- # it is not guaranteed. Thus, RestorePath function should not be
- # considered as an exact reverse operation of the Pipe.
- #
- # @return New GEOM.GEOM_Object, containing an edge or wire that represent
- # source pipe's "path".
- #
- # @ref tui_creation_pipe_path "Example"
- def RestorePathEdges (self, theShape, listEdges1, listEdges2, theName=None):
- """
- Build a middle path of a pipe-like shape.
- The path shape can be a wire or an edge.
-
- Parameters:
- theShape It can be closed or unclosed pipe-like shell
- or a pipe-like solid.
- listEdges1, listEdges2 Two bases of the supposed pipe. This
- should be lists of edges of theShape.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM_Object, containing an edge or wire that represent
- source pipe's path.
- """
- anObj = self.PrimOp.RestorePathEdges(theShape, listEdges1, listEdges2)
- RaiseIfFailed("RestorePath", self.PrimOp)
- self._autoPublish(anObj, theName, "path")
- return anObj
-
- # end of l3_complex
- ## @}
-
- ## @addtogroup l3_advanced
- ## @{
-
- ## Create a linear edge with specified ends.
- # @param thePnt1 Point for the first end of edge.
- # @param thePnt2 Point for the second end of edge.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created edge.
- #
- # @ref tui_creation_edge "Example"
- def MakeEdge(self, thePnt1, thePnt2, theName=None):
- """
- Create a linear edge with specified ends.
-
- Parameters:
- thePnt1 Point for the first end of edge.
- thePnt2 Point for the second end of edge.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created edge.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.ShapesOp.MakeEdge(thePnt1, thePnt2)
- RaiseIfFailed("MakeEdge", self.ShapesOp)
- self._autoPublish(anObj, theName, "edge")
- return anObj
-
- ## Create a new edge, corresponding to the given length on the given curve.
- # @param theRefCurve The referenced curve (edge).
- # @param theLength Length on the referenced curve. It can be negative.
- # @param theStartPoint Any point can be selected for it, the new edge will begin
- # at the end of \a theRefCurve, close to the selected point.
- # If None, start from the first point of \a theRefCurve.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created edge.
- #
- # @ref tui_creation_edge "Example"
- def MakeEdgeOnCurveByLength(self, theRefCurve, theLength, theStartPoint = None, theName=None):
- """
- Create a new edge, corresponding to the given length on the given curve.
-
- Parameters:
- theRefCurve The referenced curve (edge).
- theLength Length on the referenced curve. It can be negative.
- theStartPoint Any point can be selected for it, the new edge will begin
- at the end of theRefCurve, close to the selected point.
- If None, start from the first point of theRefCurve.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created edge.
- """
- # Example: see GEOM_TestAll.py
- theLength, Parameters = ParseParameters(theLength)
- anObj = self.ShapesOp.MakeEdgeOnCurveByLength(theRefCurve, theLength, theStartPoint)
- RaiseIfFailed("MakeEdgeOnCurveByLength", self.ShapesOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "edge")
- return anObj
-
- ## Create an edge from specified wire.
- # @param theWire source Wire
- # @param theLinearTolerance linear tolerance value (default = 1e-07)
- # @param theAngularTolerance angular tolerance value (default = 1e-12)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created edge.
- #
- # @ref tui_creation_edge "Example"
- def MakeEdgeWire(self, theWire, theLinearTolerance = 1e-07, theAngularTolerance = 1e-12, theName=None):
- """
- Create an edge from specified wire.
-
- Parameters:
- theWire source Wire
- theLinearTolerance linear tolerance value (default = 1e-07)
- theAngularTolerance angular tolerance value (default = 1e-12)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created edge.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.ShapesOp.MakeEdgeWire(theWire, theLinearTolerance, theAngularTolerance)
- RaiseIfFailed("MakeEdgeWire", self.ShapesOp)
- self._autoPublish(anObj, theName, "edge")
- return anObj
-
- ## Create a wire from the set of edges and wires.
- # @param theEdgesAndWires List of edges and/or wires.
- # @param theTolerance Maximum distance between vertices, that will be merged.
- # Values less than 1e-07 are equivalent to 1e-07 (Precision::Confusion())
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created wire.
- #
- # @ref tui_creation_wire "Example"
- def MakeWire(self, theEdgesAndWires, theTolerance = 1e-07, theName=None):
- """
- Create a wire from the set of edges and wires.
-
- Parameters:
- theEdgesAndWires List of edges and/or wires.
- theTolerance Maximum distance between vertices, that will be merged.
- Values less than 1e-07 are equivalent to 1e-07 (Precision::Confusion()).
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created wire.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.ShapesOp.MakeWire(theEdgesAndWires, theTolerance)
- RaiseIfFailed("MakeWire", self.ShapesOp)
- self._autoPublish(anObj, theName, "wire")
- return anObj
-
- ## Create a face on the given wire.
- # @param theWire closed Wire or Edge to build the face on.
- # @param isPlanarWanted If TRUE, the algorithm tries to build a planar face.
- # If the tolerance of the obtained planar face is less
- # than 1e-06, this face will be returned, otherwise the
- # algorithm tries to build any suitable face on the given
- # wire and prints a warning message.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created face.
- #
- # @ref tui_creation_face "Example"
- def MakeFace(self, theWire, isPlanarWanted, theName=None):
- """
- Create a face on the given wire.
-
- Parameters:
- theWire closed Wire or Edge to build the face on.
- isPlanarWanted If TRUE, the algorithm tries to build a planar face.
- If the tolerance of the obtained planar face is less
- than 1e-06, this face will be returned, otherwise the
- algorithm tries to build any suitable face on the given
- wire and prints a warning message.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created face.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.ShapesOp.MakeFace(theWire, isPlanarWanted)
- if isPlanarWanted and anObj is not None and self.ShapesOp.GetErrorCode() == "MAKE_FACE_TOLERANCE_TOO_BIG":
- print "WARNING: Cannot build a planar face: required tolerance is too big. Non-planar face is built."
- else:
- RaiseIfFailed("MakeFace", self.ShapesOp)
- self._autoPublish(anObj, theName, "face")
- return anObj
-
- ## Create a face on the given wires set.
- # @param theWires List of closed wires or edges to build the face on.
- # @param isPlanarWanted If TRUE, the algorithm tries to build a planar face.
- # If the tolerance of the obtained planar face is less
- # than 1e-06, this face will be returned, otherwise the
- # algorithm tries to build any suitable face on the given
- # wire and prints a warning message.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created face.
- #
- # @ref tui_creation_face "Example"
- def MakeFaceWires(self, theWires, isPlanarWanted, theName=None):
- """
- Create a face on the given wires set.
-
- Parameters:
- theWires List of closed wires or edges to build the face on.
- isPlanarWanted If TRUE, the algorithm tries to build a planar face.
- If the tolerance of the obtained planar face is less
- than 1e-06, this face will be returned, otherwise the
- algorithm tries to build any suitable face on the given
- wire and prints a warning message.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created face.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.ShapesOp.MakeFaceWires(theWires, isPlanarWanted)
- if isPlanarWanted and anObj is not None and self.ShapesOp.GetErrorCode() == "MAKE_FACE_TOLERANCE_TOO_BIG":
- print "WARNING: Cannot build a planar face: required tolerance is too big. Non-planar face is built."
- else:
- RaiseIfFailed("MakeFaceWires", self.ShapesOp)
- self._autoPublish(anObj, theName, "face")
- return anObj
-
- ## See MakeFaceWires() method for details.
- #
- # @ref tui_creation_face "Example 1"
- # \n @ref swig_MakeFaces "Example 2"
- def MakeFaces(self, theWires, isPlanarWanted, theName=None):
- """
- See geompy.MakeFaceWires() method for details.
- """
- # Example: see GEOM_TestOthers.py
- # note: auto-publishing is done in self.MakeFaceWires()
- anObj = self.MakeFaceWires(theWires, isPlanarWanted, theName)
- return anObj
-
- ## Create a shell from the set of faces and shells.
- # @param theFacesAndShells List of faces and/or shells.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created shell.
- #
- # @ref tui_creation_shell "Example"
- def MakeShell(self, theFacesAndShells, theName=None):
- """
- Create a shell from the set of faces and shells.
-
- Parameters:
- theFacesAndShells List of faces and/or shells.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created shell.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.ShapesOp.MakeShell(theFacesAndShells)
- RaiseIfFailed("MakeShell", self.ShapesOp)
- self._autoPublish(anObj, theName, "shell")
- return anObj
-
- ## Create a solid, bounded by the given shells.
- # @param theShells Sequence of bounding shells.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created solid.
- #
- # @ref tui_creation_solid "Example"
- def MakeSolid(self, theShells, theName=None):
- """
- Create a solid, bounded by the given shells.
-
- Parameters:
- theShells Sequence of bounding shells.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created solid.
- """
- # Example: see GEOM_TestAll.py
- if len(theShells) == 1:
- descr = self.MeasuOp.IsGoodForSolid(theShells[0])
- #if len(descr) > 0:
- # raise RuntimeError, "MakeSolidShells : " + descr
- if descr == "WRN_SHAPE_UNCLOSED":
- raise RuntimeError, "MakeSolidShells : Unable to create solid from unclosed shape"
- anObj = self.ShapesOp.MakeSolidShells(theShells)
- RaiseIfFailed("MakeSolidShells", self.ShapesOp)
- self._autoPublish(anObj, theName, "solid")
- return anObj
-
- ## Create a compound of the given shapes.
- # @param theShapes List of shapes to put in compound.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created compound.
- #
- # @ref tui_creation_compound "Example"
- def MakeCompound(self, theShapes, theName=None):
- """
- Create a compound of the given shapes.
-
- Parameters:
- theShapes List of shapes to put in compound.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created compound.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.ShapesOp.MakeCompound(theShapes)
- RaiseIfFailed("MakeCompound", self.ShapesOp)
- self._autoPublish(anObj, theName, "compound")
- return anObj
-
- # end of l3_advanced
- ## @}
-
- ## @addtogroup l2_measure
- ## @{
-
- ## Gives quantity of faces in the given shape.
- # @param theShape Shape to count faces of.
- # @return Quantity of faces.
- #
- # @ref swig_NumberOf "Example"
- def NumberOfFaces(self, theShape):
- """
- Gives quantity of faces in the given shape.
-
- Parameters:
- theShape Shape to count faces of.
-
- Returns:
- Quantity of faces.
- """
- # Example: see GEOM_TestOthers.py
- nb_faces = self.ShapesOp.NumberOfFaces(theShape)
- RaiseIfFailed("NumberOfFaces", self.ShapesOp)
- return nb_faces
-
- ## Gives quantity of edges in the given shape.
- # @param theShape Shape to count edges of.
- # @return Quantity of edges.
- #
- # @ref swig_NumberOf "Example"
- def NumberOfEdges(self, theShape):
- """
- Gives quantity of edges in the given shape.
-
- Parameters:
- theShape Shape to count edges of.
-
- Returns:
- Quantity of edges.
- """
- # Example: see GEOM_TestOthers.py
- nb_edges = self.ShapesOp.NumberOfEdges(theShape)
- RaiseIfFailed("NumberOfEdges", self.ShapesOp)
- return nb_edges
-
- ## Gives quantity of sub-shapes of type theShapeType in the given shape.
- # @param theShape Shape to count sub-shapes of.
- # @param theShapeType Type of sub-shapes to count (see ShapeType())
- # @return Quantity of sub-shapes of given type.
- #
- # @ref swig_NumberOf "Example"
- def NumberOfSubShapes(self, theShape, theShapeType):
- """
- Gives quantity of sub-shapes of type theShapeType in the given shape.
-
- Parameters:
- theShape Shape to count sub-shapes of.
- theShapeType Type of sub-shapes to count (see geompy.ShapeType)
-
- Returns:
- Quantity of sub-shapes of given type.
- """
- # Example: see GEOM_TestOthers.py
- nb_ss = self.ShapesOp.NumberOfSubShapes(theShape, theShapeType)
- RaiseIfFailed("NumberOfSubShapes", self.ShapesOp)
- return nb_ss
-
- ## Gives quantity of solids in the given shape.
- # @param theShape Shape to count solids in.
- # @return Quantity of solids.
- #
- # @ref swig_NumberOf "Example"
- def NumberOfSolids(self, theShape):
- """
- Gives quantity of solids in the given shape.
-
- Parameters:
- theShape Shape to count solids in.
-
- Returns:
- Quantity of solids.
- """
- # Example: see GEOM_TestOthers.py
- nb_solids = self.ShapesOp.NumberOfSubShapes(theShape, ShapeType["SOLID"])
- RaiseIfFailed("NumberOfSolids", self.ShapesOp)
- return nb_solids
-
- # end of l2_measure
- ## @}
-
- ## @addtogroup l3_healing
- ## @{
-
- ## Reverses an orientation the given shape.
- # @param theShape Shape to be reversed.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return The reversed copy of theShape.
- #
- # @ref swig_ChangeOrientation "Example"
- def ChangeOrientation(self, theShape, theName=None):
- """
- Reverses an orientation the given shape.
-
- Parameters:
- theShape Shape to be reversed.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- The reversed copy of theShape.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.ShapesOp.ChangeOrientation(theShape)
- RaiseIfFailed("ChangeOrientation", self.ShapesOp)
- self._autoPublish(anObj, theName, "reversed")
- return anObj
-
- ## See ChangeOrientation() method for details.
- #
- # @ref swig_OrientationChange "Example"
- def OrientationChange(self, theShape, theName=None):
- """
- See geompy.ChangeOrientation method for details.
- """
- # Example: see GEOM_TestOthers.py
- # note: auto-publishing is done in self.ChangeOrientation()
- anObj = self.ChangeOrientation(theShape, theName)
- return anObj
-
- # end of l3_healing
- ## @}
-
- ## @addtogroup l4_obtain
- ## @{
-
- ## Retrieve all free faces from the given shape.
- # Free face is a face, which is not shared between two shells of the shape.
- # @param theShape Shape to find free faces in.
- # @return List of IDs of all free faces, contained in theShape.
- #
- # @ref tui_measurement_tools_page "Example"
- def GetFreeFacesIDs(self,theShape):
- """
- Retrieve all free faces from the given shape.
- Free face is a face, which is not shared between two shells of the shape.
-
- Parameters:
- theShape Shape to find free faces in.
-
- Returns:
- List of IDs of all free faces, contained in theShape.
- """
- # Example: see GEOM_TestOthers.py
- anIDs = self.ShapesOp.GetFreeFacesIDs(theShape)
- RaiseIfFailed("GetFreeFacesIDs", self.ShapesOp)
- return anIDs
-
- ## Get all sub-shapes of theShape1 of the given type, shared with theShape2.
- # @param theShape1 Shape to find sub-shapes in.
- # @param theShape2 Shape to find shared sub-shapes with.
- # @param theShapeType Type of sub-shapes to be retrieved.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of sub-shapes of theShape1, shared with theShape2.
- #
- # @ref swig_GetSharedShapes "Example"
- def GetSharedShapes(self, theShape1, theShape2, theShapeType, theName=None):
- """
- Get all sub-shapes of theShape1 of the given type, shared with theShape2.
-
- Parameters:
- theShape1 Shape to find sub-shapes in.
- theShape2 Shape to find shared sub-shapes with.
- theShapeType Type of sub-shapes to be retrieved.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of sub-shapes of theShape1, shared with theShape2.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetSharedShapes(theShape1, theShape2, theShapeType)
- RaiseIfFailed("GetSharedShapes", self.ShapesOp)
- self._autoPublish(aList, theName, "shared")
- return aList
-
- ## Get all sub-shapes, shared by all shapes in the list theShapes.
- # @param theShapes Shapes to find common sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of objects, that are sub-shapes of all given shapes.
- #
- # @ref swig_GetSharedShapes "Example"
- def GetSharedShapesMulti(self, theShapes, theShapeType, theName=None):
- """
- Get all sub-shapes, shared by all shapes in the list theShapes.
-
- Parameters:
- theShapes Shapes to find common sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of GEOM.GEOM_Object, that are sub-shapes of all given shapes.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetSharedShapesMulti(theShapes, theShapeType)
- RaiseIfFailed("GetSharedShapesMulti", self.ShapesOp)
- self._autoPublish(aList, theName, "shared")
- return aList
-
- ## Find in theShape all sub-shapes of type theShapeType,
- # situated relatively the specified plane by the certain way,
- # defined through theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theAx1 Vector (or line, or linear edge), specifying normal
- # direction and location of the plane to find shapes on.
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of all found sub-shapes.
- #
- # @ref swig_GetShapesOnPlane "Example"
- def GetShapesOnPlane(self, theShape, theShapeType, theAx1, theState, theName=None):
- """
- Find in theShape all sub-shapes of type theShapeType,
- situated relatively the specified plane by the certain way,
- defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theAx1 Vector (or line, or linear edge), specifying normal
- direction and location of the plane to find shapes on.
- theState The state of the sub-shapes to find (see GEOM::shape_state)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of all found sub-shapes.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnPlane(theShape, theShapeType, theAx1, theState)
- RaiseIfFailed("GetShapesOnPlane", self.ShapesOp)
- self._autoPublish(aList, theName, "shapeOnPlane")
- return aList
-
- ## Find in theShape all sub-shapes of type theShapeType,
- # situated relatively the specified plane by the certain way,
- # defined through theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theAx1 Vector (or line, or linear edge), specifying normal
- # direction and location of the plane to find shapes on.
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- #
- # @return List of all found sub-shapes indices.
- #
- # @ref swig_GetShapesOnPlaneIDs "Example"
- def GetShapesOnPlaneIDs(self, theShape, theShapeType, theAx1, theState):
- """
- Find in theShape all sub-shapes of type theShapeType,
- situated relatively the specified plane by the certain way,
- defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theAx1 Vector (or line, or linear edge), specifying normal
- direction and location of the plane to find shapes on.
- theState The state of the sub-shapes to find (see GEOM::shape_state)
-
- Returns:
- List of all found sub-shapes indices.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnPlaneIDs(theShape, theShapeType, theAx1, theState)
- RaiseIfFailed("GetShapesOnPlaneIDs", self.ShapesOp)
- return aList
-
- ## Find in theShape all sub-shapes of type theShapeType,
- # situated relatively the specified plane by the certain way,
- # defined through theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theAx1 Vector (or line, or linear edge), specifying normal
- # direction of the plane to find shapes on.
- # @param thePnt Point specifying location of the plane to find shapes on.
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of all found sub-shapes.
- #
- # @ref swig_GetShapesOnPlaneWithLocation "Example"
- def GetShapesOnPlaneWithLocation(self, theShape, theShapeType, theAx1, thePnt, theState, theName=None):
- """
- Find in theShape all sub-shapes of type theShapeType,
- situated relatively the specified plane by the certain way,
- defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theAx1 Vector (or line, or linear edge), specifying normal
- direction and location of the plane to find shapes on.
- thePnt Point specifying location of the plane to find shapes on.
- theState The state of the sub-shapes to find (see GEOM::shape_state)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of all found sub-shapes.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnPlaneWithLocation(theShape, theShapeType,
- theAx1, thePnt, theState)
- RaiseIfFailed("GetShapesOnPlaneWithLocation", self.ShapesOp)
- self._autoPublish(aList, theName, "shapeOnPlane")
- return aList
-
- ## Find in theShape all sub-shapes of type theShapeType,
- # situated relatively the specified plane by the certain way,
- # defined through theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theAx1 Vector (or line, or linear edge), specifying normal
- # direction of the plane to find shapes on.
- # @param thePnt Point specifying location of the plane to find shapes on.
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- #
- # @return List of all found sub-shapes indices.
- #
- # @ref swig_GetShapesOnPlaneWithLocationIDs "Example"
- def GetShapesOnPlaneWithLocationIDs(self, theShape, theShapeType, theAx1, thePnt, theState):
- """
- Find in theShape all sub-shapes of type theShapeType,
- situated relatively the specified plane by the certain way,
- defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theAx1 Vector (or line, or linear edge), specifying normal
- direction and location of the plane to find shapes on.
- thePnt Point specifying location of the plane to find shapes on.
- theState The state of the sub-shapes to find (see GEOM::shape_state)
-
- Returns:
- List of all found sub-shapes indices.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnPlaneWithLocationIDs(theShape, theShapeType,
- theAx1, thePnt, theState)
- RaiseIfFailed("GetShapesOnPlaneWithLocationIDs", self.ShapesOp)
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
- # the specified cylinder by the certain way, defined through \a theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theAxis Vector (or line, or linear edge), specifying
- # axis of the cylinder to find shapes on.
- # @param theRadius Radius of the cylinder to find shapes on.
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of all found sub-shapes.
- #
- # @ref swig_GetShapesOnCylinder "Example"
- def GetShapesOnCylinder(self, theShape, theShapeType, theAxis, theRadius, theState, theName=None):
- """
- Find in theShape all sub-shapes of type theShapeType, situated relatively
- the specified cylinder by the certain way, defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theAxis Vector (or line, or linear edge), specifying
- axis of the cylinder to find shapes on.
- theRadius Radius of the cylinder to find shapes on.
- theState The state of the sub-shapes to find (see GEOM::shape_state)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of all found sub-shapes.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnCylinder(theShape, theShapeType, theAxis, theRadius, theState)
- RaiseIfFailed("GetShapesOnCylinder", self.ShapesOp)
- self._autoPublish(aList, theName, "shapeOnCylinder")
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
- # the specified cylinder by the certain way, defined through \a theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theAxis Vector (or line, or linear edge), specifying
- # axis of the cylinder to find shapes on.
- # @param theRadius Radius of the cylinder to find shapes on.
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- #
- # @return List of all found sub-shapes indices.
- #
- # @ref swig_GetShapesOnCylinderIDs "Example"
- def GetShapesOnCylinderIDs(self, theShape, theShapeType, theAxis, theRadius, theState):
- """
- Find in theShape all sub-shapes of type theShapeType, situated relatively
- the specified cylinder by the certain way, defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theAxis Vector (or line, or linear edge), specifying
- axis of the cylinder to find shapes on.
- theRadius Radius of the cylinder to find shapes on.
- theState The state of the sub-shapes to find (see GEOM::shape_state)
-
- Returns:
- List of all found sub-shapes indices.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnCylinderIDs(theShape, theShapeType, theAxis, theRadius, theState)
- RaiseIfFailed("GetShapesOnCylinderIDs", self.ShapesOp)
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
- # the specified cylinder by the certain way, defined through \a theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theAxis Vector (or line, or linear edge), specifying
- # axis of the cylinder to find shapes on.
- # @param thePnt Point specifying location of the bottom of the cylinder.
- # @param theRadius Radius of the cylinder to find shapes on.
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of all found sub-shapes.
- #
- # @ref swig_GetShapesOnCylinderWithLocation "Example"
- def GetShapesOnCylinderWithLocation(self, theShape, theShapeType, theAxis, thePnt, theRadius, theState, theName=None):
- """
- Find in theShape all sub-shapes of type theShapeType, situated relatively
- the specified cylinder by the certain way, defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theAxis Vector (or line, or linear edge), specifying
- axis of the cylinder to find shapes on.
- theRadius Radius of the cylinder to find shapes on.
- theState The state of the sub-shapes to find (see GEOM::shape_state)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of all found sub-shapes.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnCylinderWithLocation(theShape, theShapeType, theAxis, thePnt, theRadius, theState)
- RaiseIfFailed("GetShapesOnCylinderWithLocation", self.ShapesOp)
- self._autoPublish(aList, theName, "shapeOnCylinder")
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
- # the specified cylinder by the certain way, defined through \a theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theAxis Vector (or line, or linear edge), specifying
- # axis of the cylinder to find shapes on.
- # @param thePnt Point specifying location of the bottom of the cylinder.
- # @param theRadius Radius of the cylinder to find shapes on.
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- #
- # @return List of all found sub-shapes indices
- #
- # @ref swig_GetShapesOnCylinderWithLocationIDs "Example"
- def GetShapesOnCylinderWithLocationIDs(self, theShape, theShapeType, theAxis, thePnt, theRadius, theState):
- """
- Find in theShape all sub-shapes of type theShapeType, situated relatively
- the specified cylinder by the certain way, defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theAxis Vector (or line, or linear edge), specifying
- axis of the cylinder to find shapes on.
- theRadius Radius of the cylinder to find shapes on.
- theState The state of the sub-shapes to find (see GEOM::shape_state)
-
- Returns:
- List of all found sub-shapes indices.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnCylinderWithLocationIDs(theShape, theShapeType, theAxis, thePnt, theRadius, theState)
- RaiseIfFailed("GetShapesOnCylinderWithLocationIDs", self.ShapesOp)
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
- # the specified sphere by the certain way, defined through \a theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theCenter Point, specifying center of the sphere to find shapes on.
- # @param theRadius Radius of the sphere to find shapes on.
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of all found sub-shapes.
- #
- # @ref swig_GetShapesOnSphere "Example"
- def GetShapesOnSphere(self, theShape, theShapeType, theCenter, theRadius, theState, theName=None):
- """
- Find in theShape all sub-shapes of type theShapeType, situated relatively
- the specified sphere by the certain way, defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theCenter Point, specifying center of the sphere to find shapes on.
- theRadius Radius of the sphere to find shapes on.
- theState The state of the sub-shapes to find (see GEOM::shape_state)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of all found sub-shapes.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnSphere(theShape, theShapeType, theCenter, theRadius, theState)
- RaiseIfFailed("GetShapesOnSphere", self.ShapesOp)
- self._autoPublish(aList, theName, "shapeOnSphere")
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
- # the specified sphere by the certain way, defined through \a theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theCenter Point, specifying center of the sphere to find shapes on.
- # @param theRadius Radius of the sphere to find shapes on.
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- #
- # @return List of all found sub-shapes indices.
- #
- # @ref swig_GetShapesOnSphereIDs "Example"
- def GetShapesOnSphereIDs(self, theShape, theShapeType, theCenter, theRadius, theState):
- """
- Find in theShape all sub-shapes of type theShapeType, situated relatively
- the specified sphere by the certain way, defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theCenter Point, specifying center of the sphere to find shapes on.
- theRadius Radius of the sphere to find shapes on.
- theState The state of the sub-shapes to find (see GEOM::shape_state)
-
- Returns:
- List of all found sub-shapes indices.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnSphereIDs(theShape, theShapeType, theCenter, theRadius, theState)
- RaiseIfFailed("GetShapesOnSphereIDs", self.ShapesOp)
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
- # the specified quadrangle by the certain way, defined through \a theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theTopLeftPoint Point, specifying top left corner of a quadrangle
- # @param theTopRigthPoint Point, specifying top right corner of a quadrangle
- # @param theBottomLeftPoint Point, specifying bottom left corner of a quadrangle
- # @param theBottomRigthPoint Point, specifying bottom right corner of a quadrangle
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of all found sub-shapes.
- #
- # @ref swig_GetShapesOnQuadrangle "Example"
- def GetShapesOnQuadrangle(self, theShape, theShapeType,
- theTopLeftPoint, theTopRigthPoint,
- theBottomLeftPoint, theBottomRigthPoint, theState, theName=None):
- """
- Find in theShape all sub-shapes of type theShapeType, situated relatively
- the specified quadrangle by the certain way, defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theTopLeftPoint Point, specifying top left corner of a quadrangle
- theTopRigthPoint Point, specifying top right corner of a quadrangle
- theBottomLeftPoint Point, specifying bottom left corner of a quadrangle
- theBottomRigthPoint Point, specifying bottom right corner of a quadrangle
- theState The state of the sub-shapes to find (see GEOM::shape_state)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of all found sub-shapes.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnQuadrangle(theShape, theShapeType,
- theTopLeftPoint, theTopRigthPoint,
- theBottomLeftPoint, theBottomRigthPoint, theState)
- RaiseIfFailed("GetShapesOnQuadrangle", self.ShapesOp)
- self._autoPublish(aList, theName, "shapeOnQuadrangle")
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
- # the specified quadrangle by the certain way, defined through \a theState parameter.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theTopLeftPoint Point, specifying top left corner of a quadrangle
- # @param theTopRigthPoint Point, specifying top right corner of a quadrangle
- # @param theBottomLeftPoint Point, specifying bottom left corner of a quadrangle
- # @param theBottomRigthPoint Point, specifying bottom right corner of a quadrangle
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- #
- # @return List of all found sub-shapes indices.
- #
- # @ref swig_GetShapesOnQuadrangleIDs "Example"
- def GetShapesOnQuadrangleIDs(self, theShape, theShapeType,
- theTopLeftPoint, theTopRigthPoint,
- theBottomLeftPoint, theBottomRigthPoint, theState):
- """
- Find in theShape all sub-shapes of type theShapeType, situated relatively
- the specified quadrangle by the certain way, defined through theState parameter.
-
- Parameters:
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theTopLeftPoint Point, specifying top left corner of a quadrangle
- theTopRigthPoint Point, specifying top right corner of a quadrangle
- theBottomLeftPoint Point, specifying bottom left corner of a quadrangle
- theBottomRigthPoint Point, specifying bottom right corner of a quadrangle
- theState The state of the sub-shapes to find (see GEOM::shape_state)
-
- Returns:
- List of all found sub-shapes indices.
- """
-
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnQuadrangleIDs(theShape, theShapeType,
- theTopLeftPoint, theTopRigthPoint,
- theBottomLeftPoint, theBottomRigthPoint, theState)
- RaiseIfFailed("GetShapesOnQuadrangleIDs", self.ShapesOp)
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
- # the specified \a theBox by the certain way, defined through \a theState parameter.
- # @param theBox Shape for relative comparing.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of all found sub-shapes.
- #
- # @ref swig_GetShapesOnBox "Example"
- def GetShapesOnBox(self, theBox, theShape, theShapeType, theState, theName=None):
- """
- Find in theShape all sub-shapes of type theShapeType, situated relatively
- the specified theBox by the certain way, defined through theState parameter.
-
- Parameters:
- theBox Shape for relative comparing.
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theState The state of the sub-shapes to find (see GEOM::shape_state)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of all found sub-shapes.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnBox(theBox, theShape, theShapeType, theState)
- RaiseIfFailed("GetShapesOnBox", self.ShapesOp)
- self._autoPublish(aList, theName, "shapeOnBox")
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
- # the specified \a theBox by the certain way, defined through \a theState parameter.
- # @param theBox Shape for relative comparing.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- #
- # @return List of all found sub-shapes indices.
- #
- # @ref swig_GetShapesOnBoxIDs "Example"
- def GetShapesOnBoxIDs(self, theBox, theShape, theShapeType, theState):
- """
- Find in theShape all sub-shapes of type theShapeType, situated relatively
- the specified theBox by the certain way, defined through theState parameter.
-
- Parameters:
- theBox Shape for relative comparing.
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theState The state of the sub-shapes to find (see GEOM::shape_state)
-
- Returns:
- List of all found sub-shapes indices.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnBoxIDs(theBox, theShape, theShapeType, theState)
- RaiseIfFailed("GetShapesOnBoxIDs", self.ShapesOp)
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType,
- # situated relatively the specified \a theCheckShape by the
- # certain way, defined through \a theState parameter.
- # @param theCheckShape Shape for relative comparing. It must be a solid.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of all found sub-shapes.
- #
- # @ref swig_GetShapesOnShape "Example"
- def GetShapesOnShape(self, theCheckShape, theShape, theShapeType, theState, theName=None):
- """
- Find in theShape all sub-shapes of type theShapeType,
- situated relatively the specified theCheckShape by the
- certain way, defined through theState parameter.
-
- Parameters:
- theCheckShape Shape for relative comparing. It must be a solid.
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theState The state of the sub-shapes to find (see GEOM::shape_state)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of all found sub-shapes.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnShape(theCheckShape, theShape,
- theShapeType, theState)
- RaiseIfFailed("GetShapesOnShape", self.ShapesOp)
- self._autoPublish(aList, theName, "shapeOnShape")
- return aList
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType,
- # situated relatively the specified \a theCheckShape by the
- # certain way, defined through \a theState parameter.
- # @param theCheckShape Shape for relative comparing. It must be a solid.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return All found sub-shapes as compound.
- #
- # @ref swig_GetShapesOnShapeAsCompound "Example"
- def GetShapesOnShapeAsCompound(self, theCheckShape, theShape, theShapeType, theState, theName=None):
- """
- Find in theShape all sub-shapes of type theShapeType,
- situated relatively the specified theCheckShape by the
- certain way, defined through theState parameter.
-
- Parameters:
- theCheckShape Shape for relative comparing. It must be a solid.
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theState The state of the sub-shapes to find (see GEOM::shape_state)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- All found sub-shapes as compound.
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.ShapesOp.GetShapesOnShapeAsCompound(theCheckShape, theShape,
- theShapeType, theState)
- RaiseIfFailed("GetShapesOnShapeAsCompound", self.ShapesOp)
- self._autoPublish(anObj, theName, "shapeOnShape")
- return anObj
-
- ## Find in \a theShape all sub-shapes of type \a theShapeType,
- # situated relatively the specified \a theCheckShape by the
- # certain way, defined through \a theState parameter.
- # @param theCheckShape Shape for relative comparing. It must be a solid.
- # @param theShape Shape to find sub-shapes of.
- # @param theShapeType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theState The state of the sub-shapes to find (see GEOM::shape_state)
- #
- # @return List of all found sub-shapes indices.
- #
- # @ref swig_GetShapesOnShapeIDs "Example"
- def GetShapesOnShapeIDs(self, theCheckShape, theShape, theShapeType, theState):
- """
- Find in theShape all sub-shapes of type theShapeType,
- situated relatively the specified theCheckShape by the
- certain way, defined through theState parameter.
-
- Parameters:
- theCheckShape Shape for relative comparing. It must be a solid.
- theShape Shape to find sub-shapes of.
- theShapeType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theState The state of the sub-shapes to find (see GEOM::shape_state)
-
- Returns:
- List of all found sub-shapes indices.
- """
- # Example: see GEOM_TestOthers.py
- aList = self.ShapesOp.GetShapesOnShapeIDs(theCheckShape, theShape,
- theShapeType, theState)
- RaiseIfFailed("GetShapesOnShapeIDs", self.ShapesOp)
- return aList
-
- ## Get sub-shape(s) of theShapeWhere, which are
- # coincident with \a theShapeWhat or could be a part of it.
- # @param theShapeWhere Shape to find sub-shapes of.
- # @param theShapeWhat Shape, specifying what to find.
- # @param isNewImplementation implementation of GetInPlace functionality
- # (default = False, old alghorithm based on shape properties)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return Group of all found sub-shapes or a single found sub-shape.
- #
- # @note This function has a restriction on argument shapes.
- # If \a theShapeWhere has curved parts with significantly
- # outstanding centres (i.e. the mass centre of a part is closer to
- # \a theShapeWhat than to the part), such parts will not be found.
- # @image html get_in_place_lost_part.png
- #
- # @ref swig_GetInPlace "Example"
- def GetInPlace(self, theShapeWhere, theShapeWhat, isNewImplementation = False, theName=None):
- """
- Get sub-shape(s) of theShapeWhere, which are
- coincident with theShapeWhat or could be a part of it.
-
- Parameters:
- theShapeWhere Shape to find sub-shapes of.
- theShapeWhat Shape, specifying what to find.
- isNewImplementation Implementation of GetInPlace functionality
- (default = False, old alghorithm based on shape properties)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- Group of all found sub-shapes or a single found sub-shape.
-
-
- Note:
- This function has a restriction on argument shapes.
- If theShapeWhere has curved parts with significantly
- outstanding centres (i.e. the mass centre of a part is closer to
- theShapeWhat than to the part), such parts will not be found.
- """
- # Example: see GEOM_TestOthers.py
- anObj = None
- if isNewImplementation:
- anObj = self.ShapesOp.GetInPlace(theShapeWhere, theShapeWhat)
- else:
- anObj = self.ShapesOp.GetInPlaceOld(theShapeWhere, theShapeWhat)
- pass
- RaiseIfFailed("GetInPlace", self.ShapesOp)
- self._autoPublish(anObj, theName, "inplace")
- return anObj
-
- ## Get sub-shape(s) of \a theShapeWhere, which are
- # coincident with \a theShapeWhat or could be a part of it.
- #
- # Implementation of this method is based on a saved history of an operation,
- # produced \a theShapeWhere. The \a theShapeWhat must be among this operation's
- # arguments (an argument shape or a sub-shape of an argument shape).
- # The operation could be the Partition or one of boolean operations,
- # performed on simple shapes (not on compounds).
- #
- # @param theShapeWhere Shape to find sub-shapes of.
- # @param theShapeWhat Shape, specifying what to find (must be in the
- # building history of the ShapeWhere).
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return Group of all found sub-shapes or a single found sub-shape.
- #
- # @ref swig_GetInPlace "Example"
- def GetInPlaceByHistory(self, theShapeWhere, theShapeWhat, theName=None):
- """
- Implementation of this method is based on a saved history of an operation,
- produced theShapeWhere. The theShapeWhat must be among this operation's
- arguments (an argument shape or a sub-shape of an argument shape).
- The operation could be the Partition or one of boolean operations,
- performed on simple shapes (not on compounds).
-
- Parameters:
- theShapeWhere Shape to find sub-shapes of.
- theShapeWhat Shape, specifying what to find (must be in the
- building history of the ShapeWhere).
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- Group of all found sub-shapes or a single found sub-shape.
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.ShapesOp.GetInPlaceByHistory(theShapeWhere, theShapeWhat)
- RaiseIfFailed("GetInPlaceByHistory", self.ShapesOp)
- self._autoPublish(anObj, theName, "inplace")
- return anObj
-
- ## Get sub-shape of theShapeWhere, which is
- # equal to \a theShapeWhat.
- # @param theShapeWhere Shape to find sub-shape of.
- # @param theShapeWhat Shape, specifying what to find.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object for found sub-shape.
- #
- # @ref swig_GetSame "Example"
- def GetSame(self, theShapeWhere, theShapeWhat, theName=None):
- """
- Get sub-shape of theShapeWhere, which is
- equal to theShapeWhat.
-
- Parameters:
- theShapeWhere Shape to find sub-shape of.
- theShapeWhat Shape, specifying what to find.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object for found sub-shape.
- """
- anObj = self.ShapesOp.GetSame(theShapeWhere, theShapeWhat)
- RaiseIfFailed("GetSame", self.ShapesOp)
- self._autoPublish(anObj, theName, "sameShape")
- return anObj
-
-
- ## Get sub-shape indices of theShapeWhere, which is
- # equal to \a theShapeWhat.
- # @param theShapeWhere Shape to find sub-shape of.
- # @param theShapeWhat Shape, specifying what to find.
- # @return List of all found sub-shapes indices.
- #
- # @ref swig_GetSame "Example"
- def GetSameIDs(self, theShapeWhere, theShapeWhat):
- """
- Get sub-shape indices of theShapeWhere, which is
- equal to theShapeWhat.
-
- Parameters:
- theShapeWhere Shape to find sub-shape of.
- theShapeWhat Shape, specifying what to find.
-
- Returns:
- List of all found sub-shapes indices.
- """
- anObj = self.ShapesOp.GetSameIDs(theShapeWhere, theShapeWhat)
- RaiseIfFailed("GetSameIDs", self.ShapesOp)
- return anObj
-
-
- # end of l4_obtain
- ## @}
-
- ## @addtogroup l4_access
- ## @{
-
- ## Obtain a composite sub-shape of aShape, composed from sub-shapes
- # of aShape, selected by their unique IDs inside aShape
- # @param aShape Shape to get sub-shape of.
- # @param ListOfID List of sub-shapes indices.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return Found sub-shape.
- #
- # @ref swig_all_decompose "Example"
- def GetSubShape(self, aShape, ListOfID, theName=None):
- """
- Obtain a composite sub-shape of aShape, composed from sub-shapes
- of aShape, selected by their unique IDs inside aShape
-
- Parameters:
- aShape Shape to get sub-shape of.
- ListOfID List of sub-shapes indices.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- Found sub-shape.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.AddSubShape(aShape,ListOfID)
- self._autoPublish(anObj, theName, "subshape")
- return anObj
-
- ## Obtain unique ID of sub-shape aSubShape inside aShape
- # of aShape, selected by their unique IDs inside aShape
- # @param aShape Shape to get sub-shape of.
- # @param aSubShape Sub-shapes of aShape.
- # @return ID of found sub-shape.
- #
- # @ref swig_all_decompose "Example"
- def GetSubShapeID(self, aShape, aSubShape):
- """
- Obtain unique ID of sub-shape aSubShape inside aShape
- of aShape, selected by their unique IDs inside aShape
-
- Parameters:
- aShape Shape to get sub-shape of.
- aSubShape Sub-shapes of aShape.
-
- Returns:
- ID of found sub-shape.
- """
- # Example: see GEOM_TestAll.py
- anID = self.LocalOp.GetSubShapeIndex(aShape, aSubShape)
- RaiseIfFailed("GetSubShapeIndex", self.LocalOp)
- return anID
-
- ## Obtain unique IDs of sub-shapes aSubShapes inside aShape
- # This function is provided for performance purpose. The complexity is O(n) with n
- # the number of subobjects of aShape
- # @param aShape Shape to get sub-shape of.
- # @param aSubShapes Sub-shapes of aShape.
- # @return list of IDs of found sub-shapes.
- #
- # @ref swig_all_decompose "Example"
- def GetSubShapesIDs(self, aShape, aSubShapes):
- """
- Obtain a list of IDs of sub-shapes aSubShapes inside aShape
- This function is provided for performance purpose. The complexity is O(n) with n
- the number of subobjects of aShape
-
- Parameters:
- aShape Shape to get sub-shape of.
- aSubShapes Sub-shapes of aShape.
-
- Returns:
- List of IDs of found sub-shape.
- """
- # Example: see GEOM_TestAll.py
- anIDs = self.ShapesOp.GetSubShapesIndices(aShape, aSubShapes)
- RaiseIfFailed("GetSubShapesIndices", self.ShapesOp)
- return anIDs
-
- # end of l4_access
- ## @}
-
- ## @addtogroup l4_decompose
- ## @{
-
- ## Get all sub-shapes and groups of \a theShape,
- # that were created already by any other methods.
- # @param theShape Any shape.
- # @param theGroupsOnly If this parameter is TRUE, only groups will be
- # returned, else all found sub-shapes and groups.
- # @return List of existing sub-objects of \a theShape.
- #
- # @ref swig_all_decompose "Example"
- def GetExistingSubObjects(self, theShape, theGroupsOnly = False):
- """
- Get all sub-shapes and groups of theShape,
- that were created already by any other methods.
-
- Parameters:
- theShape Any shape.
- theGroupsOnly If this parameter is TRUE, only groups will be
- returned, else all found sub-shapes and groups.
-
- Returns:
- List of existing sub-objects of theShape.
- """
- # Example: see GEOM_TestAll.py
- ListObj = self.ShapesOp.GetExistingSubObjects(theShape, theGroupsOnly)
- RaiseIfFailed("GetExistingSubObjects", self.ShapesOp)
- return ListObj
-
- ## Get all groups of \a theShape,
- # that were created already by any other methods.
- # @param theShape Any shape.
- # @return List of existing groups of \a theShape.
- #
- # @ref swig_all_decompose "Example"
- def GetGroups(self, theShape):
- """
- Get all groups of theShape,
- that were created already by any other methods.
-
- Parameters:
- theShape Any shape.
-
- Returns:
- List of existing groups of theShape.
- """
- # Example: see GEOM_TestAll.py
- ListObj = self.ShapesOp.GetExistingSubObjects(theShape, True)
- RaiseIfFailed("GetExistingSubObjects", self.ShapesOp)
- return ListObj
-
- ## Explode a shape on sub-shapes of a given type.
- # If the shape itself matches the type, it is also returned.
- # @param aShape Shape to be exploded.
- # @param aType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of sub-shapes of type theShapeType, contained in theShape.
- #
- # @ref swig_all_decompose "Example"
- def SubShapeAll(self, aShape, aType, theName=None):
- """
- Explode a shape on sub-shapes of a given type.
- If the shape itself matches the type, it is also returned.
-
- Parameters:
- aShape Shape to be exploded.
- aType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of sub-shapes of type theShapeType, contained in theShape.
- """
- # Example: see GEOM_TestAll.py
- ListObj = self.ShapesOp.MakeAllSubShapes(aShape, EnumToLong( aType ), False)
- RaiseIfFailed("SubShapeAll", self.ShapesOp)
- self._autoPublish(ListObj, theName, "subshape")
- return ListObj
-
- ## Explode a shape on sub-shapes of a given type.
- # @param aShape Shape to be exploded.
- # @param aType Type of sub-shapes to be retrieved (see ShapeType())
- # @return List of IDs of sub-shapes.
- #
- # @ref swig_all_decompose "Example"
- def SubShapeAllIDs(self, aShape, aType):
- """
- Explode a shape on sub-shapes of a given type.
-
- Parameters:
- aShape Shape to be exploded (see geompy.ShapeType)
- aType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-
- Returns:
- List of IDs of sub-shapes.
- """
- ListObj = self.ShapesOp.GetAllSubShapesIDs(aShape, EnumToLong( aType ), False)
- RaiseIfFailed("SubShapeAllIDs", self.ShapesOp)
- return ListObj
-
- ## Obtain a compound of sub-shapes of aShape,
- # selected by they indices in list of all sub-shapes of type aType.
- # Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
- # @param aShape Shape to get sub-shape of.
- # @param ListOfInd List of sub-shapes indices.
- # @param aType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return A compound of sub-shapes of aShape.
- #
- # @ref swig_all_decompose "Example"
- def SubShape(self, aShape, aType, ListOfInd, theName=None):
- """
- Obtain a compound of sub-shapes of aShape,
- selected by they indices in list of all sub-shapes of type aType.
- Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
-
- Parameters:
- aShape Shape to get sub-shape of.
- ListOfID List of sub-shapes indices.
- aType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- A compound of sub-shapes of aShape.
- """
- # Example: see GEOM_TestAll.py
- ListOfIDs = []
- AllShapeIDsList = self.SubShapeAllIDs(aShape, EnumToLong( aType ))
- for ind in ListOfInd:
- ListOfIDs.append(AllShapeIDsList[ind - 1])
- # note: auto-publishing is done in self.GetSubShape()
- anObj = self.GetSubShape(aShape, ListOfIDs, theName)
- return anObj
-
- ## Explode a shape on sub-shapes of a given type.
- # Sub-shapes will be sorted by coordinates of their gravity centers.
- # If the shape itself matches the type, it is also returned.
- # @param aShape Shape to be exploded.
- # @param aType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of sub-shapes of type theShapeType, contained in theShape.
- #
- # @ref swig_SubShapeAllSorted "Example"
- def SubShapeAllSortedCentres(self, aShape, aType, theName=None):
- """
- Explode a shape on sub-shapes of a given type.
- Sub-shapes will be sorted by coordinates of their gravity centers.
- If the shape itself matches the type, it is also returned.
-
- Parameters:
- aShape Shape to be exploded.
- aType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of sub-shapes of type theShapeType, contained in theShape.
- """
- # Example: see GEOM_TestAll.py
- ListObj = self.ShapesOp.MakeAllSubShapes(aShape, EnumToLong( aType ), True)
- RaiseIfFailed("SubShapeAllSortedCentres", self.ShapesOp)
- self._autoPublish(ListObj, theName, "subshape")
- return ListObj
-
- ## Explode a shape on sub-shapes of a given type.
- # Sub-shapes will be sorted by coordinates of their gravity centers.
- # @param aShape Shape to be exploded.
- # @param aType Type of sub-shapes to be retrieved (see ShapeType())
- # @return List of IDs of sub-shapes.
- #
- # @ref swig_all_decompose "Example"
- def SubShapeAllSortedCentresIDs(self, aShape, aType):
- """
- Explode a shape on sub-shapes of a given type.
- Sub-shapes will be sorted by coordinates of their gravity centers.
-
- Parameters:
- aShape Shape to be exploded.
- aType Type of sub-shapes to be retrieved (see geompy.ShapeType)
-
- Returns:
- List of IDs of sub-shapes.
- """
- ListIDs = self.ShapesOp.GetAllSubShapesIDs(aShape, EnumToLong( aType ), True)
- RaiseIfFailed("SubShapeAllIDs", self.ShapesOp)
- return ListIDs
-
- ## Obtain a compound of sub-shapes of aShape,
- # selected by they indices in sorted list of all sub-shapes of type aType.
- # Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
- # @param aShape Shape to get sub-shape of.
- # @param ListOfInd List of sub-shapes indices.
- # @param aType Type of sub-shapes to be retrieved (see ShapeType())
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return A compound of sub-shapes of aShape.
- #
- # @ref swig_all_decompose "Example"
- def SubShapeSortedCentres(self, aShape, aType, ListOfInd, theName=None):
- """
- Obtain a compound of sub-shapes of aShape,
- selected by they indices in sorted list of all sub-shapes of type aType.
- Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
-
- Parameters:
- aShape Shape to get sub-shape of.
- ListOfID List of sub-shapes indices.
- aType Type of sub-shapes to be retrieved (see geompy.ShapeType)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- A compound of sub-shapes of aShape.
- """
- # Example: see GEOM_TestAll.py
- ListOfIDs = []
- AllShapeIDsList = self.SubShapeAllSortedCentresIDs(aShape, EnumToLong( aType ))
- for ind in ListOfInd:
- ListOfIDs.append(AllShapeIDsList[ind - 1])
- # note: auto-publishing is done in self.GetSubShape()
- anObj = self.GetSubShape(aShape, ListOfIDs, theName)
- return anObj
-
- ## Extract shapes (excluding the main shape) of given type.
- # @param aShape The shape.
- # @param aType The shape type (see ShapeType())
- # @param isSorted Boolean flag to switch sorting on/off.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of sub-shapes of type aType, contained in aShape.
- #
- # @ref swig_FilletChamfer "Example"
- def ExtractShapes(self, aShape, aType, isSorted = False, theName=None):
- """
- Extract shapes (excluding the main shape) of given type.
-
- Parameters:
- aShape The shape.
- aType The shape type (see geompy.ShapeType)
- isSorted Boolean flag to switch sorting on/off.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of sub-shapes of type aType, contained in aShape.
- """
- # Example: see GEOM_TestAll.py
- ListObj = self.ShapesOp.ExtractSubShapes(aShape, EnumToLong( aType ), isSorted)
- RaiseIfFailed("ExtractSubShapes", self.ShapesOp)
- self._autoPublish(ListObj, theName, "subshape")
- return ListObj
-
- ## Get a set of sub-shapes defined by their unique IDs inside aShape
- # @param aShape Main shape.
- # @param anIDs List of unique IDs of sub-shapes inside aShape.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- # @return List of GEOM.GEOM_Object, corresponding to found sub-shapes.
- #
- # @ref swig_all_decompose "Example"
- def SubShapes(self, aShape, anIDs, theName=None):
- """
- Get a set of sub-shapes defined by their unique IDs inside theMainShape
-
- Parameters:
- aShape Main shape.
- anIDs List of unique IDs of sub-shapes inside theMainShape.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of GEOM.GEOM_Object, corresponding to found sub-shapes.
- """
- # Example: see GEOM_TestAll.py
- ListObj = self.ShapesOp.MakeSubShapes(aShape, anIDs)
- RaiseIfFailed("SubShapes", self.ShapesOp)
- self._autoPublish(ListObj, theName, "subshape")
- return ListObj
-
- # end of l4_decompose
- ## @}
-
- ## @addtogroup l4_decompose_d
- ## @{
-
- ## Deprecated method
- # It works like SubShapeAllSortedCentres(), but wrongly
- # defines centres of faces, shells and solids.
- def SubShapeAllSorted(self, aShape, aType, theName=None):
- """
- Deprecated method
- It works like geompy.SubShapeAllSortedCentres, but wrongly
- defines centres of faces, shells and solids.
- """
- ListObj = self.ShapesOp.MakeExplode(aShape, EnumToLong( aType ), True)
- RaiseIfFailed("MakeExplode", self.ShapesOp)
- self._autoPublish(ListObj, theName, "subshape")
- return ListObj
-
- ## Deprecated method
- # It works like SubShapeAllSortedCentresIDs(), but wrongly
- # defines centres of faces, shells and solids.
- def SubShapeAllSortedIDs(self, aShape, aType):
- """
- Deprecated method
- It works like geompy.SubShapeAllSortedCentresIDs, but wrongly
- defines centres of faces, shells and solids.
- """
- ListIDs = self.ShapesOp.SubShapeAllIDs(aShape, EnumToLong( aType ), True)
- RaiseIfFailed("SubShapeAllIDs", self.ShapesOp)
- return ListIDs
-
- ## Deprecated method
- # It works like SubShapeSortedCentres(), but has a bug
- # (wrongly defines centres of faces, shells and solids).
- def SubShapeSorted(self, aShape, aType, ListOfInd, theName=None):
- """
- Deprecated method
- It works like geompy.SubShapeSortedCentres, but has a bug
- (wrongly defines centres of faces, shells and solids).
- """
- ListOfIDs = []
- AllShapeIDsList = self.SubShapeAllSortedIDs(aShape, EnumToLong( aType ))
- for ind in ListOfInd:
- ListOfIDs.append(AllShapeIDsList[ind - 1])
- # note: auto-publishing is done in self.GetSubShape()
- anObj = self.GetSubShape(aShape, ListOfIDs, theName)
- return anObj
-
- # end of l4_decompose_d
- ## @}
-
- ## @addtogroup l3_healing
- ## @{
-
- ## Apply a sequence of Shape Healing operators to the given object.
- # @param theShape Shape to be processed.
- # @param theOperators List of names of operators ("FixShape", "SplitClosedFaces", etc.).
- # @param theParameters List of names of parameters
- # ("FixShape.Tolerance3d", "SplitClosedFaces.NbSplitPoints", etc.).
- # @param theValues List of values of parameters, in the same order
- # as parameters are listed in theParameters list.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # Operators and Parameters: \n
- #
- # * \b FixShape - corrects invalid shapes. \n
- # - \b FixShape.Tolerance3d - work tolerance for detection of the problems and correction of them. \n
- # - \b FixShape.MaxTolerance3d - maximal possible tolerance of the shape after correction. \n
- #
- # * \b FixFaceSize - removes small faces, such as spots and strips.\n
- # - \b FixFaceSize.Tolerance - defines minimum possible face size. \n
- # - \b DropSmallEdges - removes edges, which merge with neighbouring edges. \n
- # - \b DropSmallEdges.Tolerance3d - defines minimum possible distance between two parallel edges.\n
- #
- # * \b SplitAngle - splits faces based on conical surfaces, surfaces of revolution and cylindrical
- # surfaces in segments using a certain angle. \n
- # - \b SplitAngle.Angle - the central angle of the resulting segments (i.e. we obtain two segments
- # if Angle=180, four if Angle=90, etc). \n
- # - \b SplitAngle.MaxTolerance - maximum possible tolerance among the resulting segments.\n
- #
- # * \b SplitClosedFaces - splits closed faces in segments.
- # The number of segments depends on the number of splitting points.\n
- # - \b SplitClosedFaces.NbSplitPoints - the number of splitting points.\n
- #
- # * \b SplitContinuity - splits shapes to reduce continuities of curves and surfaces.\n
- # - \b SplitContinuity.Tolerance3d - 3D tolerance for correction of geometry.\n
- # - \b SplitContinuity.SurfaceContinuity - required continuity for surfaces.\n
- # - \b SplitContinuity.CurveContinuity - required continuity for curves.\n
- # This and the previous parameters can take the following values:\n
- # \b Parametric \b Continuity \n
- # \b C0 (Positional Continuity): curves are joined (the end positions of curves or surfaces
- # are coincidental. The curves or surfaces may still meet at an angle, giving rise to a sharp corner or edge).\n
- # \b C1 (Tangential Continuity): first derivatives are equal (the end vectors of curves or surfaces are parallel,
- # ruling out sharp edges).\n
- # \b C2 (Curvature Continuity): first and second derivatives are equal (the end vectors of curves or surfaces
- # are of the same magnitude).\n
- # \b CN N-th derivatives are equal (both the direction and the magnitude of the Nth derivatives of curves
- # or surfaces (d/du C(u)) are the same at junction. \n
- # \b Geometric \b Continuity \n
- # \b G1: first derivatives are proportional at junction.\n
- # The curve tangents thus have the same direction, but not necessarily the same magnitude.
- # i.e., C1'(1) = (a,b,c) and C2'(0) = (k*a, k*b, k*c).\n
- # \b G2: first and second derivatives are proportional at junction.
- # As the names imply, geometric continuity requires the geometry to be continuous, while parametric
- # continuity requires that the underlying parameterization was continuous as well.
- # Parametric continuity of order n implies geometric continuity of order n, but not vice-versa.\n
- #
- # * \b BsplineRestriction - converts curves and surfaces to Bsplines and processes them with the following parameters:\n
- # - \b BSplineRestriction.SurfaceMode - approximation of surfaces if restriction is necessary.\n
- # - \b BSplineRestriction.Curve3dMode - conversion of any 3D curve to BSpline and approximation.\n
- # - \b BSplineRestriction.Curve2dMode - conversion of any 2D curve to BSpline and approximation.\n
- # - \b BSplineRestriction.Tolerance3d - defines the possibility of surfaces and 3D curves approximation
- # with the specified parameters.\n
- # - \b BSplineRestriction.Tolerance2d - defines the possibility of surfaces and 2D curves approximation
- # with the specified parameters.\n
- # - \b BSplineRestriction.RequiredDegree - required degree of the resulting BSplines.\n
- # - \b BSplineRestriction.RequiredNbSegments - required maximum number of segments of resultant BSplines.\n
- # - \b BSplineRestriction.Continuity3d - continuity of the resulting surfaces and 3D curves.\n
- # - \b BSplineRestriction.Continuity2d - continuity of the resulting 2D curves.\n
- #
- # * \b ToBezier - converts curves and surfaces of any type to Bezier curves and surfaces.\n
- # - \b ToBezier.SurfaceMode - if checked in, allows conversion of surfaces.\n
- # - \b ToBezier.Curve3dMode - if checked in, allows conversion of 3D curves.\n
- # - \b ToBezier.Curve2dMode - if checked in, allows conversion of 2D curves.\n
- # - \b ToBezier.MaxTolerance - defines tolerance for detection and correction of problems.\n
- #
- # * \b SameParameter - fixes edges of 2D and 3D curves not having the same parameter.\n
- # - \b SameParameter.Tolerance3d - defines tolerance for fixing of edges.\n
- #
- #
- # @return New GEOM.GEOM_Object, containing processed shape.
- #
- # \n @ref tui_shape_processing "Example"
- def ProcessShape(self, theShape, theOperators, theParameters, theValues, theName=None):
- """
- Apply a sequence of Shape Healing operators to the given object.
-
- Parameters:
- theShape Shape to be processed.
- theValues List of values of parameters, in the same order
- as parameters are listed in theParameters list.
- theOperators List of names of operators ("FixShape", "SplitClosedFaces", etc.).
- theParameters List of names of parameters
- ("FixShape.Tolerance3d", "SplitClosedFaces.NbSplitPoints", etc.).
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Operators and Parameters:
-
- * FixShape - corrects invalid shapes.
- * FixShape.Tolerance3d - work tolerance for detection of the problems and correction of them.
- * FixShape.MaxTolerance3d - maximal possible tolerance of the shape after correction.
- * FixFaceSize - removes small faces, such as spots and strips.
- * FixFaceSize.Tolerance - defines minimum possible face size.
- * DropSmallEdges - removes edges, which merge with neighbouring edges.
- * DropSmallEdges.Tolerance3d - defines minimum possible distance between two parallel edges.
- * SplitAngle - splits faces based on conical surfaces, surfaces of revolution and cylindrical surfaces
- in segments using a certain angle.
- * SplitAngle.Angle - the central angle of the resulting segments (i.e. we obtain two segments
- if Angle=180, four if Angle=90, etc).
- * SplitAngle.MaxTolerance - maximum possible tolerance among the resulting segments.
- * SplitClosedFaces - splits closed faces in segments. The number of segments depends on the number of
- splitting points.
- * SplitClosedFaces.NbSplitPoints - the number of splitting points.
- * SplitContinuity - splits shapes to reduce continuities of curves and surfaces.
- * SplitContinuity.Tolerance3d - 3D tolerance for correction of geometry.
- * SplitContinuity.SurfaceContinuity - required continuity for surfaces.
- * SplitContinuity.CurveContinuity - required continuity for curves.
- This and the previous parameters can take the following values:
-
- Parametric Continuity:
- C0 (Positional Continuity): curves are joined (the end positions of curves or surfaces are
- coincidental. The curves or surfaces may still meet at an angle,
- giving rise to a sharp corner or edge).
- C1 (Tangential Continuity): first derivatives are equal (the end vectors of curves or surfaces
- are parallel, ruling out sharp edges).
- C2 (Curvature Continuity): first and second derivatives are equal (the end vectors of curves
- or surfaces are of the same magnitude).
- CN N-th derivatives are equal (both the direction and the magnitude of the Nth derivatives of
- curves or surfaces (d/du C(u)) are the same at junction.
-
- Geometric Continuity:
- G1: first derivatives are proportional at junction.
- The curve tangents thus have the same direction, but not necessarily the same magnitude.
- i.e., C1'(1) = (a,b,c) and C2'(0) = (k*a, k*b, k*c).
- G2: first and second derivatives are proportional at junction. As the names imply,
- geometric continuity requires the geometry to be continuous, while parametric continuity requires
- that the underlying parameterization was continuous as well. Parametric continuity of order n implies
- geometric continuity of order n, but not vice-versa.
- * BsplineRestriction - converts curves and surfaces to Bsplines and processes them with the following parameters:
- * BSplineRestriction.SurfaceMode - approximation of surfaces if restriction is necessary.
- * BSplineRestriction.Curve3dMode - conversion of any 3D curve to BSpline and approximation.
- * BSplineRestriction.Curve2dMode - conversion of any 2D curve to BSpline and approximation.
- * BSplineRestriction.Tolerance3d - defines the possibility of surfaces and 3D curves approximation with
- the specified parameters.
- * BSplineRestriction.Tolerance2d - defines the possibility of surfaces and 2D curves approximation with
- the specified parameters.
- * BSplineRestriction.RequiredDegree - required degree of the resulting BSplines.
- * BSplineRestriction.RequiredNbSegments - required maximum number of segments of resultant BSplines.
- * BSplineRestriction.Continuity3d - continuity of the resulting surfaces and 3D curves.
- * BSplineRestriction.Continuity2d - continuity of the resulting 2D curves.
- * ToBezier - converts curves and surfaces of any type to Bezier curves and surfaces.
- * ToBezier.SurfaceMode - if checked in, allows conversion of surfaces.
- * ToBezier.Curve3dMode - if checked in, allows conversion of 3D curves.
- * ToBezier.Curve2dMode - if checked in, allows conversion of 2D curves.
- * ToBezier.MaxTolerance - defines tolerance for detection and correction of problems.
- * SameParameter - fixes edges of 2D and 3D curves not having the same parameter.
- * SameParameter.Tolerance3d - defines tolerance for fixing of edges.
-
- Returns:
- New GEOM.GEOM_Object, containing processed shape.
-
- Note: For more information look through SALOME Geometry User's Guide->
- -> Introduction to Geometry-> Repairing Operations-> Shape Processing
- """
- # Example: see GEOM_TestHealing.py
- theValues,Parameters = ParseList(theValues)
- anObj = self.HealOp.ProcessShape(theShape, theOperators, theParameters, theValues)
- # To avoid script failure in case of good argument shape
- if self.HealOp.GetErrorCode() == "ShHealOper_NotError_msg":
- return theShape
- RaiseIfFailed("ProcessShape", self.HealOp)
- for string in (theOperators + theParameters):
- Parameters = ":" + Parameters
- pass
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "healed")
- return anObj
-
- ## Remove faces from the given object (shape).
- # @param theObject Shape to be processed.
- # @param theFaces Indices of faces to be removed, if EMPTY then the method
- # removes ALL faces of the given object.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing processed shape.
- #
- # @ref tui_suppress_faces "Example"
- def SuppressFaces(self, theObject, theFaces, theName=None):
- """
- Remove faces from the given object (shape).
-
- Parameters:
- theObject Shape to be processed.
- theFaces Indices of faces to be removed, if EMPTY then the method
- removes ALL faces of the given object.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing processed shape.
- """
- # Example: see GEOM_TestHealing.py
- anObj = self.HealOp.SuppressFaces(theObject, theFaces)
- RaiseIfFailed("SuppressFaces", self.HealOp)
- self._autoPublish(anObj, theName, "suppressFaces")
- return anObj
-
- ## Sewing of some shapes into single shape.
- # @param ListShape Shapes to be processed.
- # @param theTolerance Required tolerance value.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing processed shape.
- #
- # @ref tui_sewing "Example"
- def MakeSewing(self, ListShape, theTolerance, theName=None):
- """
- Sewing of some shapes into single shape.
-
- Parameters:
- ListShape Shapes to be processed.
- theTolerance Required tolerance value.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing processed shape.
- """
- # Example: see GEOM_TestHealing.py
- comp = self.MakeCompound(ListShape)
- # note: auto-publishing is done in self.Sew()
- anObj = self.Sew(comp, theTolerance, theName)
- return anObj
-
- ## Sewing of the given object.
- # @param theObject Shape to be processed.
- # @param theTolerance Required tolerance value.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing processed shape.
- def Sew(self, theObject, theTolerance, theName=None):
- """
- Sewing of the given object.
-
- Parameters:
- theObject Shape to be processed.
- theTolerance Required tolerance value.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing processed shape.
- """
- # Example: see MakeSewing() above
- theTolerance,Parameters = ParseParameters(theTolerance)
- anObj = self.HealOp.Sew(theObject, theTolerance)
- RaiseIfFailed("Sew", self.HealOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "sewed")
- return anObj
-
- ## Remove internal wires and edges from the given object (face).
- # @param theObject Shape to be processed.
- # @param theWires Indices of wires to be removed, if EMPTY then the method
- # removes ALL internal wires of the given object.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing processed shape.
- #
- # @ref tui_suppress_internal_wires "Example"
- def SuppressInternalWires(self, theObject, theWires, theName=None):
- """
- Remove internal wires and edges from the given object (face).
-
- Parameters:
- theObject Shape to be processed.
- theWires Indices of wires to be removed, if EMPTY then the method
- removes ALL internal wires of the given object.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing processed shape.
- """
- # Example: see GEOM_TestHealing.py
- anObj = self.HealOp.RemoveIntWires(theObject, theWires)
- RaiseIfFailed("RemoveIntWires", self.HealOp)
- self._autoPublish(anObj, theName, "suppressWires")
- return anObj
-
- ## Remove internal closed contours (holes) from the given object.
- # @param theObject Shape to be processed.
- # @param theWires Indices of wires to be removed, if EMPTY then the method
- # removes ALL internal holes of the given object
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing processed shape.
- #
- # @ref tui_suppress_holes "Example"
- def SuppressHoles(self, theObject, theWires, theName=None):
- """
- Remove internal closed contours (holes) from the given object.
-
- Parameters:
- theObject Shape to be processed.
- theWires Indices of wires to be removed, if EMPTY then the method
- removes ALL internal holes of the given object
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing processed shape.
- """
- # Example: see GEOM_TestHealing.py
- anObj = self.HealOp.FillHoles(theObject, theWires)
- RaiseIfFailed("FillHoles", self.HealOp)
- self._autoPublish(anObj, theName, "suppressHoles")
- return anObj
-
- ## Close an open wire.
- # @param theObject Shape to be processed.
- # @param theWires Indexes of edge(s) and wire(s) to be closed within theObject's shape,
- # if [ ], then theObject itself is a wire.
- # @param isCommonVertex If True : closure by creation of a common vertex,
- # If False : closure by creation of an edge between ends.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing processed shape.
- #
- # @ref tui_close_contour "Example"
- def CloseContour(self,theObject, theWires, isCommonVertex, theName=None):
- """
- Close an open wire.
-
- Parameters:
- theObject Shape to be processed.
- theWires Indexes of edge(s) and wire(s) to be closed within theObject's shape,
- if [ ], then theObject itself is a wire.
- isCommonVertex If True : closure by creation of a common vertex,
- If False : closure by creation of an edge between ends.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing processed shape.
- """
- # Example: see GEOM_TestHealing.py
- anObj = self.HealOp.CloseContour(theObject, theWires, isCommonVertex)
- RaiseIfFailed("CloseContour", self.HealOp)
- self._autoPublish(anObj, theName, "closeContour")
- return anObj
-
- ## Addition of a point to a given edge object.
- # @param theObject Shape to be processed.
- # @param theEdgeIndex Index of edge to be divided within theObject's shape,
- # if -1, then theObject itself is the edge.
- # @param theValue Value of parameter on edge or length parameter,
- # depending on \a isByParameter.
- # @param isByParameter If TRUE : \a theValue is treated as a curve parameter [0..1], \n
- # if FALSE : \a theValue is treated as a length parameter [0..1]
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing processed shape.
- #
- # @ref tui_add_point_on_edge "Example"
- def DivideEdge(self, theObject, theEdgeIndex, theValue, isByParameter, theName=None):
- """
- Addition of a point to a given edge object.
-
- Parameters:
- theObject Shape to be processed.
- theEdgeIndex Index of edge to be divided within theObject's shape,
- if -1, then theObject itself is the edge.
- theValue Value of parameter on edge or length parameter,
- depending on isByParameter.
- isByParameter If TRUE : theValue is treated as a curve parameter [0..1],
- if FALSE : theValue is treated as a length parameter [0..1]
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing processed shape.
- """
- # Example: see GEOM_TestHealing.py
- theEdgeIndex,theValue,isByParameter,Parameters = ParseParameters(theEdgeIndex,theValue,isByParameter)
- anObj = self.HealOp.DivideEdge(theObject, theEdgeIndex, theValue, isByParameter)
- RaiseIfFailed("DivideEdge", self.HealOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "divideEdge")
- return anObj
-
- ## Suppress the vertices in the wire in case if adjacent edges are C1 continuous.
- # @param theWire Wire to minimize the number of C1 continuous edges in.
- # @param theVertices A list of vertices to suppress. If the list
- # is empty, all vertices in a wire will be assumed.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object with modified wire.
- #
- # @ref tui_fuse_collinear_edges "Example"
- def FuseCollinearEdgesWithinWire(self, theWire, theVertices = [], theName=None):
- """
- Suppress the vertices in the wire in case if adjacent edges are C1 continuous.
-
- Parameters:
- theWire Wire to minimize the number of C1 continuous edges in.
- theVertices A list of vertices to suppress. If the list
- is empty, all vertices in a wire will be assumed.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object with modified wire.
- """
- anObj = self.HealOp.FuseCollinearEdgesWithinWire(theWire, theVertices)
- RaiseIfFailed("FuseCollinearEdgesWithinWire", self.HealOp)
- self._autoPublish(anObj, theName, "fuseEdges")
- return anObj
-
- ## Change orientation of the given object. Updates given shape.
- # @param theObject Shape to be processed.
- # @return Updated theObject
- #
- # @ref swig_todo "Example"
- def ChangeOrientationShell(self,theObject):
- """
- Change orientation of the given object. Updates given shape.
-
- Parameters:
- theObject Shape to be processed.
-
- Returns:
- Updated theObject
- """
- theObject = self.HealOp.ChangeOrientation(theObject)
- RaiseIfFailed("ChangeOrientation", self.HealOp)
- pass
-
- ## Change orientation of the given object.
- # @param theObject Shape to be processed.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing processed shape.
- #
- # @ref swig_todo "Example"
- def ChangeOrientationShellCopy(self, theObject, theName=None):
- """
- Change orientation of the given object.
-
- Parameters:
- theObject Shape to be processed.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing processed shape.
- """
- anObj = self.HealOp.ChangeOrientationCopy(theObject)
- RaiseIfFailed("ChangeOrientationCopy", self.HealOp)
- self._autoPublish(anObj, theName, "reversed")
- return anObj
-
- ## Try to limit tolerance of the given object by value \a theTolerance.
- # @param theObject Shape to be processed.
- # @param theTolerance Required tolerance value.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing processed shape.
- #
- # @ref tui_limit_tolerance "Example"
- def LimitTolerance(self, theObject, theTolerance = 1e-07, theName=None):
- """
- Try to limit tolerance of the given object by value theTolerance.
-
- Parameters:
- theObject Shape to be processed.
- theTolerance Required tolerance value.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing processed shape.
- """
- anObj = self.HealOp.LimitTolerance(theObject, theTolerance)
- RaiseIfFailed("LimitTolerance", self.HealOp)
- self._autoPublish(anObj, theName, "limitTolerance")
- return anObj
-
- ## Get a list of wires (wrapped in GEOM.GEOM_Object-s),
- # that constitute a free boundary of the given shape.
- # @param theObject Shape to get free boundary of.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return [\a status, \a theClosedWires, \a theOpenWires]
- # \n \a status: FALSE, if an error(s) occured during the method execution.
- # \n \a theClosedWires: Closed wires on the free boundary of the given shape.
- # \n \a theOpenWires: Open wires on the free boundary of the given shape.
- #
- # @ref tui_measurement_tools_page "Example"
- def GetFreeBoundary(self, theObject, theName=None):
- """
- Get a list of wires (wrapped in GEOM.GEOM_Object-s),
- that constitute a free boundary of the given shape.
-
- Parameters:
- theObject Shape to get free boundary of.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- [status, theClosedWires, theOpenWires]
- status: FALSE, if an error(s) occured during the method execution.
- theClosedWires: Closed wires on the free boundary of the given shape.
- theOpenWires: Open wires on the free boundary of the given shape.
- """
- # Example: see GEOM_TestHealing.py
- anObj = self.HealOp.GetFreeBoundary(theObject)
- RaiseIfFailed("GetFreeBoundary", self.HealOp)
- self._autoPublish(anObj[1], theName, "closedWire")
- self._autoPublish(anObj[2], theName, "openWire")
- return anObj
-
- ## Replace coincident faces in theShape by one face.
- # @param theShape Initial shape.
- # @param theTolerance Maximum distance between faces, which can be considered as coincident.
- # @param doKeepNonSolids If FALSE, only solids will present in the result,
- # otherwise all initial shapes.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing a copy of theShape without coincident faces.
- #
- # @ref tui_glue_faces "Example"
- def MakeGlueFaces(self, theShape, theTolerance, doKeepNonSolids=True, theName=None):
- """
- Replace coincident faces in theShape by one face.
-
- Parameters:
- theShape Initial shape.
- theTolerance Maximum distance between faces, which can be considered as coincident.
- doKeepNonSolids If FALSE, only solids will present in the result,
- otherwise all initial shapes.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing a copy of theShape without coincident faces.
- """
- # Example: see GEOM_Spanner.py
- theTolerance,Parameters = ParseParameters(theTolerance)
- anObj = self.ShapesOp.MakeGlueFaces(theShape, theTolerance, doKeepNonSolids)
- if anObj is None:
- raise RuntimeError, "MakeGlueFaces : " + self.ShapesOp.GetErrorCode()
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "glueFaces")
- return anObj
-
- ## Find coincident faces in theShape for possible gluing.
- # @param theShape Initial shape.
- # @param theTolerance Maximum distance between faces,
- # which can be considered as coincident.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return GEOM.ListOfGO
- #
- # @ref tui_glue_faces "Example"
- def GetGlueFaces(self, theShape, theTolerance, theName=None):
- """
- Find coincident faces in theShape for possible gluing.
-
- Parameters:
- theShape Initial shape.
- theTolerance Maximum distance between faces,
- which can be considered as coincident.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- GEOM.ListOfGO
- """
- anObj = self.ShapesOp.GetGlueFaces(theShape, theTolerance)
- RaiseIfFailed("GetGlueFaces", self.ShapesOp)
- self._autoPublish(anObj, theName, "facesToGlue")
- return anObj
-
- ## Replace coincident faces in theShape by one face
- # in compliance with given list of faces
- # @param theShape Initial shape.
- # @param theTolerance Maximum distance between faces,
- # which can be considered as coincident.
- # @param theFaces List of faces for gluing.
- # @param doKeepNonSolids If FALSE, only solids will present in the result,
- # otherwise all initial shapes.
- # @param doGlueAllEdges If TRUE, all coincident edges of theShape
- # will be glued, otherwise only the edges,
- # belonging to theFaces.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing a copy of theShape
- # without some faces.
- #
- # @ref tui_glue_faces "Example"
- def MakeGlueFacesByList(self, theShape, theTolerance, theFaces,
- doKeepNonSolids=True, doGlueAllEdges=True, theName=None):
- """
- Replace coincident faces in theShape by one face
- in compliance with given list of faces
-
- Parameters:
- theShape Initial shape.
- theTolerance Maximum distance between faces,
- which can be considered as coincident.
- theFaces List of faces for gluing.
- doKeepNonSolids If FALSE, only solids will present in the result,
- otherwise all initial shapes.
- doGlueAllEdges If TRUE, all coincident edges of theShape
- will be glued, otherwise only the edges,
- belonging to theFaces.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing a copy of theShape
- without some faces.
- """
- anObj = self.ShapesOp.MakeGlueFacesByList(theShape, theTolerance, theFaces,
- doKeepNonSolids, doGlueAllEdges)
- if anObj is None:
- raise RuntimeError, "MakeGlueFacesByList : " + self.ShapesOp.GetErrorCode()
- self._autoPublish(anObj, theName, "glueFaces")
- return anObj
-
- ## Replace coincident edges in theShape by one edge.
- # @param theShape Initial shape.
- # @param theTolerance Maximum distance between edges, which can be considered as coincident.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing a copy of theShape without coincident edges.
- #
- # @ref tui_glue_edges "Example"
- def MakeGlueEdges(self, theShape, theTolerance, theName=None):
- """
- Replace coincident edges in theShape by one edge.
-
- Parameters:
- theShape Initial shape.
- theTolerance Maximum distance between edges, which can be considered as coincident.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing a copy of theShape without coincident edges.
- """
- theTolerance,Parameters = ParseParameters(theTolerance)
- anObj = self.ShapesOp.MakeGlueEdges(theShape, theTolerance)
- if anObj is None:
- raise RuntimeError, "MakeGlueEdges : " + self.ShapesOp.GetErrorCode()
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "glueEdges")
- return anObj
-
- ## Find coincident edges in theShape for possible gluing.
- # @param theShape Initial shape.
- # @param theTolerance Maximum distance between edges,
- # which can be considered as coincident.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return GEOM.ListOfGO
- #
- # @ref tui_glue_edges "Example"
- def GetGlueEdges(self, theShape, theTolerance, theName=None):
- """
- Find coincident edges in theShape for possible gluing.
-
- Parameters:
- theShape Initial shape.
- theTolerance Maximum distance between edges,
- which can be considered as coincident.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- GEOM.ListOfGO
- """
- anObj = self.ShapesOp.GetGlueEdges(theShape, theTolerance)
- RaiseIfFailed("GetGlueEdges", self.ShapesOp)
- self._autoPublish(anObj, theName, "edgesToGlue")
- return anObj
-
- ## Replace coincident edges in theShape by one edge
- # in compliance with given list of edges.
- # @param theShape Initial shape.
- # @param theTolerance Maximum distance between edges,
- # which can be considered as coincident.
- # @param theEdges List of edges for gluing.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing a copy of theShape
- # without some edges.
- #
- # @ref tui_glue_edges "Example"
- def MakeGlueEdgesByList(self, theShape, theTolerance, theEdges, theName=None):
- """
- Replace coincident edges in theShape by one edge
- in compliance with given list of edges.
-
- Parameters:
- theShape Initial shape.
- theTolerance Maximum distance between edges,
- which can be considered as coincident.
- theEdges List of edges for gluing.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing a copy of theShape
- without some edges.
- """
- anObj = self.ShapesOp.MakeGlueEdgesByList(theShape, theTolerance, theEdges)
- if anObj is None:
- raise RuntimeError, "MakeGlueEdgesByList : " + self.ShapesOp.GetErrorCode()
- self._autoPublish(anObj, theName, "glueEdges")
- return anObj
-
- # end of l3_healing
- ## @}
-
- ## @addtogroup l3_boolean Boolean Operations
- ## @{
-
- # -----------------------------------------------------------------------------
- # Boolean (Common, Cut, Fuse, Section)
- # -----------------------------------------------------------------------------
-
- ## Perform one of boolean operations on two given shapes.
- # @param theShape1 First argument for boolean operation.
- # @param theShape2 Second argument for boolean operation.
- # @param theOperation Indicates the operation to be done:\n
- # 1 - Common, 2 - Cut, 3 - Fuse, 4 - Section.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_fuse "Example"
- def MakeBoolean(self, theShape1, theShape2, theOperation, theName=None):
- """
- Perform one of boolean operations on two given shapes.
-
- Parameters:
- theShape1 First argument for boolean operation.
- theShape2 Second argument for boolean operation.
- theOperation Indicates the operation to be done:
- 1 - Common, 2 - Cut, 3 - Fuse, 4 - Section.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.BoolOp.MakeBoolean(theShape1, theShape2, theOperation)
- RaiseIfFailed("MakeBoolean", self.BoolOp)
- def_names = { 1: "common", 2: "cut", 3: "fuse", 4: "section" }
- self._autoPublish(anObj, theName, def_names[theOperation])
- return anObj
-
- ## Perform Common boolean operation on two given shapes.
- # @param theShape1 First argument for boolean operation.
- # @param theShape2 Second argument for boolean operation.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_common "Example 1"
- # \n @ref swig_MakeCommon "Example 2"
- def MakeCommon(self, theShape1, theShape2, theName=None):
- """
- Perform Common boolean operation on two given shapes.
-
- Parameters:
- theShape1 First argument for boolean operation.
- theShape2 Second argument for boolean operation.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
- """
- # Example: see GEOM_TestOthers.py
- # note: auto-publishing is done in self.MakeBoolean()
- return self.MakeBoolean(theShape1, theShape2, 1, theName)
-
- ## Perform Cut boolean operation on two given shapes.
- # @param theShape1 First argument for boolean operation.
- # @param theShape2 Second argument for boolean operation.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_cut "Example 1"
- # \n @ref swig_MakeCommon "Example 2"
- def MakeCut(self, theShape1, theShape2, theName=None):
- """
- Perform Cut boolean operation on two given shapes.
-
- Parameters:
- theShape1 First argument for boolean operation.
- theShape2 Second argument for boolean operation.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
-
- """
- # Example: see GEOM_TestOthers.py
- # note: auto-publishing is done in self.MakeBoolean()
- return self.MakeBoolean(theShape1, theShape2, 2, theName)
-
- ## Perform Fuse boolean operation on two given shapes.
- # @param theShape1 First argument for boolean operation.
- # @param theShape2 Second argument for boolean operation.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_fuse "Example 1"
- # \n @ref swig_MakeCommon "Example 2"
- def MakeFuse(self, theShape1, theShape2, theName=None):
- """
- Perform Fuse boolean operation on two given shapes.
-
- Parameters:
- theShape1 First argument for boolean operation.
- theShape2 Second argument for boolean operation.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
-
- """
- # Example: see GEOM_TestOthers.py
- # note: auto-publishing is done in self.MakeBoolean()
- return self.MakeBoolean(theShape1, theShape2, 3, theName)
-
- ## Perform Section boolean operation on two given shapes.
- # @param theShape1 First argument for boolean operation.
- # @param theShape2 Second argument for boolean operation.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_section "Example 1"
- # \n @ref swig_MakeCommon "Example 2"
- def MakeSection(self, theShape1, theShape2, theName=None):
- """
- Perform Section boolean operation on two given shapes.
-
- Parameters:
- theShape1 First argument for boolean operation.
- theShape2 Second argument for boolean operation.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
-
- """
- # Example: see GEOM_TestOthers.py
- # note: auto-publishing is done in self.MakeBoolean()
- return self.MakeBoolean(theShape1, theShape2, 4, theName)
-
- # end of l3_boolean
- ## @}
-
- ## @addtogroup l3_basic_op
- ## @{
-
- ## Perform partition operation.
- # @param ListShapes Shapes to be intersected.
- # @param ListTools Shapes to intersect theShapes.
- # @param Limit Type of resulting shapes (see ShapeType()).\n
- # If this parameter is set to -1 ("Auto"), most appropriate shape limit
- # type will be detected automatically.
- # @param KeepNonlimitShapes if this parameter == 0, then only shapes of
- # target type (equal to Limit) are kept in the result,
- # else standalone shapes of lower dimension
- # are kept also (if they exist).
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @note Each compound from ListShapes and ListTools will be exploded
- # in order to avoid possible intersection between shapes from this compound.
- #
- # After implementation new version of PartitionAlgo (October 2006)
- # other parameters are ignored by current functionality. They are kept
- # in this function only for support old versions.
- # @param ListKeepInside Shapes, outside which the results will be deleted.
- # Each shape from theKeepInside must belong to theShapes also.
- # @param ListRemoveInside Shapes, inside which the results will be deleted.
- # Each shape from theRemoveInside must belong to theShapes also.
- # @param RemoveWebs If TRUE, perform Glue 3D algorithm.
- # @param ListMaterials Material indices for each shape. Make sence,
- # only if theRemoveWebs is TRUE.
- #
- # @return New GEOM.GEOM_Object, containing the result shapes.
- #
- # @ref tui_partition "Example"
- def MakePartition(self, ListShapes, ListTools=[], ListKeepInside=[], ListRemoveInside=[],
- Limit=ShapeType["AUTO"], RemoveWebs=0, ListMaterials=[],
- KeepNonlimitShapes=0, theName=None):
- """
- Perform partition operation.
-
- Parameters:
- ListShapes Shapes to be intersected.
- ListTools Shapes to intersect theShapes.
- Limit Type of resulting shapes (see geompy.ShapeType)
- If this parameter is set to -1 ("Auto"), most appropriate shape limit
- type will be detected automatically.
- KeepNonlimitShapes if this parameter == 0, then only shapes of
- target type (equal to Limit) are kept in the result,
- else standalone shapes of lower dimension
- are kept also (if they exist).
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
- Note:
- Each compound from ListShapes and ListTools will be exploded
- in order to avoid possible intersection between shapes from
- this compound.
-
- After implementation new version of PartitionAlgo (October 2006) other
- parameters are ignored by current functionality. They are kept in this
- function only for support old versions.
-
- Ignored parameters:
- ListKeepInside Shapes, outside which the results will be deleted.
- Each shape from theKeepInside must belong to theShapes also.
- ListRemoveInside Shapes, inside which the results will be deleted.
- Each shape from theRemoveInside must belong to theShapes also.
- RemoveWebs If TRUE, perform Glue 3D algorithm.
- ListMaterials Material indices for each shape. Make sence, only if theRemoveWebs is TRUE.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shapes.
- """
- # Example: see GEOM_TestAll.py
- if Limit == ShapeType["AUTO"]:
- # automatic detection of the most appropriate shape limit type
- lim = GEOM.SHAPE
- for s in ListShapes: lim = min( lim, s.GetMaxShapeType() )
- Limit = EnumToLong(lim)
- pass
- anObj = self.BoolOp.MakePartition(ListShapes, ListTools,
- ListKeepInside, ListRemoveInside,
- Limit, RemoveWebs, ListMaterials,
- KeepNonlimitShapes);
- RaiseIfFailed("MakePartition", self.BoolOp)
- self._autoPublish(anObj, theName, "partition")
- return anObj
-
- ## Perform partition operation.
- # This method may be useful if it is needed to make a partition for
- # compound contains nonintersected shapes. Performance will be better
- # since intersection between shapes from compound is not performed.
- #
- # Description of all parameters as in previous method MakePartition()
- #
- # @note Passed compounds (via ListShapes or via ListTools)
- # have to consist of nonintersecting shapes.
- #
- # @return New GEOM.GEOM_Object, containing the result shapes.
- #
- # @ref swig_todo "Example"
- def MakePartitionNonSelfIntersectedShape(self, ListShapes, ListTools=[],
- ListKeepInside=[], ListRemoveInside=[],
- Limit=ShapeType["AUTO"], RemoveWebs=0,
- ListMaterials=[], KeepNonlimitShapes=0,
- theName=None):
- """
- Perform partition operation.
- This method may be useful if it is needed to make a partition for
- compound contains nonintersected shapes. Performance will be better
- since intersection between shapes from compound is not performed.
-
- Parameters:
- Description of all parameters as in method geompy.MakePartition
-
- NOTE:
- Passed compounds (via ListShapes or via ListTools)
- have to consist of nonintersecting shapes.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shapes.
- """
- if Limit == ShapeType["AUTO"]:
- # automatic detection of the most appropriate shape limit type
- lim = GEOM.SHAPE
- for s in ListShapes: lim = min( lim, s.GetMaxShapeType() )
- Limit = EnumToLong(lim)
- pass
- anObj = self.BoolOp.MakePartitionNonSelfIntersectedShape(ListShapes, ListTools,
- ListKeepInside, ListRemoveInside,
- Limit, RemoveWebs, ListMaterials,
- KeepNonlimitShapes);
- RaiseIfFailed("MakePartitionNonSelfIntersectedShape", self.BoolOp)
- self._autoPublish(anObj, theName, "partition")
- return anObj
-
- ## See method MakePartition() for more information.
- #
- # @ref tui_partition "Example 1"
- # \n @ref swig_Partition "Example 2"
- def Partition(self, ListShapes, ListTools=[], ListKeepInside=[], ListRemoveInside=[],
- Limit=ShapeType["AUTO"], RemoveWebs=0, ListMaterials=[],
- KeepNonlimitShapes=0, theName=None):
- """
- See method geompy.MakePartition for more information.
- """
- # Example: see GEOM_TestOthers.py
- # note: auto-publishing is done in self.MakePartition()
- anObj = self.MakePartition(ListShapes, ListTools,
- ListKeepInside, ListRemoveInside,
- Limit, RemoveWebs, ListMaterials,
- KeepNonlimitShapes, theName);
- return anObj
-
- ## Perform partition of the Shape with the Plane
- # @param theShape Shape to be intersected.
- # @param thePlane Tool shape, to intersect theShape.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_partition "Example"
- def MakeHalfPartition(self, theShape, thePlane, theName=None):
- """
- Perform partition of the Shape with the Plane
-
- Parameters:
- theShape Shape to be intersected.
- thePlane Tool shape, to intersect theShape.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.BoolOp.MakeHalfPartition(theShape, thePlane)
- RaiseIfFailed("MakeHalfPartition", self.BoolOp)
- self._autoPublish(anObj, theName, "partition")
- return anObj
-
- # end of l3_basic_op
- ## @}
-
- ## @addtogroup l3_transform
- ## @{
-
- ## Translate the given object along the vector, specified
- # by its end points.
- # @param theObject The object to be translated.
- # @param thePoint1 Start point of translation vector.
- # @param thePoint2 End point of translation vector.
- # @param theCopy Flag used to translate object itself or create a copy.
- # @return Translated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the translated object if @a theCopy flag is @c True.
- def TranslateTwoPoints(self, theObject, thePoint1, thePoint2, theCopy=False):
- """
- Translate the given object along the vector, specified by its end points.
-
- Parameters:
- theObject The object to be translated.
- thePoint1 Start point of translation vector.
- thePoint2 End point of translation vector.
- theCopy Flag used to translate object itself or create a copy.
-
- Returns:
- Translated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the translated object if theCopy flag is True.
- """
- if theCopy:
- anObj = self.TrsfOp.TranslateTwoPointsCopy(theObject, thePoint1, thePoint2)
- else:
- anObj = self.TrsfOp.TranslateTwoPoints(theObject, thePoint1, thePoint2)
- RaiseIfFailed("TranslateTwoPoints", self.TrsfOp)
- return anObj
-
- ## Translate the given object along the vector, specified
- # by its end points, creating its copy before the translation.
- # @param theObject The object to be translated.
- # @param thePoint1 Start point of translation vector.
- # @param thePoint2 End point of translation vector.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the translated object.
- #
- # @ref tui_translation "Example 1"
- # \n @ref swig_MakeTranslationTwoPoints "Example 2"
- def MakeTranslationTwoPoints(self, theObject, thePoint1, thePoint2, theName=None):
- """
- Translate the given object along the vector, specified
- by its end points, creating its copy before the translation.
-
- Parameters:
- theObject The object to be translated.
- thePoint1 Start point of translation vector.
- thePoint2 End point of translation vector.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the translated object.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.TrsfOp.TranslateTwoPointsCopy(theObject, thePoint1, thePoint2)
- RaiseIfFailed("TranslateTwoPointsCopy", self.TrsfOp)
- self._autoPublish(anObj, theName, "translated")
- return anObj
-
- ## Translate the given object along the vector, specified by its components.
- # @param theObject The object to be translated.
- # @param theDX,theDY,theDZ Components of translation vector.
- # @param theCopy Flag used to translate object itself or create a copy.
- # @return Translated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the translated object if @a theCopy flag is @c True.
- #
- # @ref tui_translation "Example"
- def TranslateDXDYDZ(self, theObject, theDX, theDY, theDZ, theCopy=False):
- """
- Translate the given object along the vector, specified by its components.
-
- Parameters:
- theObject The object to be translated.
- theDX,theDY,theDZ Components of translation vector.
- theCopy Flag used to translate object itself or create a copy.
-
- Returns:
- Translated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the translated object if theCopy flag is True.
- """
- # Example: see GEOM_TestAll.py
- theDX, theDY, theDZ, Parameters = ParseParameters(theDX, theDY, theDZ)
- if theCopy:
- anObj = self.TrsfOp.TranslateDXDYDZCopy(theObject, theDX, theDY, theDZ)
- else:
- anObj = self.TrsfOp.TranslateDXDYDZ(theObject, theDX, theDY, theDZ)
- anObj.SetParameters(Parameters)
- RaiseIfFailed("TranslateDXDYDZ", self.TrsfOp)
- return anObj
-
- ## Translate the given object along the vector, specified
- # by its components, creating its copy before the translation.
- # @param theObject The object to be translated.
- # @param theDX,theDY,theDZ Components of translation vector.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the translated object.
- #
- # @ref tui_translation "Example"
- def MakeTranslation(self,theObject, theDX, theDY, theDZ, theName=None):
- """
- Translate the given object along the vector, specified
- by its components, creating its copy before the translation.
-
- Parameters:
- theObject The object to be translated.
- theDX,theDY,theDZ Components of translation vector.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the translated object.
- """
- # Example: see GEOM_TestAll.py
- theDX, theDY, theDZ, Parameters = ParseParameters(theDX, theDY, theDZ)
- anObj = self.TrsfOp.TranslateDXDYDZCopy(theObject, theDX, theDY, theDZ)
- anObj.SetParameters(Parameters)
- RaiseIfFailed("TranslateDXDYDZ", self.TrsfOp)
- self._autoPublish(anObj, theName, "translated")
- return anObj
-
- ## Translate the given object along the given vector.
- # @param theObject The object to be translated.
- # @param theVector The translation vector.
- # @param theCopy Flag used to translate object itself or create a copy.
- # @return Translated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the translated object if @a theCopy flag is @c True.
- def TranslateVector(self, theObject, theVector, theCopy=False):
- """
- Translate the given object along the given vector.
-
- Parameters:
- theObject The object to be translated.
- theVector The translation vector.
- theCopy Flag used to translate object itself or create a copy.
-
- Returns:
- Translated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the translated object if theCopy flag is True.
- """
- if theCopy:
- anObj = self.TrsfOp.TranslateVectorCopy(theObject, theVector)
- else:
- anObj = self.TrsfOp.TranslateVector(theObject, theVector)
- RaiseIfFailed("TranslateVector", self.TrsfOp)
- return anObj
-
- ## Translate the given object along the given vector,
- # creating its copy before the translation.
- # @param theObject The object to be translated.
- # @param theVector The translation vector.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the translated object.
- #
- # @ref tui_translation "Example"
- def MakeTranslationVector(self, theObject, theVector, theName=None):
- """
- Translate the given object along the given vector,
- creating its copy before the translation.
-
- Parameters:
- theObject The object to be translated.
- theVector The translation vector.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the translated object.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.TrsfOp.TranslateVectorCopy(theObject, theVector)
- RaiseIfFailed("TranslateVectorCopy", self.TrsfOp)
- self._autoPublish(anObj, theName, "translated")
- return anObj
-
- ## Translate the given object along the given vector on given distance.
- # @param theObject The object to be translated.
- # @param theVector The translation vector.
- # @param theDistance The translation distance.
- # @param theCopy Flag used to translate object itself or create a copy.
- # @return Translated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the translated object if @a theCopy flag is @c True.
- #
- # @ref tui_translation "Example"
- def TranslateVectorDistance(self, theObject, theVector, theDistance, theCopy=False):
- """
- Translate the given object along the given vector on given distance.
-
- Parameters:
- theObject The object to be translated.
- theVector The translation vector.
- theDistance The translation distance.
- theCopy Flag used to translate object itself or create a copy.
-
- Returns:
- Translated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the translated object if theCopy flag is True.
- """
- # Example: see GEOM_TestAll.py
- theDistance,Parameters = ParseParameters(theDistance)
- anObj = self.TrsfOp.TranslateVectorDistance(theObject, theVector, theDistance, theCopy)
- RaiseIfFailed("TranslateVectorDistance", self.TrsfOp)
- anObj.SetParameters(Parameters)
- return anObj
-
- ## Translate the given object along the given vector on given distance,
- # creating its copy before the translation.
- # @param theObject The object to be translated.
- # @param theVector The translation vector.
- # @param theDistance The translation distance.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the translated object.
- #
- # @ref tui_translation "Example"
- def MakeTranslationVectorDistance(self, theObject, theVector, theDistance, theName=None):
- """
- Translate the given object along the given vector on given distance,
- creating its copy before the translation.
-
- Parameters:
- theObject The object to be translated.
- theVector The translation vector.
- theDistance The translation distance.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the translated object.
- """
- # Example: see GEOM_TestAll.py
- theDistance,Parameters = ParseParameters(theDistance)
- anObj = self.TrsfOp.TranslateVectorDistance(theObject, theVector, theDistance, 1)
- RaiseIfFailed("TranslateVectorDistance", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "translated")
- return anObj
-
- ## Rotate the given object around the given axis on the given angle.
- # @param theObject The object to be rotated.
- # @param theAxis Rotation axis.
- # @param theAngle Rotation angle in radians.
- # @param theCopy Flag used to rotate object itself or create a copy.
- #
- # @return Rotated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the rotated object if @a theCopy flag is @c True.
- #
- # @ref tui_rotation "Example"
- def Rotate(self, theObject, theAxis, theAngle, theCopy=False):
- """
- Rotate the given object around the given axis on the given angle.
-
- Parameters:
- theObject The object to be rotated.
- theAxis Rotation axis.
- theAngle Rotation angle in radians.
- theCopy Flag used to rotate object itself or create a copy.
-
- Returns:
- Rotated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the rotated object if theCopy flag is True.
- """
- # Example: see GEOM_TestAll.py
- flag = False
- if isinstance(theAngle,str):
- flag = True
- theAngle, Parameters = ParseParameters(theAngle)
- if flag:
- theAngle = theAngle*math.pi/180.0
- if theCopy:
- anObj = self.TrsfOp.RotateCopy(theObject, theAxis, theAngle)
- else:
- anObj = self.TrsfOp.Rotate(theObject, theAxis, theAngle)
- RaiseIfFailed("Rotate", self.TrsfOp)
- anObj.SetParameters(Parameters)
- return anObj
-
- ## Rotate the given object around the given axis
- # on the given angle, creating its copy before the rotatation.
- # @param theObject The object to be rotated.
- # @param theAxis Rotation axis.
- # @param theAngle Rotation angle in radians.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the rotated object.
- #
- # @ref tui_rotation "Example"
- def MakeRotation(self, theObject, theAxis, theAngle, theName=None):
- """
- Rotate the given object around the given axis
- on the given angle, creating its copy before the rotatation.
-
- Parameters:
- theObject The object to be rotated.
- theAxis Rotation axis.
- theAngle Rotation angle in radians.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the rotated object.
- """
- # Example: see GEOM_TestAll.py
- flag = False
- if isinstance(theAngle,str):
- flag = True
- theAngle, Parameters = ParseParameters(theAngle)
- if flag:
- theAngle = theAngle*math.pi/180.0
- anObj = self.TrsfOp.RotateCopy(theObject, theAxis, theAngle)
- RaiseIfFailed("RotateCopy", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "rotated")
- return anObj
-
- ## Rotate given object around vector perpendicular to plane
- # containing three points.
- # @param theObject The object to be rotated.
- # @param theCentPoint central point the axis is the vector perpendicular to the plane
- # containing the three points.
- # @param thePoint1,thePoint2 points in a perpendicular plane of the axis.
- # @param theCopy Flag used to rotate object itself or create a copy.
- # @return Rotated @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the rotated object if @a theCopy flag is @c True.
- def RotateThreePoints(self, theObject, theCentPoint, thePoint1, thePoint2, theCopy=False):
- """
- Rotate given object around vector perpendicular to plane
- containing three points.
-
- Parameters:
- theObject The object to be rotated.
- theCentPoint central point the axis is the vector perpendicular to the plane
- containing the three points.
- thePoint1,thePoint2 points in a perpendicular plane of the axis.
- theCopy Flag used to rotate object itself or create a copy.
-
- Returns:
- Rotated theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the rotated object if theCopy flag is True.
- """
- if theCopy:
- anObj = self.TrsfOp.RotateThreePointsCopy(theObject, theCentPoint, thePoint1, thePoint2)
- else:
- anObj = self.TrsfOp.RotateThreePoints(theObject, theCentPoint, thePoint1, thePoint2)
- RaiseIfFailed("RotateThreePoints", self.TrsfOp)
- return anObj
-
- ## Rotate given object around vector perpendicular to plane
- # containing three points, creating its copy before the rotatation.
- # @param theObject The object to be rotated.
- # @param theCentPoint central point the axis is the vector perpendicular to the plane
- # containing the three points.
- # @param thePoint1,thePoint2 in a perpendicular plane of the axis.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the rotated object.
- #
- # @ref tui_rotation "Example"
- def MakeRotationThreePoints(self, theObject, theCentPoint, thePoint1, thePoint2, theName=None):
- """
- Rotate given object around vector perpendicular to plane
- containing three points, creating its copy before the rotatation.
-
- Parameters:
- theObject The object to be rotated.
- theCentPoint central point the axis is the vector perpendicular to the plane
- containing the three points.
- thePoint1,thePoint2 in a perpendicular plane of the axis.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the rotated object.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.TrsfOp.RotateThreePointsCopy(theObject, theCentPoint, thePoint1, thePoint2)
- RaiseIfFailed("RotateThreePointsCopy", self.TrsfOp)
- self._autoPublish(anObj, theName, "rotated")
- return anObj
-
- ## Scale the given object by the specified factor.
- # @param theObject The object to be scaled.
- # @param thePoint Center point for scaling.
- # Passing None for it means scaling relatively the origin of global CS.
- # @param theFactor Scaling factor value.
- # @param theCopy Flag used to scale object itself or create a copy.
- # @return Scaled @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the scaled object if @a theCopy flag is @c True.
- def Scale(self, theObject, thePoint, theFactor, theCopy=False):
- """
- Scale the given object by the specified factor.
-
- Parameters:
- theObject The object to be scaled.
- thePoint Center point for scaling.
- Passing None for it means scaling relatively the origin of global CS.
- theFactor Scaling factor value.
- theCopy Flag used to scale object itself or create a copy.
-
- Returns:
- Scaled theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the scaled object if theCopy flag is True.
- """
- # Example: see GEOM_TestAll.py
- theFactor, Parameters = ParseParameters(theFactor)
- if theCopy:
- anObj = self.TrsfOp.ScaleShapeCopy(theObject, thePoint, theFactor)
- else:
- anObj = self.TrsfOp.ScaleShape(theObject, thePoint, theFactor)
- RaiseIfFailed("Scale", self.TrsfOp)
- anObj.SetParameters(Parameters)
- return anObj
-
- ## Scale the given object by the factor, creating its copy before the scaling.
- # @param theObject The object to be scaled.
- # @param thePoint Center point for scaling.
- # Passing None for it means scaling relatively the origin of global CS.
- # @param theFactor Scaling factor value.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the scaled shape.
- #
- # @ref tui_scale "Example"
- def MakeScaleTransform(self, theObject, thePoint, theFactor, theName=None):
- """
- Scale the given object by the factor, creating its copy before the scaling.
-
- Parameters:
- theObject The object to be scaled.
- thePoint Center point for scaling.
- Passing None for it means scaling relatively the origin of global CS.
- theFactor Scaling factor value.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the scaled shape.
- """
- # Example: see GEOM_TestAll.py
- theFactor, Parameters = ParseParameters(theFactor)
- anObj = self.TrsfOp.ScaleShapeCopy(theObject, thePoint, theFactor)
- RaiseIfFailed("ScaleShapeCopy", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "scaled")
- return anObj
-
- ## Scale the given object by different factors along coordinate axes.
- # @param theObject The object to be scaled.
- # @param thePoint Center point for scaling.
- # Passing None for it means scaling relatively the origin of global CS.
- # @param theFactorX,theFactorY,theFactorZ Scaling factors along each axis.
- # @param theCopy Flag used to scale object itself or create a copy.
- # @return Scaled @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the scaled object if @a theCopy flag is @c True.
- def ScaleAlongAxes(self, theObject, thePoint, theFactorX, theFactorY, theFactorZ, theCopy=False):
- """
- Scale the given object by different factors along coordinate axes.
-
- Parameters:
- theObject The object to be scaled.
- thePoint Center point for scaling.
- Passing None for it means scaling relatively the origin of global CS.
- theFactorX,theFactorY,theFactorZ Scaling factors along each axis.
- theCopy Flag used to scale object itself or create a copy.
-
- Returns:
- Scaled theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the scaled object if theCopy flag is True.
- """
- # Example: see GEOM_TestAll.py
- theFactorX, theFactorY, theFactorZ, Parameters = ParseParameters(theFactorX, theFactorY, theFactorZ)
- if theCopy:
- anObj = self.TrsfOp.ScaleShapeAlongAxesCopy(theObject, thePoint,
- theFactorX, theFactorY, theFactorZ)
- else:
- anObj = self.TrsfOp.ScaleShapeAlongAxes(theObject, thePoint,
- theFactorX, theFactorY, theFactorZ)
- RaiseIfFailed("ScaleAlongAxes", self.TrsfOp)
- anObj.SetParameters(Parameters)
- return anObj
-
- ## Scale the given object by different factors along coordinate axes,
- # creating its copy before the scaling.
- # @param theObject The object to be scaled.
- # @param thePoint Center point for scaling.
- # Passing None for it means scaling relatively the origin of global CS.
- # @param theFactorX,theFactorY,theFactorZ Scaling factors along each axis.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the scaled shape.
- #
- # @ref swig_scale "Example"
- def MakeScaleAlongAxes(self, theObject, thePoint, theFactorX, theFactorY, theFactorZ, theName=None):
- """
- Scale the given object by different factors along coordinate axes,
- creating its copy before the scaling.
-
- Parameters:
- theObject The object to be scaled.
- thePoint Center point for scaling.
- Passing None for it means scaling relatively the origin of global CS.
- theFactorX,theFactorY,theFactorZ Scaling factors along each axis.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the scaled shape.
- """
- # Example: see GEOM_TestAll.py
- theFactorX, theFactorY, theFactorZ, Parameters = ParseParameters(theFactorX, theFactorY, theFactorZ)
- anObj = self.TrsfOp.ScaleShapeAlongAxesCopy(theObject, thePoint,
- theFactorX, theFactorY, theFactorZ)
- RaiseIfFailed("MakeScaleAlongAxes", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "scaled")
- return anObj
-
- ## Mirror an object relatively the given plane.
- # @param theObject The object to be mirrored.
- # @param thePlane Plane of symmetry.
- # @param theCopy Flag used to mirror object itself or create a copy.
- # @return Mirrored @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the mirrored object if @a theCopy flag is @c True.
- def MirrorByPlane(self, theObject, thePlane, theCopy=False):
- """
- Mirror an object relatively the given plane.
-
- Parameters:
- theObject The object to be mirrored.
- thePlane Plane of symmetry.
- theCopy Flag used to mirror object itself or create a copy.
-
- Returns:
- Mirrored theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the mirrored object if theCopy flag is True.
- """
- if theCopy:
- anObj = self.TrsfOp.MirrorPlaneCopy(theObject, thePlane)
- else:
- anObj = self.TrsfOp.MirrorPlane(theObject, thePlane)
- RaiseIfFailed("MirrorByPlane", self.TrsfOp)
- return anObj
-
- ## Create an object, symmetrical
- # to the given one relatively the given plane.
- # @param theObject The object to be mirrored.
- # @param thePlane Plane of symmetry.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the mirrored shape.
- #
- # @ref tui_mirror "Example"
- def MakeMirrorByPlane(self, theObject, thePlane, theName=None):
- """
- Create an object, symmetrical to the given one relatively the given plane.
-
- Parameters:
- theObject The object to be mirrored.
- thePlane Plane of symmetry.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the mirrored shape.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.TrsfOp.MirrorPlaneCopy(theObject, thePlane)
- RaiseIfFailed("MirrorPlaneCopy", self.TrsfOp)
- self._autoPublish(anObj, theName, "mirrored")
- return anObj
-
- ## Mirror an object relatively the given axis.
- # @param theObject The object to be mirrored.
- # @param theAxis Axis of symmetry.
- # @param theCopy Flag used to mirror object itself or create a copy.
- # @return Mirrored @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the mirrored object if @a theCopy flag is @c True.
- def MirrorByAxis(self, theObject, theAxis, theCopy=False):
- """
- Mirror an object relatively the given axis.
-
- Parameters:
- theObject The object to be mirrored.
- theAxis Axis of symmetry.
- theCopy Flag used to mirror object itself or create a copy.
-
- Returns:
- Mirrored theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the mirrored object if theCopy flag is True.
- """
- if theCopy:
- anObj = self.TrsfOp.MirrorAxisCopy(theObject, theAxis)
- else:
- anObj = self.TrsfOp.MirrorAxis(theObject, theAxis)
- RaiseIfFailed("MirrorByAxis", self.TrsfOp)
- return anObj
-
- ## Create an object, symmetrical
- # to the given one relatively the given axis.
- # @param theObject The object to be mirrored.
- # @param theAxis Axis of symmetry.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the mirrored shape.
- #
- # @ref tui_mirror "Example"
- def MakeMirrorByAxis(self, theObject, theAxis, theName=None):
- """
- Create an object, symmetrical to the given one relatively the given axis.
-
- Parameters:
- theObject The object to be mirrored.
- theAxis Axis of symmetry.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the mirrored shape.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.TrsfOp.MirrorAxisCopy(theObject, theAxis)
- RaiseIfFailed("MirrorAxisCopy", self.TrsfOp)
- self._autoPublish(anObj, theName, "mirrored")
- return anObj
-
- ## Mirror an object relatively the given point.
- # @param theObject The object to be mirrored.
- # @param thePoint Point of symmetry.
- # @param theCopy Flag used to mirror object itself or create a copy.
- # @return Mirrored @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the mirrored object if @a theCopy flag is @c True.
- def MirrorByPoint(self, theObject, thePoint, theCopy=False):
- """
- Mirror an object relatively the given point.
-
- Parameters:
- theObject The object to be mirrored.
- thePoint Point of symmetry.
- theCopy Flag used to mirror object itself or create a copy.
-
- Returns:
- Mirrored theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the mirrored object if theCopy flag is True.
- """
- # Example: see GEOM_TestAll.py
- if theCopy:
- anObj = self.TrsfOp.MirrorPointCopy(theObject, thePoint)
- else:
- anObj = self.TrsfOp.MirrorPoint(theObject, thePoint)
- RaiseIfFailed("MirrorByPoint", self.TrsfOp)
- return anObj
-
- ## Create an object, symmetrical
- # to the given one relatively the given point.
- # @param theObject The object to be mirrored.
- # @param thePoint Point of symmetry.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the mirrored shape.
- #
- # @ref tui_mirror "Example"
- def MakeMirrorByPoint(self, theObject, thePoint, theName=None):
- """
- Create an object, symmetrical
- to the given one relatively the given point.
-
- Parameters:
- theObject The object to be mirrored.
- thePoint Point of symmetry.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the mirrored shape.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.TrsfOp.MirrorPointCopy(theObject, thePoint)
- RaiseIfFailed("MirrorPointCopy", self.TrsfOp)
- self._autoPublish(anObj, theName, "mirrored")
- return anObj
-
- ## Modify the location of the given object.
- # @param theObject The object to be displaced.
- # @param theStartLCS Coordinate system to perform displacement from it.\n
- # If \a theStartLCS is NULL, displacement
- # will be performed from global CS.\n
- # If \a theObject itself is used as \a theStartLCS,
- # its location will be changed to \a theEndLCS.
- # @param theEndLCS Coordinate system to perform displacement to it.
- # @param theCopy Flag used to displace object itself or create a copy.
- # @return Displaced @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the displaced object if @a theCopy flag is @c True.
- def Position(self, theObject, theStartLCS, theEndLCS, theCopy=False):
- """
- Modify the Location of the given object by LCS, creating its copy before the setting.
-
- Parameters:
- theObject The object to be displaced.
- theStartLCS Coordinate system to perform displacement from it.
- If theStartLCS is NULL, displacement
- will be performed from global CS.
- If theObject itself is used as theStartLCS,
- its location will be changed to theEndLCS.
- theEndLCS Coordinate system to perform displacement to it.
- theCopy Flag used to displace object itself or create a copy.
-
- Returns:
- Displaced theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the displaced object if theCopy flag is True.
- """
- # Example: see GEOM_TestAll.py
- if theCopy:
- anObj = self.TrsfOp.PositionShapeCopy(theObject, theStartLCS, theEndLCS)
- else:
- anObj = self.TrsfOp.PositionShape(theObject, theStartLCS, theEndLCS)
- RaiseIfFailed("Displace", self.TrsfOp)
- return anObj
-
- ## Modify the Location of the given object by LCS,
- # creating its copy before the setting.
- # @param theObject The object to be displaced.
- # @param theStartLCS Coordinate system to perform displacement from it.\n
- # If \a theStartLCS is NULL, displacement
- # will be performed from global CS.\n
- # If \a theObject itself is used as \a theStartLCS,
- # its location will be changed to \a theEndLCS.
- # @param theEndLCS Coordinate system to perform displacement to it.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the displaced shape.
- #
- # @ref tui_modify_location "Example"
- def MakePosition(self, theObject, theStartLCS, theEndLCS, theName=None):
- """
- Modify the Location of the given object by LCS, creating its copy before the setting.
-
- Parameters:
- theObject The object to be displaced.
- theStartLCS Coordinate system to perform displacement from it.
- If theStartLCS is NULL, displacement
- will be performed from global CS.
- If theObject itself is used as theStartLCS,
- its location will be changed to theEndLCS.
- theEndLCS Coordinate system to perform displacement to it.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the displaced shape.
-
- Example of usage:
- # create local coordinate systems
- cs1 = geompy.MakeMarker( 0, 0, 0, 1,0,0, 0,1,0)
- cs2 = geompy.MakeMarker(30,40,40, 1,0,0, 0,1,0)
- # modify the location of the given object
- position = geompy.MakePosition(cylinder, cs1, cs2)
- """
- # Example: see GEOM_TestAll.py
- anObj = self.TrsfOp.PositionShapeCopy(theObject, theStartLCS, theEndLCS)
- RaiseIfFailed("PositionShapeCopy", self.TrsfOp)
- self._autoPublish(anObj, theName, "displaced")
- return anObj
-
- ## Modify the Location of the given object by Path.
- # @param theObject The object to be displaced.
- # @param thePath Wire or Edge along that the object will be translated.
- # @param theDistance progress of Path (0 = start location, 1 = end of path location).
- # @param theCopy is to create a copy objects if true.
- # @param theReverse 0 - for usual direction, 1 - to reverse path direction.
- # @return Displaced @a theObject (GEOM.GEOM_Object) if @a theCopy is @c False or
- # new GEOM.GEOM_Object, containing the displaced shape if @a theCopy is @c True.
- #
- # @ref tui_modify_location "Example"
- def PositionAlongPath(self,theObject, thePath, theDistance, theCopy, theReverse):
- """
- Modify the Location of the given object by Path.
-
- Parameters:
- theObject The object to be displaced.
- thePath Wire or Edge along that the object will be translated.
- theDistance progress of Path (0 = start location, 1 = end of path location).
- theCopy is to create a copy objects if true.
- theReverse 0 - for usual direction, 1 - to reverse path direction.
-
- Returns:
- Displaced theObject (GEOM.GEOM_Object) if theCopy is False or
- new GEOM.GEOM_Object, containing the displaced shape if theCopy is True.
-
- Example of usage:
- position = geompy.PositionAlongPath(cylinder, circle, 0.75, 1, 1)
- """
- # Example: see GEOM_TestAll.py
- anObj = self.TrsfOp.PositionAlongPath(theObject, thePath, theDistance, theCopy, theReverse)
- RaiseIfFailed("PositionAlongPath", self.TrsfOp)
- return anObj
-
- ## Modify the Location of the given object by Path, creating its copy before the operation.
- # @param theObject The object to be displaced.
- # @param thePath Wire or Edge along that the object will be translated.
- # @param theDistance progress of Path (0 = start location, 1 = end of path location).
- # @param theReverse 0 - for usual direction, 1 - to reverse path direction.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the displaced shape.
- def MakePositionAlongPath(self, theObject, thePath, theDistance, theReverse, theName=None):
- """
- Modify the Location of the given object by Path, creating its copy before the operation.
-
- Parameters:
- theObject The object to be displaced.
- thePath Wire or Edge along that the object will be translated.
- theDistance progress of Path (0 = start location, 1 = end of path location).
- theReverse 0 - for usual direction, 1 - to reverse path direction.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the displaced shape.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.TrsfOp.PositionAlongPath(theObject, thePath, theDistance, 1, theReverse)
- RaiseIfFailed("PositionAlongPath", self.TrsfOp)
- self._autoPublish(anObj, theName, "displaced")
- return anObj
-
- ## Offset given shape.
- # @param theObject The base object for the offset.
- # @param theOffset Offset value.
- # @param theCopy Flag used to offset object itself or create a copy.
- # @return Modified @a theObject (GEOM.GEOM_Object) if @a theCopy flag is @c False (default) or
- # new GEOM.GEOM_Object, containing the result of offset operation if @a theCopy flag is @c True.
- def Offset(self, theObject, theOffset, theCopy=False):
- """
- Offset given shape.
-
- Parameters:
- theObject The base object for the offset.
- theOffset Offset value.
- theCopy Flag used to offset object itself or create a copy.
-
- Returns:
- Modified theObject (GEOM.GEOM_Object) if theCopy flag is False (default) or
- new GEOM.GEOM_Object, containing the result of offset operation if theCopy flag is True.
- """
- theOffset, Parameters = ParseParameters(theOffset)
- if theCopy:
- anObj = self.TrsfOp.OffsetShapeCopy(theObject, theOffset)
- else:
- anObj = self.TrsfOp.OffsetShape(theObject, theOffset)
- RaiseIfFailed("Offset", self.TrsfOp)
- anObj.SetParameters(Parameters)
- return anObj
-
- ## Create new object as offset of the given one.
- # @param theObject The base object for the offset.
- # @param theOffset Offset value.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the offset object.
- #
- # @ref tui_offset "Example"
- def MakeOffset(self, theObject, theOffset, theName=None):
- """
- Create new object as offset of the given one.
-
- Parameters:
- theObject The base object for the offset.
- theOffset Offset value.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the offset object.
-
- Example of usage:
- box = geompy.MakeBox(20, 20, 20, 200, 200, 200)
- # create a new object as offset of the given object
- offset = geompy.MakeOffset(box, 70.)
- """
- # Example: see GEOM_TestAll.py
- theOffset, Parameters = ParseParameters(theOffset)
- anObj = self.TrsfOp.OffsetShapeCopy(theObject, theOffset)
- RaiseIfFailed("OffsetShapeCopy", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "offset")
- return anObj
-
- ## Create new object as projection of the given one on a 2D surface.
- # @param theSource The source object for the projection. It can be a point, edge or wire.
- # @param theTarget The target object. It can be planar or cylindrical face.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the projection.
- #
- # @ref tui_projection "Example"
- def MakeProjection(self, theSource, theTarget, theName=None):
- """
- Create new object as projection of the given one on a 2D surface.
-
- Parameters:
- theSource The source object for the projection. It can be a point, edge or wire.
- theTarget The target object. It can be planar or cylindrical face.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the projection.
- """
- # Example: see GEOM_TestAll.py
- anObj = self.TrsfOp.ProjectShapeCopy(theSource, theTarget)
- RaiseIfFailed("ProjectShapeCopy", self.TrsfOp)
- self._autoPublish(anObj, theName, "projection")
- return anObj
-
- # -----------------------------------------------------------------------------
- # Patterns
- # -----------------------------------------------------------------------------
-
- ## Translate the given object along the given vector a given number times
- # @param theObject The object to be translated.
- # @param theVector Direction of the translation. DX if None.
- # @param theStep Distance to translate on.
- # @param theNbTimes Quantity of translations to be done.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing compound of all
- # the shapes, obtained after each translation.
- #
- # @ref tui_multi_translation "Example"
- def MakeMultiTranslation1D(self, theObject, theVector, theStep, theNbTimes, theName=None):
- """
- Translate the given object along the given vector a given number times
-
- Parameters:
- theObject The object to be translated.
- theVector Direction of the translation. DX if None.
- theStep Distance to translate on.
- theNbTimes Quantity of translations to be done.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing compound of all
- the shapes, obtained after each translation.
-
- Example of usage:
- r1d = geompy.MakeMultiTranslation1D(prism, vect, 20, 4)
- """
- # Example: see GEOM_TestAll.py
- theStep, theNbTimes, Parameters = ParseParameters(theStep, theNbTimes)
- anObj = self.TrsfOp.MultiTranslate1D(theObject, theVector, theStep, theNbTimes)
- RaiseIfFailed("MultiTranslate1D", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "multitranslation")
- return anObj
-
- ## Conseqently apply two specified translations to theObject specified number of times.
- # @param theObject The object to be translated.
- # @param theVector1 Direction of the first translation. DX if None.
- # @param theStep1 Step of the first translation.
- # @param theNbTimes1 Quantity of translations to be done along theVector1.
- # @param theVector2 Direction of the second translation. DY if None.
- # @param theStep2 Step of the second translation.
- # @param theNbTimes2 Quantity of translations to be done along theVector2.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing compound of all
- # the shapes, obtained after each translation.
- #
- # @ref tui_multi_translation "Example"
- def MakeMultiTranslation2D(self, theObject, theVector1, theStep1, theNbTimes1,
- theVector2, theStep2, theNbTimes2, theName=None):
- """
- Conseqently apply two specified translations to theObject specified number of times.
-
- Parameters:
- theObject The object to be translated.
- theVector1 Direction of the first translation. DX if None.
- theStep1 Step of the first translation.
- theNbTimes1 Quantity of translations to be done along theVector1.
- theVector2 Direction of the second translation. DY if None.
- theStep2 Step of the second translation.
- theNbTimes2 Quantity of translations to be done along theVector2.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing compound of all
- the shapes, obtained after each translation.
-
- Example of usage:
- tr2d = geompy.MakeMultiTranslation2D(prism, vect1, 20, 4, vect2, 80, 3)
- """
- # Example: see GEOM_TestAll.py
- theStep1,theNbTimes1,theStep2,theNbTimes2, Parameters = ParseParameters(theStep1,theNbTimes1,theStep2,theNbTimes2)
- anObj = self.TrsfOp.MultiTranslate2D(theObject, theVector1, theStep1, theNbTimes1,
- theVector2, theStep2, theNbTimes2)
- RaiseIfFailed("MultiTranslate2D", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "multitranslation")
- return anObj
-
- ## Rotate the given object around the given axis a given number times.
- # Rotation angle will be 2*PI/theNbTimes.
- # @param theObject The object to be rotated.
- # @param theAxis The rotation axis. DZ if None.
- # @param theNbTimes Quantity of rotations to be done.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing compound of all the
- # shapes, obtained after each rotation.
- #
- # @ref tui_multi_rotation "Example"
- def MultiRotate1DNbTimes (self, theObject, theAxis, theNbTimes, theName=None):
- """
- Rotate the given object around the given axis a given number times.
- Rotation angle will be 2*PI/theNbTimes.
-
- Parameters:
- theObject The object to be rotated.
- theAxis The rotation axis. DZ if None.
- theNbTimes Quantity of rotations to be done.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing compound of all the
- shapes, obtained after each rotation.
-
- Example of usage:
- rot1d = geompy.MultiRotate1DNbTimes(prism, vect, 4)
- """
- # Example: see GEOM_TestAll.py
- theNbTimes, Parameters = ParseParameters(theNbTimes)
- anObj = self.TrsfOp.MultiRotate1D(theObject, theAxis, theNbTimes)
- RaiseIfFailed("MultiRotate1DNbTimes", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "multirotation")
- return anObj
-
- ## Rotate the given object around the given axis
- # a given number times on the given angle.
- # @param theObject The object to be rotated.
- # @param theAxis The rotation axis. DZ if None.
- # @param theAngleStep Rotation angle in radians.
- # @param theNbTimes Quantity of rotations to be done.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing compound of all the
- # shapes, obtained after each rotation.
- #
- # @ref tui_multi_rotation "Example"
- def MultiRotate1DByStep(self, theObject, theAxis, theAngleStep, theNbTimes, theName=None):
- """
- Rotate the given object around the given axis
- a given number times on the given angle.
-
- Parameters:
- theObject The object to be rotated.
- theAxis The rotation axis. DZ if None.
- theAngleStep Rotation angle in radians.
- theNbTimes Quantity of rotations to be done.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing compound of all the
- shapes, obtained after each rotation.
-
- Example of usage:
- rot1d = geompy.MultiRotate1DByStep(prism, vect, math.pi/4, 4)
- """
- # Example: see GEOM_TestAll.py
- theAngleStep, theNbTimes, Parameters = ParseParameters(theAngleStep, theNbTimes)
- anObj = self.TrsfOp.MultiRotate1DByStep(theObject, theAxis, theAngleStep, theNbTimes)
- RaiseIfFailed("MultiRotate1DByStep", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "multirotation")
- return anObj
-
- ## Rotate the given object around the given axis a given
- # number times and multi-translate each rotation result.
- # Rotation angle will be 2*PI/theNbTimes1.
- # Translation direction passes through center of gravity
- # of rotated shape and its projection on the rotation axis.
- # @param theObject The object to be rotated.
- # @param theAxis Rotation axis. DZ if None.
- # @param theNbTimes1 Quantity of rotations to be done.
- # @param theRadialStep Translation distance.
- # @param theNbTimes2 Quantity of translations to be done.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing compound of all the
- # shapes, obtained after each transformation.
- #
- # @ref tui_multi_rotation "Example"
- def MultiRotate2DNbTimes(self, theObject, theAxis, theNbTimes1, theRadialStep, theNbTimes2, theName=None):
- """
- Rotate the given object around the
- given axis on the given angle a given number
- times and multi-translate each rotation result.
- Translation direction passes through center of gravity
- of rotated shape and its projection on the rotation axis.
-
- Parameters:
- theObject The object to be rotated.
- theAxis Rotation axis. DZ if None.
- theNbTimes1 Quantity of rotations to be done.
- theRadialStep Translation distance.
- theNbTimes2 Quantity of translations to be done.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing compound of all the
- shapes, obtained after each transformation.
-
- Example of usage:
- rot2d = geompy.MultiRotate2D(prism, vect, 60, 4, 50, 5)
- """
- # Example: see GEOM_TestAll.py
- theNbTimes1, theRadialStep, theNbTimes2, Parameters = ParseParameters(theNbTimes1, theRadialStep, theNbTimes2)
- anObj = self.TrsfOp.MultiRotate2DNbTimes(theObject, theAxis, theNbTimes1, theRadialStep, theNbTimes2)
- RaiseIfFailed("MultiRotate2DNbTimes", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "multirotation")
- return anObj
-
- ## Rotate the given object around the
- # given axis on the given angle a given number
- # times and multi-translate each rotation result.
- # Translation direction passes through center of gravity
- # of rotated shape and its projection on the rotation axis.
- # @param theObject The object to be rotated.
- # @param theAxis Rotation axis. DZ if None.
- # @param theAngleStep Rotation angle in radians.
- # @param theNbTimes1 Quantity of rotations to be done.
- # @param theRadialStep Translation distance.
- # @param theNbTimes2 Quantity of translations to be done.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing compound of all the
- # shapes, obtained after each transformation.
- #
- # @ref tui_multi_rotation "Example"
- def MultiRotate2DByStep (self, theObject, theAxis, theAngleStep, theNbTimes1, theRadialStep, theNbTimes2, theName=None):
- """
- Rotate the given object around the
- given axis on the given angle a given number
- times and multi-translate each rotation result.
- Translation direction passes through center of gravity
- of rotated shape and its projection on the rotation axis.
-
- Parameters:
- theObject The object to be rotated.
- theAxis Rotation axis. DZ if None.
- theAngleStep Rotation angle in radians.
- theNbTimes1 Quantity of rotations to be done.
- theRadialStep Translation distance.
- theNbTimes2 Quantity of translations to be done.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing compound of all the
- shapes, obtained after each transformation.
-
- Example of usage:
- rot2d = geompy.MultiRotate2D(prism, vect, math.pi/3, 4, 50, 5)
- """
- # Example: see GEOM_TestAll.py
- theAngleStep, theNbTimes1, theRadialStep, theNbTimes2, Parameters = ParseParameters(theAngleStep, theNbTimes1, theRadialStep, theNbTimes2)
- anObj = self.TrsfOp.MultiRotate2DByStep(theObject, theAxis, theAngleStep, theNbTimes1, theRadialStep, theNbTimes2)
- RaiseIfFailed("MultiRotate2DByStep", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "multirotation")
- return anObj
-
- ## The same, as MultiRotate1DNbTimes(), but axis is given by direction and point
- #
- # @ref swig_MakeMultiRotation "Example"
- def MakeMultiRotation1DNbTimes(self, aShape, aDir, aPoint, aNbTimes, theName=None):
- """
- The same, as geompy.MultiRotate1DNbTimes, but axis is given by direction and point
-
- Example of usage:
- pz = geompy.MakeVertex(0, 0, 100)
- vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
- MultiRot1D = geompy.MakeMultiRotation1DNbTimes(prism, vy, pz, 6)
- """
- # Example: see GEOM_TestOthers.py
- aVec = self.MakeLine(aPoint,aDir)
- # note: auto-publishing is done in self.MultiRotate1D()
- anObj = self.MultiRotate1DNbTimes(aShape, aVec, aNbTimes, theName)
- return anObj
-
- ## The same, as MultiRotate1DByStep(), but axis is given by direction and point
- #
- # @ref swig_MakeMultiRotation "Example"
- def MakeMultiRotation1DByStep(self, aShape, aDir, aPoint, anAngle, aNbTimes, theName=None):
- """
- The same, as geompy.MultiRotate1D, but axis is given by direction and point
-
- Example of usage:
- pz = geompy.MakeVertex(0, 0, 100)
- vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
- MultiRot1D = geompy.MakeMultiRotation1DByStep(prism, vy, pz, math.pi/3, 6)
- """
- # Example: see GEOM_TestOthers.py
- aVec = self.MakeLine(aPoint,aDir)
- # note: auto-publishing is done in self.MultiRotate1D()
- anObj = self.MultiRotate1DByStep(aShape, aVec, anAngle, aNbTimes, theName)
- return anObj
-
- ## The same, as MultiRotate2DNbTimes(), but axis is given by direction and point
- #
- # @ref swig_MakeMultiRotation "Example"
- def MakeMultiRotation2DNbTimes(self, aShape, aDir, aPoint, nbtimes1, aStep, nbtimes2, theName=None):
- """
- The same, as MultiRotate2DNbTimes(), but axis is given by direction and point
-
- Example of usage:
- pz = geompy.MakeVertex(0, 0, 100)
- vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
- MultiRot2D = geompy.MakeMultiRotation2DNbTimes(f12, vy, pz, 6, 30, 3)
- """
- # Example: see GEOM_TestOthers.py
- aVec = self.MakeLine(aPoint,aDir)
- # note: auto-publishing is done in self.MultiRotate2DNbTimes()
- anObj = self.MultiRotate2DNbTimes(aShape, aVec, nbtimes1, aStep, nbtimes2, theName)
- return anObj
-
- ## The same, as MultiRotate2DByStep(), but axis is given by direction and point
- #
- # @ref swig_MakeMultiRotation "Example"
- def MakeMultiRotation2DByStep(self, aShape, aDir, aPoint, anAngle, nbtimes1, aStep, nbtimes2, theName=None):
- """
- The same, as MultiRotate2DByStep(), but axis is given by direction and point
-
- Example of usage:
- pz = geompy.MakeVertex(0, 0, 100)
- vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
- MultiRot2D = geompy.MakeMultiRotation2DByStep(f12, vy, pz, math.pi/4, 6, 30, 3)
- """
- # Example: see GEOM_TestOthers.py
- aVec = self.MakeLine(aPoint,aDir)
- # note: auto-publishing is done in self.MultiRotate2D()
- anObj = self.MultiRotate2DByStep(aShape, aVec, anAngle, nbtimes1, aStep, nbtimes2, theName)
- return anObj
-
- # end of l3_transform
- ## @}
-
- ## @addtogroup l3_transform_d
- ## @{
-
- ## Deprecated method. Use MultiRotate1DNbTimes instead.
- def MultiRotate1D(self, theObject, theAxis, theNbTimes, theName=None):
- """
- Deprecated method. Use MultiRotate1DNbTimes instead.
- """
- print "The method MultiRotate1D is DEPRECATED. Use MultiRotate1DNbTimes instead."
- return self.MultiRotate1DNbTimes(theObject, theAxis, theNbTimes, theName)
-
- ## The same, as MultiRotate2DByStep(), but theAngle is in degrees.
- # This method is DEPRECATED. Use MultiRotate2DByStep() instead.
- def MultiRotate2D(self, theObject, theAxis, theAngle, theNbTimes1, theStep, theNbTimes2, theName=None):
- """
- The same, as MultiRotate2DByStep(), but theAngle is in degrees.
- This method is DEPRECATED. Use MultiRotate2DByStep() instead.
-
- Example of usage:
- rot2d = geompy.MultiRotate2D(prism, vect, 60, 4, 50, 5)
- """
- print "The method MultiRotate2D is DEPRECATED. Use MultiRotate2DByStep instead."
- theAngle, theNbTimes1, theStep, theNbTimes2, Parameters = ParseParameters(theAngle, theNbTimes1, theStep, theNbTimes2)
- anObj = self.TrsfOp.MultiRotate2D(theObject, theAxis, theAngle, theNbTimes1, theStep, theNbTimes2)
- RaiseIfFailed("MultiRotate2D", self.TrsfOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "multirotation")
- return anObj
-
- ## The same, as MultiRotate1D(), but axis is given by direction and point
- # This method is DEPRECATED. Use MakeMultiRotation1DNbTimes instead.
- def MakeMultiRotation1D(self, aShape, aDir, aPoint, aNbTimes, theName=None):
- """
- The same, as geompy.MultiRotate1D, but axis is given by direction and point.
- This method is DEPRECATED. Use MakeMultiRotation1DNbTimes instead.
-
- Example of usage:
- pz = geompy.MakeVertex(0, 0, 100)
- vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
- MultiRot1D = geompy.MakeMultiRotation1D(prism, vy, pz, 6)
- """
- print "The method MakeMultiRotation1D is DEPRECATED. Use MakeMultiRotation1DNbTimes instead."
- aVec = self.MakeLine(aPoint,aDir)
- # note: auto-publishing is done in self.MultiRotate1D()
- anObj = self.MultiRotate1D(aShape, aVec, aNbTimes, theName)
- return anObj
-
- ## The same, as MultiRotate2D(), but axis is given by direction and point
- # This method is DEPRECATED. Use MakeMultiRotation2DByStep instead.
- def MakeMultiRotation2D(self, aShape, aDir, aPoint, anAngle, nbtimes1, aStep, nbtimes2, theName=None):
- """
- The same, as MultiRotate2D(), but axis is given by direction and point
- This method is DEPRECATED. Use MakeMultiRotation2DByStep instead.
-
- Example of usage:
- pz = geompy.MakeVertex(0, 0, 100)
- vy = geompy.MakeVectorDXDYDZ(0, 100, 0)
- MultiRot2D = geompy.MakeMultiRotation2D(f12, vy, pz, 45, 6, 30, 3)
- """
- print "The method MakeMultiRotation2D is DEPRECATED. Use MakeMultiRotation2DByStep instead."
- aVec = self.MakeLine(aPoint,aDir)
- # note: auto-publishing is done in self.MultiRotate2D()
- anObj = self.MultiRotate2D(aShape, aVec, anAngle, nbtimes1, aStep, nbtimes2, theName)
- return anObj
-
- # end of l3_transform_d
- ## @}
-
- ## @addtogroup l3_local
- ## @{
-
- ## Perform a fillet on all edges of the given shape.
- # @param theShape Shape, to perform fillet on.
- # @param theR Fillet radius.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_fillet "Example 1"
- # \n @ref swig_MakeFilletAll "Example 2"
- def MakeFilletAll(self, theShape, theR, theName=None):
- """
- Perform a fillet on all edges of the given shape.
-
- Parameters:
- theShape Shape, to perform fillet on.
- theR Fillet radius.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
-
- Example of usage:
- filletall = geompy.MakeFilletAll(prism, 10.)
- """
- # Example: see GEOM_TestOthers.py
- theR,Parameters = ParseParameters(theR)
- anObj = self.LocalOp.MakeFilletAll(theShape, theR)
- RaiseIfFailed("MakeFilletAll", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "fillet")
- return anObj
-
- ## Perform a fillet on the specified edges/faces of the given shape
- # @param theShape Shape, to perform fillet on.
- # @param theR Fillet radius.
- # @param theShapeType Type of shapes in theListShapes (see ShapeType())
- # @param theListShapes Global indices of edges/faces to perform fillet on.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @note Global index of sub-shape can be obtained, using method GetSubShapeID().
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_fillet "Example"
- def MakeFillet(self, theShape, theR, theShapeType, theListShapes, theName=None):
- """
- Perform a fillet on the specified edges/faces of the given shape
-
- Parameters:
- theShape Shape, to perform fillet on.
- theR Fillet radius.
- theShapeType Type of shapes in theListShapes (see geompy.ShapeTypes)
- theListShapes Global indices of edges/faces to perform fillet on.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Note:
- Global index of sub-shape can be obtained, using method geompy.GetSubShapeID
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
-
- Example of usage:
- # get the list of IDs (IDList) for the fillet
- prism_edges = geompy.SubShapeAllSortedCentres(prism, geompy.ShapeType["EDGE"])
- IDlist_e = []
- IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[0]))
- IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[1]))
- IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[2]))
- # make a fillet on the specified edges of the given shape
- fillet = geompy.MakeFillet(prism, 10., geompy.ShapeType["EDGE"], IDlist_e)
- """
- # Example: see GEOM_TestAll.py
- theR,Parameters = ParseParameters(theR)
- anObj = None
- if theShapeType == ShapeType["EDGE"]:
- anObj = self.LocalOp.MakeFilletEdges(theShape, theR, theListShapes)
- RaiseIfFailed("MakeFilletEdges", self.LocalOp)
- else:
- anObj = self.LocalOp.MakeFilletFaces(theShape, theR, theListShapes)
- RaiseIfFailed("MakeFilletFaces", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "fillet")
- return anObj
-
- ## The same that MakeFillet() but with two Fillet Radius R1 and R2
- def MakeFilletR1R2(self, theShape, theR1, theR2, theShapeType, theListShapes, theName=None):
- """
- The same that geompy.MakeFillet but with two Fillet Radius R1 and R2
-
- Example of usage:
- # get the list of IDs (IDList) for the fillet
- prism_edges = geompy.SubShapeAllSortedCentres(prism, geompy.ShapeType["EDGE"])
- IDlist_e = []
- IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[0]))
- IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[1]))
- IDlist_e.append(geompy.GetSubShapeID(prism, prism_edges[2]))
- # make a fillet on the specified edges of the given shape
- fillet = geompy.MakeFillet(prism, 10., 15., geompy.ShapeType["EDGE"], IDlist_e)
- """
- theR1,theR2,Parameters = ParseParameters(theR1,theR2)
- anObj = None
- if theShapeType == ShapeType["EDGE"]:
- anObj = self.LocalOp.MakeFilletEdgesR1R2(theShape, theR1, theR2, theListShapes)
- RaiseIfFailed("MakeFilletEdgesR1R2", self.LocalOp)
- else:
- anObj = self.LocalOp.MakeFilletFacesR1R2(theShape, theR1, theR2, theListShapes)
- RaiseIfFailed("MakeFilletFacesR1R2", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "fillet")
- return anObj
-
- ## Perform a fillet on the specified edges of the given shape
- # @param theShape Wire Shape to perform fillet on.
- # @param theR Fillet radius.
- # @param theListOfVertexes Global indices of vertexes to perform fillet on.
- # \note Global index of sub-shape can be obtained, using method GetSubShapeID()
- # \note The list of vertices could be empty,
- # in this case fillet will done done at all vertices in wire
- # @param doIgnoreSecantVertices If FALSE, fillet radius is always limited
- # by the length of the edges, nearest to the fillet vertex.
- # But sometimes the next edge is C1 continuous with the one, nearest to
- # the fillet point, and such two (or more) edges can be united to allow
- # bigger radius. Set this flag to TRUE to allow collinear edges union,
- # thus ignoring the secant vertex (vertices).
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_fillet2d "Example"
- def MakeFillet1D(self, theShape, theR, theListOfVertexes, doIgnoreSecantVertices = True, theName=None):
- """
- Perform a fillet on the specified edges of the given shape
-
- Parameters:
- theShape Wire Shape to perform fillet on.
- theR Fillet radius.
- theListOfVertexes Global indices of vertexes to perform fillet on.
- doIgnoreSecantVertices If FALSE, fillet radius is always limited
- by the length of the edges, nearest to the fillet vertex.
- But sometimes the next edge is C1 continuous with the one, nearest to
- the fillet point, and such two (or more) edges can be united to allow
- bigger radius. Set this flag to TRUE to allow collinear edges union,
- thus ignoring the secant vertex (vertices).
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
- Note:
- Global index of sub-shape can be obtained, using method geompy.GetSubShapeID
-
- The list of vertices could be empty,in this case fillet will done done at all vertices in wire
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
-
- Example of usage:
- # create wire
- Wire_1 = geompy.MakeWire([Edge_12, Edge_7, Edge_11, Edge_6, Edge_1,Edge_4])
- # make fillet at given wire vertices with giver radius
- Fillet_1D_1 = geompy.MakeFillet1D(Wire_1, 55, [3, 4, 6, 8, 10])
- """
- # Example: see GEOM_TestAll.py
- theR,doIgnoreSecantVertices,Parameters = ParseParameters(theR,doIgnoreSecantVertices)
- anObj = self.LocalOp.MakeFillet1D(theShape, theR, theListOfVertexes, doIgnoreSecantVertices)
- RaiseIfFailed("MakeFillet1D", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "fillet")
- return anObj
-
- ## Perform a fillet at the specified vertices of the given face/shell.
- # @param theShape Face or Shell shape to perform fillet on.
- # @param theR Fillet radius.
- # @param theListOfVertexes Global indices of vertexes to perform fillet on.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @note Global index of sub-shape can be obtained, using method GetSubShapeID().
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_fillet2d "Example"
- def MakeFillet2D(self, theShape, theR, theListOfVertexes, theName=None):
- """
- Perform a fillet at the specified vertices of the given face/shell.
-
- Parameters:
- theShape Face or Shell shape to perform fillet on.
- theR Fillet radius.
- theListOfVertexes Global indices of vertexes to perform fillet on.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
- Note:
- Global index of sub-shape can be obtained, using method geompy.GetSubShapeID
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
-
- Example of usage:
- face = geompy.MakeFaceHW(100, 100, 1)
- fillet2d = geompy.MakeFillet2D(face, 30, [7, 9])
- """
- # Example: see GEOM_TestAll.py
- theR,Parameters = ParseParameters(theR)
- anObj = self.LocalOp.MakeFillet2D(theShape, theR, theListOfVertexes)
- RaiseIfFailed("MakeFillet2D", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "fillet")
- return anObj
-
- ## Perform a symmetric chamfer on all edges of the given shape.
- # @param theShape Shape, to perform chamfer on.
- # @param theD Chamfer size along each face.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_chamfer "Example 1"
- # \n @ref swig_MakeChamferAll "Example 2"
- def MakeChamferAll(self, theShape, theD, theName=None):
- """
- Perform a symmetric chamfer on all edges of the given shape.
-
- Parameters:
- theShape Shape, to perform chamfer on.
- theD Chamfer size along each face.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
-
- Example of usage:
- chamfer_all = geompy.MakeChamferAll(prism, 10.)
- """
- # Example: see GEOM_TestOthers.py
- theD,Parameters = ParseParameters(theD)
- anObj = self.LocalOp.MakeChamferAll(theShape, theD)
- RaiseIfFailed("MakeChamferAll", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "chamfer")
- return anObj
-
- ## Perform a chamfer on edges, common to the specified faces,
- # with distance D1 on the Face1
- # @param theShape Shape, to perform chamfer on.
- # @param theD1 Chamfer size along \a theFace1.
- # @param theD2 Chamfer size along \a theFace2.
- # @param theFace1,theFace2 Global indices of two faces of \a theShape.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @note Global index of sub-shape can be obtained, using method GetSubShapeID().
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_chamfer "Example"
- def MakeChamferEdge(self, theShape, theD1, theD2, theFace1, theFace2, theName=None):
- """
- Perform a chamfer on edges, common to the specified faces,
- with distance D1 on the Face1
-
- Parameters:
- theShape Shape, to perform chamfer on.
- theD1 Chamfer size along theFace1.
- theD2 Chamfer size along theFace2.
- theFace1,theFace2 Global indices of two faces of theShape.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Note:
- Global index of sub-shape can be obtained, using method geompy.GetSubShapeID
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
-
- Example of usage:
- prism_faces = geompy.SubShapeAllSortedCentres(prism, geompy.ShapeType["FACE"])
- f_ind_1 = geompy.GetSubShapeID(prism, prism_faces[0])
- f_ind_2 = geompy.GetSubShapeID(prism, prism_faces[1])
- chamfer_e = geompy.MakeChamferEdge(prism, 10., 10., f_ind_1, f_ind_2)
- """
- # Example: see GEOM_TestAll.py
- theD1,theD2,Parameters = ParseParameters(theD1,theD2)
- anObj = self.LocalOp.MakeChamferEdge(theShape, theD1, theD2, theFace1, theFace2)
- RaiseIfFailed("MakeChamferEdge", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "chamfer")
- return anObj
-
- ## Perform a chamfer on edges
- # @param theShape Shape, to perform chamfer on.
- # @param theD Chamfer length
- # @param theAngle Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
- # @param theFace1,theFace2 Global indices of two faces of \a theShape.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @note Global index of sub-shape can be obtained, using method GetSubShapeID().
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- def MakeChamferEdgeAD(self, theShape, theD, theAngle, theFace1, theFace2, theName=None):
- """
- Perform a chamfer on edges
-
- Parameters:
- theShape Shape, to perform chamfer on.
- theD1 Chamfer size along theFace1.
- theAngle Angle of chamfer (angle in radians or a name of variable which defines angle in degrees).
- theFace1,theFace2 Global indices of two faces of theShape.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Note:
- Global index of sub-shape can be obtained, using method geompy.GetSubShapeID
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
-
- Example of usage:
- prism_faces = geompy.SubShapeAllSortedCentres(prism, geompy.ShapeType["FACE"])
- f_ind_1 = geompy.GetSubShapeID(prism, prism_faces[0])
- f_ind_2 = geompy.GetSubShapeID(prism, prism_faces[1])
- ang = 30
- chamfer_e = geompy.MakeChamferEdge(prism, 10., ang, f_ind_1, f_ind_2)
- """
- flag = False
- if isinstance(theAngle,str):
- flag = True
- theD,theAngle,Parameters = ParseParameters(theD,theAngle)
- if flag:
- theAngle = theAngle*math.pi/180.0
- anObj = self.LocalOp.MakeChamferEdgeAD(theShape, theD, theAngle, theFace1, theFace2)
- RaiseIfFailed("MakeChamferEdgeAD", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "chamfer")
- return anObj
-
- ## Perform a chamfer on all edges of the specified faces,
- # with distance D1 on the first specified face (if several for one edge)
- # @param theShape Shape, to perform chamfer on.
- # @param theD1 Chamfer size along face from \a theFaces. If both faces,
- # connected to the edge, are in \a theFaces, \a theD1
- # will be get along face, which is nearer to \a theFaces beginning.
- # @param theD2 Chamfer size along another of two faces, connected to the edge.
- # @param theFaces Sequence of global indices of faces of \a theShape.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @note Global index of sub-shape can be obtained, using method GetSubShapeID().
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_chamfer "Example"
- def MakeChamferFaces(self, theShape, theD1, theD2, theFaces, theName=None):
- """
- Perform a chamfer on all edges of the specified faces,
- with distance D1 on the first specified face (if several for one edge)
-
- Parameters:
- theShape Shape, to perform chamfer on.
- theD1 Chamfer size along face from theFaces. If both faces,
- connected to the edge, are in theFaces, theD1
- will be get along face, which is nearer to theFaces beginning.
- theD2 Chamfer size along another of two faces, connected to the edge.
- theFaces Sequence of global indices of faces of theShape.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Note: Global index of sub-shape can be obtained, using method geompy.GetSubShapeID().
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
- """
- # Example: see GEOM_TestAll.py
- theD1,theD2,Parameters = ParseParameters(theD1,theD2)
- anObj = self.LocalOp.MakeChamferFaces(theShape, theD1, theD2, theFaces)
- RaiseIfFailed("MakeChamferFaces", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "chamfer")
- return anObj
-
- ## The Same that MakeChamferFaces() but with params theD is chamfer lenght and
- # theAngle is Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
- #
- # @ref swig_FilletChamfer "Example"
- def MakeChamferFacesAD(self, theShape, theD, theAngle, theFaces, theName=None):
- """
- The Same that geompy.MakeChamferFaces but with params theD is chamfer lenght and
- theAngle is Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
- """
- flag = False
- if isinstance(theAngle,str):
- flag = True
- theD,theAngle,Parameters = ParseParameters(theD,theAngle)
- if flag:
- theAngle = theAngle*math.pi/180.0
- anObj = self.LocalOp.MakeChamferFacesAD(theShape, theD, theAngle, theFaces)
- RaiseIfFailed("MakeChamferFacesAD", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "chamfer")
- return anObj
-
- ## Perform a chamfer on edges,
- # with distance D1 on the first specified face (if several for one edge)
- # @param theShape Shape, to perform chamfer on.
- # @param theD1,theD2 Chamfer size
- # @param theEdges Sequence of edges of \a theShape.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref swig_FilletChamfer "Example"
- def MakeChamferEdges(self, theShape, theD1, theD2, theEdges, theName=None):
- """
- Perform a chamfer on edges,
- with distance D1 on the first specified face (if several for one edge)
-
- Parameters:
- theShape Shape, to perform chamfer on.
- theD1,theD2 Chamfer size
- theEdges Sequence of edges of theShape.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
- """
- theD1,theD2,Parameters = ParseParameters(theD1,theD2)
- anObj = self.LocalOp.MakeChamferEdges(theShape, theD1, theD2, theEdges)
- RaiseIfFailed("MakeChamferEdges", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "chamfer")
- return anObj
-
- ## The Same that MakeChamferEdges() but with params theD is chamfer lenght and
- # theAngle is Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
- def MakeChamferEdgesAD(self, theShape, theD, theAngle, theEdges, theName=None):
- """
- The Same that geompy.MakeChamferEdges but with params theD is chamfer lenght and
- theAngle is Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
- """
- flag = False
- if isinstance(theAngle,str):
- flag = True
- theD,theAngle,Parameters = ParseParameters(theD,theAngle)
- if flag:
- theAngle = theAngle*math.pi/180.0
- anObj = self.LocalOp.MakeChamferEdgesAD(theShape, theD, theAngle, theEdges)
- RaiseIfFailed("MakeChamferEdgesAD", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "chamfer")
- return anObj
-
- ## @sa MakeChamferEdge(), MakeChamferFaces()
- #
- # @ref swig_MakeChamfer "Example"
- def MakeChamfer(self, aShape, d1, d2, aShapeType, ListShape, theName=None):
- """
- See geompy.MakeChamferEdge() and geompy.MakeChamferFaces() functions for more information.
- """
- # Example: see GEOM_TestOthers.py
- anObj = None
- # note: auto-publishing is done in self.MakeChamferEdge() or self.MakeChamferFaces()
- if aShapeType == ShapeType["EDGE"]:
- anObj = self.MakeChamferEdge(aShape,d1,d2,ListShape[0],ListShape[1],theName)
- else:
- anObj = self.MakeChamferFaces(aShape,d1,d2,ListShape,theName)
- return anObj
-
- ## Remove material from a solid by extrusion of the base shape on the given distance.
- # @param theInit Shape to remove material from. It must be a solid or
- # a compound made of a single solid.
- # @param theBase Closed edge or wire defining the base shape to be extruded.
- # @param theH Prism dimension along the normal to theBase
- # @param theAngle Draft angle in degrees.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the initial shape with removed material
- #
- # @ref tui_creation_prism "Example"
- def MakeExtrudedCut(self, theInit, theBase, theH, theAngle, theName=None):
- """
- Add material to a solid by extrusion of the base shape on the given distance.
-
- Parameters:
- theInit Shape to remove material from. It must be a solid or a compound made of a single solid.
- theBase Closed edge or wire defining the base shape to be extruded.
- theH Prism dimension along the normal to theBase
- theAngle Draft angle in degrees.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the initial shape with removed material.
- """
- # Example: see GEOM_TestAll.py
- #theH,Parameters = ParseParameters(theH)
- anObj = self.PrimOp.MakeDraftPrism(theInit, theBase, theH, theAngle, False)
- RaiseIfFailed("MakeExtrudedBoss", self.PrimOp)
- #anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "extrudedCut")
- return anObj
-
- ## Add material to a solid by extrusion of the base shape on the given distance.
- # @param theInit Shape to add material to. It must be a solid or
- # a compound made of a single solid.
- # @param theBase Closed edge or wire defining the base shape to be extruded.
- # @param theH Prism dimension along the normal to theBase
- # @param theAngle Draft angle in degrees.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the initial shape with added material
- #
- # @ref tui_creation_prism "Example"
- def MakeExtrudedBoss(self, theInit, theBase, theH, theAngle, theName=None):
- """
- Add material to a solid by extrusion of the base shape on the given distance.
-
- Parameters:
- theInit Shape to add material to. It must be a solid or a compound made of a single solid.
- theBase Closed edge or wire defining the base shape to be extruded.
- theH Prism dimension along the normal to theBase
- theAngle Draft angle in degrees.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the initial shape with added material.
- """
- # Example: see GEOM_TestAll.py
- #theH,Parameters = ParseParameters(theH)
- anObj = self.PrimOp.MakeDraftPrism(theInit, theBase, theH, theAngle, True)
- RaiseIfFailed("MakeExtrudedBoss", self.PrimOp)
- #anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "extrudedBoss")
- return anObj
-
- # end of l3_local
- ## @}
-
- ## @addtogroup l3_basic_op
- ## @{
-
- ## Perform an Archimde operation on the given shape with given parameters.
- # The object presenting the resulting face is returned.
- # @param theShape Shape to be put in water.
- # @param theWeight Weight og the shape.
- # @param theWaterDensity Density of the water.
- # @param theMeshDeflection Deflection of the mesh, using to compute the section.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing a section of \a theShape
- # by a plane, corresponding to water level.
- #
- # @ref tui_archimede "Example"
- def Archimede(self, theShape, theWeight, theWaterDensity, theMeshDeflection, theName=None):
- """
- Perform an Archimde operation on the given shape with given parameters.
- The object presenting the resulting face is returned.
-
- Parameters:
- theShape Shape to be put in water.
- theWeight Weight og the shape.
- theWaterDensity Density of the water.
- theMeshDeflection Deflection of the mesh, using to compute the section.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing a section of theShape
- by a plane, corresponding to water level.
- """
- # Example: see GEOM_TestAll.py
- theWeight,theWaterDensity,theMeshDeflection,Parameters = ParseParameters(
- theWeight,theWaterDensity,theMeshDeflection)
- anObj = self.LocalOp.MakeArchimede(theShape, theWeight, theWaterDensity, theMeshDeflection)
- RaiseIfFailed("MakeArchimede", self.LocalOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "archimede")
- return anObj
-
- # end of l3_basic_op
- ## @}
-
- ## @addtogroup l2_measure
- ## @{
-
- ## Get point coordinates
- # @return [x, y, z]
- #
- # @ref tui_measurement_tools_page "Example"
- def PointCoordinates(self,Point):
- """
- Get point coordinates
-
- Returns:
- [x, y, z]
- """
- # Example: see GEOM_TestMeasures.py
- aTuple = self.MeasuOp.PointCoordinates(Point)
- RaiseIfFailed("PointCoordinates", self.MeasuOp)
- return aTuple
-
- ## Get vector coordinates
- # @return [x, y, z]
- #
- # @ref tui_measurement_tools_page "Example"
- def VectorCoordinates(self,Vector):
- """
- Get vector coordinates
-
- Returns:
- [x, y, z]
- """
-
- p1=self.GetFirstVertex(Vector)
- p2=self.GetLastVertex(Vector)
-
- X1=self.PointCoordinates(p1)
- X2=self.PointCoordinates(p2)
-
- return (X2[0]-X1[0],X2[1]-X1[1],X2[2]-X1[2])
-
-
- ## Compute cross product
- # @return vector w=u^v
- #
- # @ref tui_measurement_tools_page "Example"
- def CrossProduct(self, Vector1, Vector2):
- """
- Compute cross product
-
- Returns: vector w=u^v
- """
- u=self.VectorCoordinates(Vector1)
- v=self.VectorCoordinates(Vector2)
- w=self.MakeVectorDXDYDZ(u[1]*v[2]-u[2]*v[1], u[2]*v[0]-u[0]*v[2], u[0]*v[1]-u[1]*v[0])
-
- return w
-
- ## Compute cross product
- # @return dot product p=u.v
- #
- # @ref tui_measurement_tools_page "Example"
- def DotProduct(self, Vector1, Vector2):
- """
- Compute cross product
-
- Returns: dot product p=u.v
- """
- u=self.VectorCoordinates(Vector1)
- v=self.VectorCoordinates(Vector2)
- p=u[0]*v[0]+u[1]*v[1]+u[2]*v[2]
-
- return p
-
-
- ## Get summarized length of all wires,
- # area of surface and volume of the given shape.
- # @param theShape Shape to define properties of.
- # @return [theLength, theSurfArea, theVolume]\n
- # theLength: Summarized length of all wires of the given shape.\n
- # theSurfArea: Area of surface of the given shape.\n
- # theVolume: Volume of the given shape.
- #
- # @ref tui_measurement_tools_page "Example"
- def BasicProperties(self,theShape):
- """
- Get summarized length of all wires,
- area of surface and volume of the given shape.
-
- Parameters:
- theShape Shape to define properties of.
-
- Returns:
- [theLength, theSurfArea, theVolume]
- theLength: Summarized length of all wires of the given shape.
- theSurfArea: Area of surface of the given shape.
- theVolume: Volume of the given shape.
- """
- # Example: see GEOM_TestMeasures.py
- aTuple = self.MeasuOp.GetBasicProperties(theShape)
- RaiseIfFailed("GetBasicProperties", self.MeasuOp)
- return aTuple
-
- ## Get parameters of bounding box of the given shape
- # @param theShape Shape to obtain bounding box of.
- # @return [Xmin,Xmax, Ymin,Ymax, Zmin,Zmax]
- # Xmin,Xmax: Limits of shape along OX axis.
- # Ymin,Ymax: Limits of shape along OY axis.
- # Zmin,Zmax: Limits of shape along OZ axis.
- #
- # @ref tui_measurement_tools_page "Example"
- def BoundingBox (self, theShape):
- """
- Get parameters of bounding box of the given shape
-
- Parameters:
- theShape Shape to obtain bounding box of.
-
- Returns:
- [Xmin,Xmax, Ymin,Ymax, Zmin,Zmax]
- Xmin,Xmax: Limits of shape along OX axis.
- Ymin,Ymax: Limits of shape along OY axis.
- Zmin,Zmax: Limits of shape along OZ axis.
- """
- # Example: see GEOM_TestMeasures.py
- aTuple = self.MeasuOp.GetBoundingBox(theShape)
- RaiseIfFailed("GetBoundingBox", self.MeasuOp)
- return aTuple
-
- ## Get bounding box of the given shape
- # @param theShape Shape to obtain bounding box of.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created box.
- #
- # @ref tui_measurement_tools_page "Example"
- def MakeBoundingBox (self, theShape, theName=None):
- """
- Get bounding box of the given shape
-
- Parameters:
- theShape Shape to obtain bounding box of.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created box.
- """
- # Example: see GEOM_TestMeasures.py
- anObj = self.MeasuOp.MakeBoundingBox(theShape)
- RaiseIfFailed("MakeBoundingBox", self.MeasuOp)
- self._autoPublish(anObj, theName, "bndbox")
- return anObj
-
- ## Get inertia matrix and moments of inertia of theShape.
- # @param theShape Shape to calculate inertia of.
- # @return [I11,I12,I13, I21,I22,I23, I31,I32,I33, Ix,Iy,Iz]
- # I(1-3)(1-3): Components of the inertia matrix of the given shape.
- # Ix,Iy,Iz: Moments of inertia of the given shape.
- #
- # @ref tui_measurement_tools_page "Example"
- def Inertia(self,theShape):
- """
- Get inertia matrix and moments of inertia of theShape.
-
- Parameters:
- theShape Shape to calculate inertia of.
-
- Returns:
- [I11,I12,I13, I21,I22,I23, I31,I32,I33, Ix,Iy,Iz]
- I(1-3)(1-3): Components of the inertia matrix of the given shape.
- Ix,Iy,Iz: Moments of inertia of the given shape.
- """
- # Example: see GEOM_TestMeasures.py
- aTuple = self.MeasuOp.GetInertia(theShape)
- RaiseIfFailed("GetInertia", self.MeasuOp)
- return aTuple
-
- ## Get if coords are included in the shape (ST_IN or ST_ON)
- # @param theShape Shape
- # @param coords list of points coordinates [x1, y1, z1, x2, y2, z2, ...]
- # @param tolerance to be used (default is 1.0e-7)
- # @return list_of_boolean = [res1, res2, ...]
- def AreCoordsInside(self, theShape, coords, tolerance=1.e-7):
- """
- Get if coords are included in the shape (ST_IN or ST_ON)
-
- Parameters:
- theShape Shape
- coords list of points coordinates [x1, y1, z1, x2, y2, z2, ...]
- tolerance to be used (default is 1.0e-7)
-
- Returns:
- list_of_boolean = [res1, res2, ...]
- """
- return self.MeasuOp.AreCoordsInside(theShape, coords, tolerance)
-
- ## Get minimal distance between the given shapes.
- # @param theShape1,theShape2 Shapes to find minimal distance between.
- # @return Value of the minimal distance between the given shapes.
- #
- # @ref tui_measurement_tools_page "Example"
- def MinDistance(self, theShape1, theShape2):
- """
- Get minimal distance between the given shapes.
-
- Parameters:
- theShape1,theShape2 Shapes to find minimal distance between.
-
- Returns:
- Value of the minimal distance between the given shapes.
- """
- # Example: see GEOM_TestMeasures.py
- aTuple = self.MeasuOp.GetMinDistance(theShape1, theShape2)
- RaiseIfFailed("GetMinDistance", self.MeasuOp)
- return aTuple[0]
-
- ## Get minimal distance between the given shapes.
- # @param theShape1,theShape2 Shapes to find minimal distance between.
- # @return Value of the minimal distance between the given shapes, in form of list
- # [Distance, DX, DY, DZ].
- #
- # @ref swig_all_measure "Example"
- def MinDistanceComponents(self, theShape1, theShape2):
- """
- Get minimal distance between the given shapes.
-
- Parameters:
- theShape1,theShape2 Shapes to find minimal distance between.
-
- Returns:
- Value of the minimal distance between the given shapes, in form of list
- [Distance, DX, DY, DZ]
- """
- # Example: see GEOM_TestMeasures.py
- aTuple = self.MeasuOp.GetMinDistance(theShape1, theShape2)
- RaiseIfFailed("GetMinDistance", self.MeasuOp)
- aRes = [aTuple[0], aTuple[4] - aTuple[1], aTuple[5] - aTuple[2], aTuple[6] - aTuple[3]]
- return aRes
-
- ## Get closest points of the given shapes.
- # @param theShape1,theShape2 Shapes to find closest points of.
- # @return The number of found solutions (-1 in case of infinite number of
- # solutions) and a list of (X, Y, Z) coordinates for all couples of points.
- #
- # @ref tui_measurement_tools_page "Example"
- def ClosestPoints (self, theShape1, theShape2):
- """
- Get closest points of the given shapes.
-
- Parameters:
- theShape1,theShape2 Shapes to find closest points of.
-
- Returns:
- The number of found solutions (-1 in case of infinite number of
- solutions) and a list of (X, Y, Z) coordinates for all couples of points.
- """
- # Example: see GEOM_TestMeasures.py
- aTuple = self.MeasuOp.ClosestPoints(theShape1, theShape2)
- RaiseIfFailed("ClosestPoints", self.MeasuOp)
- return aTuple
-
- ## Get angle between the given shapes in degrees.
- # @param theShape1,theShape2 Lines or linear edges to find angle between.
- # @note If both arguments are vectors, the angle is computed in accordance
- # with their orientations, otherwise the minimum angle is computed.
- # @return Value of the angle between the given shapes in degrees.
- #
- # @ref tui_measurement_tools_page "Example"
- def GetAngle(self, theShape1, theShape2):
- """
- Get angle between the given shapes in degrees.
-
- Parameters:
- theShape1,theShape2 Lines or linear edges to find angle between.
-
- Note:
- If both arguments are vectors, the angle is computed in accordance
- with their orientations, otherwise the minimum angle is computed.
-
- Returns:
- Value of the angle between the given shapes in degrees.
- """
- # Example: see GEOM_TestMeasures.py
- anAngle = self.MeasuOp.GetAngle(theShape1, theShape2)
- RaiseIfFailed("GetAngle", self.MeasuOp)
- return anAngle
-
- ## Get angle between the given shapes in radians.
- # @param theShape1,theShape2 Lines or linear edges to find angle between.
- # @note If both arguments are vectors, the angle is computed in accordance
- # with their orientations, otherwise the minimum angle is computed.
- # @return Value of the angle between the given shapes in radians.
- #
- # @ref tui_measurement_tools_page "Example"
- def GetAngleRadians(self, theShape1, theShape2):
- """
- Get angle between the given shapes in radians.
-
- Parameters:
- theShape1,theShape2 Lines or linear edges to find angle between.
-
-
- Note:
- If both arguments are vectors, the angle is computed in accordance
- with their orientations, otherwise the minimum angle is computed.
-
- Returns:
- Value of the angle between the given shapes in radians.
- """
- # Example: see GEOM_TestMeasures.py
- anAngle = self.MeasuOp.GetAngle(theShape1, theShape2)*math.pi/180.
- RaiseIfFailed("GetAngle", self.MeasuOp)
- return anAngle
-
- ## Get angle between the given vectors in degrees.
- # @param theShape1,theShape2 Vectors to find angle between.
- # @param theFlag If True, the normal vector is defined by the two vectors cross,
- # if False, the opposite vector to the normal vector is used.
- # @return Value of the angle between the given vectors in degrees.
- #
- # @ref tui_measurement_tools_page "Example"
- def GetAngleVectors(self, theShape1, theShape2, theFlag = True):
- """
- Get angle between the given vectors in degrees.
-
- Parameters:
- theShape1,theShape2 Vectors to find angle between.
- theFlag If True, the normal vector is defined by the two vectors cross,
- if False, the opposite vector to the normal vector is used.
-
- Returns:
- Value of the angle between the given vectors in degrees.
- """
- anAngle = self.MeasuOp.GetAngleBtwVectors(theShape1, theShape2)
- if not theFlag:
- anAngle = 360. - anAngle
- RaiseIfFailed("GetAngleVectors", self.MeasuOp)
- return anAngle
-
- ## The same as GetAngleVectors, but the result is in radians.
- def GetAngleRadiansVectors(self, theShape1, theShape2, theFlag = True):
- """
- Get angle between the given vectors in radians.
-
- Parameters:
- theShape1,theShape2 Vectors to find angle between.
- theFlag If True, the normal vector is defined by the two vectors cross,
- if False, the opposite vector to the normal vector is used.
-
- Returns:
- Value of the angle between the given vectors in radians.
- """
- anAngle = self.GetAngleVectors(theShape1, theShape2, theFlag)*math.pi/180.
- return anAngle
-
- ## @name Curve Curvature Measurement
- # Methods for receiving radius of curvature of curves
- # in the given point
- ## @{
-
- ## Measure curvature of a curve at a point, set by parameter.
- # @param theCurve a curve.
- # @param theParam parameter.
- # @return radius of curvature of \a theCurve.
- #
- # @ref swig_todo "Example"
- def CurveCurvatureByParam(self, theCurve, theParam):
- """
- Measure curvature of a curve at a point, set by parameter.
-
- Parameters:
- theCurve a curve.
- theParam parameter.
-
- Returns:
- radius of curvature of theCurve.
- """
- # Example: see GEOM_TestMeasures.py
- aCurv = self.MeasuOp.CurveCurvatureByParam(theCurve,theParam)
- RaiseIfFailed("CurveCurvatureByParam", self.MeasuOp)
- return aCurv
-
- ## Measure curvature of a curve at a point.
- # @param theCurve a curve.
- # @param thePoint given point.
- # @return radius of curvature of \a theCurve.
- #
- # @ref swig_todo "Example"
- def CurveCurvatureByPoint(self, theCurve, thePoint):
- """
- Measure curvature of a curve at a point.
-
- Parameters:
- theCurve a curve.
- thePoint given point.
-
- Returns:
- radius of curvature of theCurve.
- """
- aCurv = self.MeasuOp.CurveCurvatureByPoint(theCurve,thePoint)
- RaiseIfFailed("CurveCurvatureByPoint", self.MeasuOp)
- return aCurv
- ## @}
-
- ## @name Surface Curvature Measurement
- # Methods for receiving max and min radius of curvature of surfaces
- # in the given point
- ## @{
-
- ## Measure max radius of curvature of surface.
- # @param theSurf the given surface.
- # @param theUParam Value of U-parameter on the referenced surface.
- # @param theVParam Value of V-parameter on the referenced surface.
- # @return max radius of curvature of theSurf.
- #
- ## @ref swig_todo "Example"
- def MaxSurfaceCurvatureByParam(self, theSurf, theUParam, theVParam):
- """
- Measure max radius of curvature of surface.
-
- Parameters:
- theSurf the given surface.
- theUParam Value of U-parameter on the referenced surface.
- theVParam Value of V-parameter on the referenced surface.
-
- Returns:
- max radius of curvature of theSurf.
- """
- # Example: see GEOM_TestMeasures.py
- aSurf = self.MeasuOp.MaxSurfaceCurvatureByParam(theSurf,theUParam,theVParam)
- RaiseIfFailed("MaxSurfaceCurvatureByParam", self.MeasuOp)
- return aSurf
-
- ## Measure max radius of curvature of surface in the given point
- # @param theSurf the given surface.
- # @param thePoint given point.
- # @return max radius of curvature of theSurf.
- #
- ## @ref swig_todo "Example"
- def MaxSurfaceCurvatureByPoint(self, theSurf, thePoint):
- """
- Measure max radius of curvature of surface in the given point.
-
- Parameters:
- theSurf the given surface.
- thePoint given point.
-
- Returns:
- max radius of curvature of theSurf.
- """
- aSurf = self.MeasuOp.MaxSurfaceCurvatureByPoint(theSurf,thePoint)
- RaiseIfFailed("MaxSurfaceCurvatureByPoint", self.MeasuOp)
- return aSurf
-
- ## Measure min radius of curvature of surface.
- # @param theSurf the given surface.
- # @param theUParam Value of U-parameter on the referenced surface.
- # @param theVParam Value of V-parameter on the referenced surface.
- # @return min radius of curvature of theSurf.
- #
- ## @ref swig_todo "Example"
- def MinSurfaceCurvatureByParam(self, theSurf, theUParam, theVParam):
- """
- Measure min radius of curvature of surface.
-
- Parameters:
- theSurf the given surface.
- theUParam Value of U-parameter on the referenced surface.
- theVParam Value of V-parameter on the referenced surface.
-
- Returns:
- Min radius of curvature of theSurf.
- """
- aSurf = self.MeasuOp.MinSurfaceCurvatureByParam(theSurf,theUParam,theVParam)
- RaiseIfFailed("MinSurfaceCurvatureByParam", self.MeasuOp)
- return aSurf
-
- ## Measure min radius of curvature of surface in the given point
- # @param theSurf the given surface.
- # @param thePoint given point.
- # @return min radius of curvature of theSurf.
- #
- ## @ref swig_todo "Example"
- def MinSurfaceCurvatureByPoint(self, theSurf, thePoint):
- """
- Measure min radius of curvature of surface in the given point.
-
- Parameters:
- theSurf the given surface.
- thePoint given point.
-
- Returns:
- Min radius of curvature of theSurf.
- """
- aSurf = self.MeasuOp.MinSurfaceCurvatureByPoint(theSurf,thePoint)
- RaiseIfFailed("MinSurfaceCurvatureByPoint", self.MeasuOp)
- return aSurf
- ## @}
-
- ## Get min and max tolerances of sub-shapes of theShape
- # @param theShape Shape, to get tolerances of.
- # @return [FaceMin,FaceMax, EdgeMin,EdgeMax, VertMin,VertMax]\n
- # FaceMin,FaceMax: Min and max tolerances of the faces.\n
- # EdgeMin,EdgeMax: Min and max tolerances of the edges.\n
- # VertMin,VertMax: Min and max tolerances of the vertices.
- #
- # @ref tui_measurement_tools_page "Example"
- def Tolerance(self,theShape):
- """
- Get min and max tolerances of sub-shapes of theShape
-
- Parameters:
- theShape Shape, to get tolerances of.
-
- Returns:
- [FaceMin,FaceMax, EdgeMin,EdgeMax, VertMin,VertMax]
- FaceMin,FaceMax: Min and max tolerances of the faces.
- EdgeMin,EdgeMax: Min and max tolerances of the edges.
- VertMin,VertMax: Min and max tolerances of the vertices.
- """
- # Example: see GEOM_TestMeasures.py
- aTuple = self.MeasuOp.GetTolerance(theShape)
- RaiseIfFailed("GetTolerance", self.MeasuOp)
- return aTuple
-
- ## Obtain description of the given shape (number of sub-shapes of each type)
- # @param theShape Shape to be described.
- # @return Description of the given shape.
- #
- # @ref tui_measurement_tools_page "Example"
- def WhatIs(self,theShape):
- """
- Obtain description of the given shape (number of sub-shapes of each type)
-
- Parameters:
- theShape Shape to be described.
-
- Returns:
- Description of the given shape.
- """
- # Example: see GEOM_TestMeasures.py
- aDescr = self.MeasuOp.WhatIs(theShape)
- RaiseIfFailed("WhatIs", self.MeasuOp)
- return aDescr
-
- ## Obtain quantity of shapes of the given type in \a theShape.
- # If \a theShape is of type \a theType, it is also counted.
- # @param theShape Shape to be described.
- # @param theType the given ShapeType().
- # @return Quantity of shapes of type \a theType in \a theShape.
- #
- # @ref tui_measurement_tools_page "Example"
- def NbShapes (self, theShape, theType):
- """
- Obtain quantity of shapes of the given type in theShape.
- If theShape is of type theType, it is also counted.
-
- Parameters:
- theShape Shape to be described.
- theType the given geompy.ShapeType
-
- Returns:
- Quantity of shapes of type theType in theShape.
- """
- # Example: see GEOM_TestMeasures.py
- listSh = self.SubShapeAllIDs(theShape, theType)
- Nb = len(listSh)
- t = EnumToLong(theShape.GetShapeType())
- theType = EnumToLong(theType)
- if t == theType:
- Nb = Nb + 1
- pass
- return Nb
-
- ## Obtain quantity of shapes of each type in \a theShape.
- # The \a theShape is also counted.
- # @param theShape Shape to be described.
- # @return Dictionary of ShapeType() with bound quantities of shapes.
- #
- # @ref tui_measurement_tools_page "Example"
- def ShapeInfo (self, theShape):
- """
- Obtain quantity of shapes of each type in theShape.
- The theShape is also counted.
-
- Parameters:
- theShape Shape to be described.
-
- Returns:
- Dictionary of geompy.ShapeType with bound quantities of shapes.
- """
- # Example: see GEOM_TestMeasures.py
- aDict = {}
- for typeSh in ShapeType:
- if typeSh in ( "AUTO", "SHAPE" ): continue
- listSh = self.SubShapeAllIDs(theShape, ShapeType[typeSh])
- Nb = len(listSh)
- if EnumToLong(theShape.GetShapeType()) == ShapeType[typeSh]:
- Nb = Nb + 1
- pass
- aDict[typeSh] = Nb
- pass
- return aDict
-
- ## Get a point, situated at the centre of mass of theShape.
- # @param theShape Shape to define centre of mass of.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created point.
- #
- # @ref tui_measurement_tools_page "Example"
- def MakeCDG(self, theShape, theName=None):
- """
- Get a point, situated at the centre of mass of theShape.
-
- Parameters:
- theShape Shape to define centre of mass of.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created point.
- """
- # Example: see GEOM_TestMeasures.py
- anObj = self.MeasuOp.GetCentreOfMass(theShape)
- RaiseIfFailed("GetCentreOfMass", self.MeasuOp)
- self._autoPublish(anObj, theName, "centerOfMass")
- return anObj
-
- ## Get a vertex sub-shape by index depended with orientation.
- # @param theShape Shape to find sub-shape.
- # @param theIndex Index to find vertex by this index (starting from zero)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created vertex.
- #
- # @ref tui_measurement_tools_page "Example"
- def GetVertexByIndex(self, theShape, theIndex, theName=None):
- """
- Get a vertex sub-shape by index depended with orientation.
-
- Parameters:
- theShape Shape to find sub-shape.
- theIndex Index to find vertex by this index (starting from zero)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created vertex.
- """
- # Example: see GEOM_TestMeasures.py
- anObj = self.MeasuOp.GetVertexByIndex(theShape, theIndex)
- RaiseIfFailed("GetVertexByIndex", self.MeasuOp)
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Get the first vertex of wire/edge depended orientation.
- # @param theShape Shape to find first vertex.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created vertex.
- #
- # @ref tui_measurement_tools_page "Example"
- def GetFirstVertex(self, theShape, theName=None):
- """
- Get the first vertex of wire/edge depended orientation.
-
- Parameters:
- theShape Shape to find first vertex.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created vertex.
- """
- # Example: see GEOM_TestMeasures.py
- # note: auto-publishing is done in self.GetVertexByIndex()
- anObj = self.GetVertexByIndex(theShape, 0, theName)
- RaiseIfFailed("GetFirstVertex", self.MeasuOp)
- return anObj
-
- ## Get the last vertex of wire/edge depended orientation.
- # @param theShape Shape to find last vertex.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created vertex.
- #
- # @ref tui_measurement_tools_page "Example"
- def GetLastVertex(self, theShape, theName=None):
- """
- Get the last vertex of wire/edge depended orientation.
-
- Parameters:
- theShape Shape to find last vertex.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created vertex.
- """
- # Example: see GEOM_TestMeasures.py
- nb_vert = self.ShapesOp.NumberOfSubShapes(theShape, ShapeType["VERTEX"])
- # note: auto-publishing is done in self.GetVertexByIndex()
- anObj = self.GetVertexByIndex(theShape, (nb_vert-1), theName)
- RaiseIfFailed("GetLastVertex", self.MeasuOp)
- return anObj
-
- ## Get a normale to the given face. If the point is not given,
- # the normale is calculated at the center of mass.
- # @param theFace Face to define normale of.
- # @param theOptionalPoint Point to compute the normale at.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created vector.
- #
- # @ref swig_todo "Example"
- def GetNormal(self, theFace, theOptionalPoint = None, theName=None):
- """
- Get a normale to the given face. If the point is not given,
- the normale is calculated at the center of mass.
-
- Parameters:
- theFace Face to define normale of.
- theOptionalPoint Point to compute the normale at.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created vector.
- """
- # Example: see GEOM_TestMeasures.py
- anObj = self.MeasuOp.GetNormal(theFace, theOptionalPoint)
- RaiseIfFailed("GetNormal", self.MeasuOp)
- self._autoPublish(anObj, theName, "normal")
- return anObj
-
- ## Check a topology of the given shape.
- # @param theShape Shape to check validity of.
- # @param theIsCheckGeom If FALSE, only the shape's topology will be checked, \n
- # if TRUE, the shape's geometry will be checked also.
- # @param theReturnStatus If FALSE and if theShape is invalid, a description \n
- # of problem is printed.
- # if TRUE and if theShape is invalid, the description
- # of problem is also returned.
- # @return TRUE, if the shape "seems to be valid".
- #
- # @ref tui_measurement_tools_page "Example"
- def CheckShape(self,theShape, theIsCheckGeom = 0, theReturnStatus = 0):
- """
- Check a topology of the given shape.
-
- Parameters:
- theShape Shape to check validity of.
- theIsCheckGeom If FALSE, only the shape's topology will be checked,
- if TRUE, the shape's geometry will be checked also.
- theReturnStatus If FALSE and if theShape is invalid, a description
- of problem is printed.
- if TRUE and if theShape is invalid, the description
- of problem is returned.
-
- Returns:
- TRUE, if the shape "seems to be valid".
- If theShape is invalid, prints a description of problem.
- This description can also be returned.
- """
- # Example: see GEOM_TestMeasures.py
- if theIsCheckGeom:
- (IsValid, Status) = self.MeasuOp.CheckShapeWithGeometry(theShape)
- RaiseIfFailed("CheckShapeWithGeometry", self.MeasuOp)
- else:
- (IsValid, Status) = self.MeasuOp.CheckShape(theShape)
- RaiseIfFailed("CheckShape", self.MeasuOp)
- if IsValid == 0:
- if theReturnStatus == 0:
- print Status
- if theReturnStatus == 1:
- return (IsValid, Status)
- return IsValid
-
- ## Detect self-intersections in the given shape.
- # @param theShape Shape to check.
- # @return TRUE, if the shape contains no self-intersections.
- #
- # @ref tui_measurement_tools_page "Example"
- def CheckSelfIntersections(self, theShape):
- """
- Detect self-intersections in the given shape.
-
- Parameters:
- theShape Shape to check.
-
- Returns:
- TRUE, if the shape contains no self-intersections.
- """
- # Example: see GEOM_TestMeasures.py
- (IsValid, Pairs) = self.MeasuOp.CheckSelfIntersections(theShape)
- RaiseIfFailed("CheckSelfIntersections", self.MeasuOp)
- return IsValid
-
- ## Get position (LCS) of theShape.
- #
- # Origin of the LCS is situated at the shape's center of mass.
- # Axes of the LCS are obtained from shape's location or,
- # if the shape is a planar face, from position of its plane.
- #
- # @param theShape Shape to calculate position of.
- # @return [Ox,Oy,Oz, Zx,Zy,Zz, Xx,Xy,Xz].
- # Ox,Oy,Oz: Coordinates of shape's LCS origin.
- # Zx,Zy,Zz: Coordinates of shape's LCS normal(main) direction.
- # Xx,Xy,Xz: Coordinates of shape's LCS X direction.
- #
- # @ref swig_todo "Example"
- def GetPosition(self,theShape):
- """
- Get position (LCS) of theShape.
- Origin of the LCS is situated at the shape's center of mass.
- Axes of the LCS are obtained from shape's location or,
- if the shape is a planar face, from position of its plane.
-
- Parameters:
- theShape Shape to calculate position of.
-
- Returns:
- [Ox,Oy,Oz, Zx,Zy,Zz, Xx,Xy,Xz].
- Ox,Oy,Oz: Coordinates of shape's LCS origin.
- Zx,Zy,Zz: Coordinates of shape's LCS normal(main) direction.
- Xx,Xy,Xz: Coordinates of shape's LCS X direction.
- """
- # Example: see GEOM_TestMeasures.py
- aTuple = self.MeasuOp.GetPosition(theShape)
- RaiseIfFailed("GetPosition", self.MeasuOp)
- return aTuple
-
- ## Get kind of theShape.
- #
- # @param theShape Shape to get a kind of.
- # @return Returns a kind of shape in terms of GEOM.GEOM_IKindOfShape.shape_kind enumeration
- # and a list of parameters, describing the shape.
- # @note Concrete meaning of each value, returned via \a theIntegers
- # or \a theDoubles list depends on the kind() of the shape.
- #
- # @ref swig_todo "Example"
- def KindOfShape(self,theShape):
- """
- Get kind of theShape.
-
- Parameters:
- theShape Shape to get a kind of.
-
- Returns:
- a kind of shape in terms of GEOM_IKindOfShape.shape_kind enumeration
- and a list of parameters, describing the shape.
- Note:
- Concrete meaning of each value, returned via theIntegers
- or theDoubles list depends on the geompy.kind of the shape
- """
- # Example: see GEOM_TestMeasures.py
- aRoughTuple = self.MeasuOp.KindOfShape(theShape)
- RaiseIfFailed("KindOfShape", self.MeasuOp)
-
- aKind = aRoughTuple[0]
- anInts = aRoughTuple[1]
- aDbls = aRoughTuple[2]
-
- # Now there is no exception from this rule:
- aKindTuple = [aKind] + aDbls + anInts
-
- # If they are we will regroup parameters for such kind of shape.
- # For example:
- #if aKind == kind.SOME_KIND:
- # # SOME_KIND int int double int double double
- # aKindTuple = [aKind, anInts[0], anInts[1], aDbls[0], anInts[2], aDbls[1], aDbls[2]]
-
- return aKindTuple
-
- # end of l2_measure
- ## @}
-
- ## @addtogroup l2_import_export
- ## @{
-
- ## Import a shape from the BREP or IGES or STEP file
- # (depends on given format) with given name.
- # @param theFileName The file, containing the shape.
- # @param theFormatName Specify format for the file reading.
- # Available formats can be obtained with InsertOp.ImportTranslators() method.
- # If format 'IGES_SCALE' is used instead of 'IGES' or
- # format 'STEP_SCALE' is used instead of 'STEP',
- # length unit will be set to 'meter' and result model will be scaled.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the imported shape.
- #
- # @ref swig_Import_Export "Example"
- def ImportFile(self, theFileName, theFormatName, theName=None):
- """
- Import a shape from the BREP or IGES or STEP file
- (depends on given format) with given name.
-
- Parameters:
- theFileName The file, containing the shape.
- theFormatName Specify format for the file reading.
- Available formats can be obtained with geompy.InsertOp.ImportTranslators() method.
- If format 'IGES_SCALE' is used instead of 'IGES' or
- format 'STEP_SCALE' is used instead of 'STEP',
- length unit will be set to 'meter' and result model will be scaled.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the imported shape.
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.InsertOp.ImportFile(theFileName, theFormatName)
- RaiseIfFailed("ImportFile", self.InsertOp)
- self._autoPublish(anObj, theName, "imported")
- return anObj
-
- ## Deprecated analog of ImportFile()
- def Import(self, theFileName, theFormatName, theName=None):
- """
- Deprecated analog of geompy.ImportFile, kept for backward compatibility only.
- """
- print "WARNING: Function Import is deprecated, use ImportFile instead"
- # note: auto-publishing is done in self.ImportFile()
- return self.ImportFile(theFileName, theFormatName, theName)
-
- ## Shortcut to ImportFile() for BREP format.
- # Import a shape from the BREP file with given name.
- # @param theFileName The file, containing the shape.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the imported shape.
- #
- # @ref swig_Import_Export "Example"
- def ImportBREP(self, theFileName, theName=None):
- """
- geompy.ImportFile(...) function for BREP format
- Import a shape from the BREP file with given name.
-
- Parameters:
- theFileName The file, containing the shape.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the imported shape.
- """
- # Example: see GEOM_TestOthers.py
- # note: auto-publishing is done in self.ImportFile()
- return self.ImportFile(theFileName, "BREP", theName)
-
- ## Shortcut to ImportFile() for IGES format
- # Import a shape from the IGES file with given name.
- # @param theFileName The file, containing the shape.
- # @param ignoreUnits If True, file length units will be ignored (set to 'meter')
- # and result model will be scaled, if its units are not meters.
- # If False (default), file length units will be taken into account.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the imported shape.
- #
- # @ref swig_Import_Export "Example"
- def ImportIGES(self, theFileName, ignoreUnits = False, theName=None):
- """
- geompy.ImportFile(...) function for IGES format
-
- Parameters:
- theFileName The file, containing the shape.
- ignoreUnits If True, file length units will be ignored (set to 'meter')
- and result model will be scaled, if its units are not meters.
- If False (default), file length units will be taken into account.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the imported shape.
- """
- # Example: see GEOM_TestOthers.py
- # note: auto-publishing is done in self.ImportFile()
- if ignoreUnits:
- return self.ImportFile(theFileName, "IGES_SCALE", theName)
- return self.ImportFile(theFileName, "IGES", theName)
-
- ## Return length unit from given IGES file
- # @param theFileName The file, containing the shape.
- # @return String, containing the units name.
- #
- # @ref swig_Import_Export "Example"
- def GetIGESUnit(self, theFileName):
- """
- Return length units from given IGES file
-
- Parameters:
- theFileName The file, containing the shape.
-
- Returns:
- String, containing the units name.
- """
- # Example: see GEOM_TestOthers.py
- aUnitName = self.InsertOp.ReadValue(theFileName, "IGES", "LEN_UNITS")
- return aUnitName
-
- ## Shortcut to ImportFile() for STEP format
- # Import a shape from the STEP file with given name.
- # @param theFileName The file, containing the shape.
- # @param ignoreUnits If True, file length units will be ignored (set to 'meter')
- # and result model will be scaled, if its units are not meters.
- # If False (default), file length units will be taken into account.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the imported shape.
- #
- # @ref swig_Import_Export "Example"
- def ImportSTEP(self, theFileName, ignoreUnits = False, theName=None):
- """
- geompy.ImportFile(...) function for STEP format
-
- Parameters:
- theFileName The file, containing the shape.
- ignoreUnits If True, file length units will be ignored (set to 'meter')
- and result model will be scaled, if its units are not meters.
- If False (default), file length units will be taken into account.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the imported shape.
- """
- # Example: see GEOM_TestOthers.py
- # note: auto-publishing is done in self.ImportFile()
- if ignoreUnits:
- return self.ImportFile(theFileName, "STEP_SCALE", theName)
- return self.ImportFile(theFileName, "STEP", theName)
-
- ## Return length unit from given IGES or STEP file
- # @param theFileName The file, containing the shape.
- # @return String, containing the units name.
- #
- # @ref swig_Import_Export "Example"
- def GetSTEPUnit(self, theFileName):
- """
- Return length units from given STEP file
-
- Parameters:
- theFileName The file, containing the shape.
-
- Returns:
- String, containing the units name.
- """
- # Example: see GEOM_TestOthers.py
- aUnitName = self.InsertOp.ReadValue(theFileName, "STEP", "LEN_UNITS")
- return aUnitName
-
- ## Read a shape from the binary stream, containing its bounding representation (BRep).
- # @note This method will not be dumped to the python script by DumpStudy functionality.
- # @note GEOM.GEOM_Object.GetShapeStream() method can be used to obtain the shape's BRep stream.
- # @param theStream The BRep binary stream.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM_Object, containing the shape, read from theStream.
- #
- # @ref swig_Import_Export "Example"
- def RestoreShape (self, theStream, theName=None):
- """
- Read a shape from the binary stream, containing its bounding representation (BRep).
-
- Note:
- shape.GetShapeStream() method can be used to obtain the shape's BRep stream.
-
- Parameters:
- theStream The BRep binary stream.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM_Object, containing the shape, read from theStream.
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.InsertOp.RestoreShape(theStream)
- RaiseIfFailed("RestoreShape", self.InsertOp)
- self._autoPublish(anObj, theName, "restored")
- return anObj
-
- ## Export the given shape into a file with given name.
- # @param theObject Shape to be stored in the file.
- # @param theFileName Name of the file to store the given shape in.
- # @param theFormatName Specify format for the shape storage.
- # Available formats can be obtained with
- # geompy.InsertOp.ExportTranslators()[0] method.
- #
- # @ref swig_Import_Export "Example"
- def Export(self, theObject, theFileName, theFormatName):
- """
- Export the given shape into a file with given name.
-
- Parameters:
- theObject Shape to be stored in the file.
- theFileName Name of the file to store the given shape in.
- theFormatName Specify format for the shape storage.
- Available formats can be obtained with
- geompy.InsertOp.ExportTranslators()[0] method.
- """
- # Example: see GEOM_TestOthers.py
- self.InsertOp.Export(theObject, theFileName, theFormatName)
- if self.InsertOp.IsDone() == 0:
- raise RuntimeError, "Export : " + self.InsertOp.GetErrorCode()
- pass
- pass
-
- ## Shortcut to Export() for BREP format
- #
- # @ref swig_Import_Export "Example"
- def ExportBREP(self,theObject, theFileName):
- """
- geompy.Export(...) function for BREP format
- """
- # Example: see GEOM_TestOthers.py
- return self.Export(theObject, theFileName, "BREP")
-
- ## Shortcut to Export() for IGES format
- #
- # @ref swig_Import_Export "Example"
- def ExportIGES(self,theObject, theFileName):
- """
- geompy.Export(...) function for IGES format
- """
- # Example: see GEOM_TestOthers.py
- return self.Export(theObject, theFileName, "IGES")
-
- ## Shortcut to Export() for STEP format
- #
- # @ref swig_Import_Export "Example"
- def ExportSTEP(self,theObject, theFileName):
- """
- geompy.Export(...) function for STEP format
- """
- # Example: see GEOM_TestOthers.py
- return self.Export(theObject, theFileName, "STEP")
-
- # end of l2_import_export
- ## @}
-
- ## @addtogroup l3_blocks
- ## @{
-
- ## Create a quadrangle face from four edges. Order of Edges is not
- # important. It is not necessary that edges share the same vertex.
- # @param E1,E2,E3,E4 Edges for the face bound.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created face.
- #
- # @ref tui_building_by_blocks_page "Example"
- def MakeQuad(self, E1, E2, E3, E4, theName=None):
- """
- Create a quadrangle face from four edges. Order of Edges is not
- important. It is not necessary that edges share the same vertex.
-
- Parameters:
- E1,E2,E3,E4 Edges for the face bound.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created face.
-
- Example of usage:
- qface1 = geompy.MakeQuad(edge1, edge2, edge3, edge4)
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.MakeQuad(E1, E2, E3, E4)
- RaiseIfFailed("MakeQuad", self.BlocksOp)
- self._autoPublish(anObj, theName, "quad")
- return anObj
-
- ## Create a quadrangle face on two edges.
- # The missing edges will be built by creating the shortest ones.
- # @param E1,E2 Two opposite edges for the face.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created face.
- #
- # @ref tui_building_by_blocks_page "Example"
- def MakeQuad2Edges(self, E1, E2, theName=None):
- """
- Create a quadrangle face on two edges.
- The missing edges will be built by creating the shortest ones.
-
- Parameters:
- E1,E2 Two opposite edges for the face.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created face.
-
- Example of usage:
- # create vertices
- p1 = geompy.MakeVertex( 0., 0., 0.)
- p2 = geompy.MakeVertex(150., 30., 0.)
- p3 = geompy.MakeVertex( 0., 120., 50.)
- p4 = geompy.MakeVertex( 0., 40., 70.)
- # create edges
- edge1 = geompy.MakeEdge(p1, p2)
- edge2 = geompy.MakeEdge(p3, p4)
- # create a quadrangle face from two edges
- qface2 = geompy.MakeQuad2Edges(edge1, edge2)
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.MakeQuad2Edges(E1, E2)
- RaiseIfFailed("MakeQuad2Edges", self.BlocksOp)
- self._autoPublish(anObj, theName, "quad")
- return anObj
-
- ## Create a quadrangle face with specified corners.
- # The missing edges will be built by creating the shortest ones.
- # @param V1,V2,V3,V4 Corner vertices for the face.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created face.
- #
- # @ref tui_building_by_blocks_page "Example 1"
- # \n @ref swig_MakeQuad4Vertices "Example 2"
- def MakeQuad4Vertices(self, V1, V2, V3, V4, theName=None):
- """
- Create a quadrangle face with specified corners.
- The missing edges will be built by creating the shortest ones.
-
- Parameters:
- V1,V2,V3,V4 Corner vertices for the face.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created face.
-
- Example of usage:
- # create vertices
- p1 = geompy.MakeVertex( 0., 0., 0.)
- p2 = geompy.MakeVertex(150., 30., 0.)
- p3 = geompy.MakeVertex( 0., 120., 50.)
- p4 = geompy.MakeVertex( 0., 40., 70.)
- # create a quadrangle from four points in its corners
- qface3 = geompy.MakeQuad4Vertices(p1, p2, p3, p4)
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.MakeQuad4Vertices(V1, V2, V3, V4)
- RaiseIfFailed("MakeQuad4Vertices", self.BlocksOp)
- self._autoPublish(anObj, theName, "quad")
- return anObj
-
- ## Create a hexahedral solid, bounded by the six given faces. Order of
- # faces is not important. It is not necessary that Faces share the same edge.
- # @param F1,F2,F3,F4,F5,F6 Faces for the hexahedral solid.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created solid.
- #
- # @ref tui_building_by_blocks_page "Example 1"
- # \n @ref swig_MakeHexa "Example 2"
- def MakeHexa(self, F1, F2, F3, F4, F5, F6, theName=None):
- """
- Create a hexahedral solid, bounded by the six given faces. Order of
- faces is not important. It is not necessary that Faces share the same edge.
-
- Parameters:
- F1,F2,F3,F4,F5,F6 Faces for the hexahedral solid.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created solid.
-
- Example of usage:
- solid = geompy.MakeHexa(qface1, qface2, qface3, qface4, qface5, qface6)
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.MakeHexa(F1, F2, F3, F4, F5, F6)
- RaiseIfFailed("MakeHexa", self.BlocksOp)
- self._autoPublish(anObj, theName, "hexa")
- return anObj
-
- ## Create a hexahedral solid between two given faces.
- # The missing faces will be built by creating the smallest ones.
- # @param F1,F2 Two opposite faces for the hexahedral solid.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the created solid.
- #
- # @ref tui_building_by_blocks_page "Example 1"
- # \n @ref swig_MakeHexa2Faces "Example 2"
- def MakeHexa2Faces(self, F1, F2, theName=None):
- """
- Create a hexahedral solid between two given faces.
- The missing faces will be built by creating the smallest ones.
-
- Parameters:
- F1,F2 Two opposite faces for the hexahedral solid.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the created solid.
-
- Example of usage:
- solid1 = geompy.MakeHexa2Faces(qface1, qface2)
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.MakeHexa2Faces(F1, F2)
- RaiseIfFailed("MakeHexa2Faces", self.BlocksOp)
- self._autoPublish(anObj, theName, "hexa")
- return anObj
-
- # end of l3_blocks
- ## @}
-
- ## @addtogroup l3_blocks_op
- ## @{
-
- ## Get a vertex, found in the given shape by its coordinates.
- # @param theShape Block or a compound of blocks.
- # @param theX,theY,theZ Coordinates of the sought vertex.
- # @param theEpsilon Maximum allowed distance between the resulting
- # vertex and point with the given coordinates.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the found vertex.
- #
- # @ref swig_GetPoint "Example"
- def GetPoint(self, theShape, theX, theY, theZ, theEpsilon, theName=None):
- """
- Get a vertex, found in the given shape by its coordinates.
-
- Parameters:
- theShape Block or a compound of blocks.
- theX,theY,theZ Coordinates of the sought vertex.
- theEpsilon Maximum allowed distance between the resulting
- vertex and point with the given coordinates.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the found vertex.
-
- Example of usage:
- pnt = geompy.GetPoint(shape, -50, 50, 50, 0.01)
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.BlocksOp.GetPoint(theShape, theX, theY, theZ, theEpsilon)
- RaiseIfFailed("GetPoint", self.BlocksOp)
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Find a vertex of the given shape, which has minimal distance to the given point.
- # @param theShape Any shape.
- # @param thePoint Point, close to the desired vertex.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the found vertex.
- #
- # @ref swig_GetVertexNearPoint "Example"
- def GetVertexNearPoint(self, theShape, thePoint, theName=None):
- """
- Find a vertex of the given shape, which has minimal distance to the given point.
-
- Parameters:
- theShape Any shape.
- thePoint Point, close to the desired vertex.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the found vertex.
-
- Example of usage:
- pmidle = geompy.MakeVertex(50, 0, 50)
- edge1 = geompy.GetEdgeNearPoint(blocksComp, pmidle)
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.BlocksOp.GetVertexNearPoint(theShape, thePoint)
- RaiseIfFailed("GetVertexNearPoint", self.BlocksOp)
- self._autoPublish(anObj, theName, "vertex")
- return anObj
-
- ## Get an edge, found in the given shape by two given vertices.
- # @param theShape Block or a compound of blocks.
- # @param thePoint1,thePoint2 Points, close to the ends of the desired edge.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the found edge.
- #
- # @ref swig_GetEdge "Example"
- def GetEdge(self, theShape, thePoint1, thePoint2, theName=None):
- """
- Get an edge, found in the given shape by two given vertices.
-
- Parameters:
- theShape Block or a compound of blocks.
- thePoint1,thePoint2 Points, close to the ends of the desired edge.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the found edge.
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.GetEdge(theShape, thePoint1, thePoint2)
- RaiseIfFailed("GetEdge", self.BlocksOp)
- self._autoPublish(anObj, theName, "edge")
- return anObj
-
- ## Find an edge of the given shape, which has minimal distance to the given point.
- # @param theShape Block or a compound of blocks.
- # @param thePoint Point, close to the desired edge.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the found edge.
- #
- # @ref swig_GetEdgeNearPoint "Example"
- def GetEdgeNearPoint(self, theShape, thePoint, theName=None):
- """
- Find an edge of the given shape, which has minimal distance to the given point.
-
- Parameters:
- theShape Block or a compound of blocks.
- thePoint Point, close to the desired edge.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the found edge.
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.BlocksOp.GetEdgeNearPoint(theShape, thePoint)
- RaiseIfFailed("GetEdgeNearPoint", self.BlocksOp)
- self._autoPublish(anObj, theName, "edge")
- return anObj
-
- ## Returns a face, found in the given shape by four given corner vertices.
- # @param theShape Block or a compound of blocks.
- # @param thePoint1,thePoint2,thePoint3,thePoint4 Points, close to the corners of the desired face.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the found face.
- #
- # @ref swig_todo "Example"
- def GetFaceByPoints(self, theShape, thePoint1, thePoint2, thePoint3, thePoint4, theName=None):
- """
- Returns a face, found in the given shape by four given corner vertices.
-
- Parameters:
- theShape Block or a compound of blocks.
- thePoint1,thePoint2,thePoint3,thePoint4 Points, close to the corners of the desired face.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the found face.
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.GetFaceByPoints(theShape, thePoint1, thePoint2, thePoint3, thePoint4)
- RaiseIfFailed("GetFaceByPoints", self.BlocksOp)
- self._autoPublish(anObj, theName, "face")
- return anObj
-
- ## Get a face of block, found in the given shape by two given edges.
- # @param theShape Block or a compound of blocks.
- # @param theEdge1,theEdge2 Edges, close to the edges of the desired face.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the found face.
- #
- # @ref swig_todo "Example"
- def GetFaceByEdges(self, theShape, theEdge1, theEdge2, theName=None):
- """
- Get a face of block, found in the given shape by two given edges.
-
- Parameters:
- theShape Block or a compound of blocks.
- theEdge1,theEdge2 Edges, close to the edges of the desired face.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the found face.
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.GetFaceByEdges(theShape, theEdge1, theEdge2)
- RaiseIfFailed("GetFaceByEdges", self.BlocksOp)
- self._autoPublish(anObj, theName, "face")
- return anObj
-
- ## Find a face, opposite to the given one in the given block.
- # @param theBlock Must be a hexahedral solid.
- # @param theFace Face of \a theBlock, opposite to the desired face.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the found face.
- #
- # @ref swig_GetOppositeFace "Example"
- def GetOppositeFace(self, theBlock, theFace, theName=None):
- """
- Find a face, opposite to the given one in the given block.
-
- Parameters:
- theBlock Must be a hexahedral solid.
- theFace Face of theBlock, opposite to the desired face.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the found face.
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.GetOppositeFace(theBlock, theFace)
- RaiseIfFailed("GetOppositeFace", self.BlocksOp)
- self._autoPublish(anObj, theName, "face")
- return anObj
-
- ## Find a face of the given shape, which has minimal distance to the given point.
- # @param theShape Block or a compound of blocks.
- # @param thePoint Point, close to the desired face.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the found face.
- #
- # @ref swig_GetFaceNearPoint "Example"
- def GetFaceNearPoint(self, theShape, thePoint, theName=None):
- """
- Find a face of the given shape, which has minimal distance to the given point.
-
- Parameters:
- theShape Block or a compound of blocks.
- thePoint Point, close to the desired face.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the found face.
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.GetFaceNearPoint(theShape, thePoint)
- RaiseIfFailed("GetFaceNearPoint", self.BlocksOp)
- self._autoPublish(anObj, theName, "face")
- return anObj
-
- ## Find a face of block, whose outside normale has minimal angle with the given vector.
- # @param theBlock Block or a compound of blocks.
- # @param theVector Vector, close to the normale of the desired face.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the found face.
- #
- # @ref swig_todo "Example"
- def GetFaceByNormale(self, theBlock, theVector, theName=None):
- """
- Find a face of block, whose outside normale has minimal angle with the given vector.
-
- Parameters:
- theBlock Block or a compound of blocks.
- theVector Vector, close to the normale of the desired face.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the found face.
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.GetFaceByNormale(theBlock, theVector)
- RaiseIfFailed("GetFaceByNormale", self.BlocksOp)
- self._autoPublish(anObj, theName, "face")
- return anObj
-
- ## Find all sub-shapes of type \a theShapeType of the given shape,
- # which have minimal distance to the given point.
- # @param theShape Any shape.
- # @param thePoint Point, close to the desired shape.
- # @param theShapeType Defines what kind of sub-shapes is searched GEOM::shape_type
- # @param theTolerance The tolerance for distances comparison. All shapes
- # with distances to the given point in interval
- # [minimal_distance, minimal_distance + theTolerance] will be gathered.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM_Object, containing a group of all found shapes.
- #
- # @ref swig_GetShapesNearPoint "Example"
- def GetShapesNearPoint(self, theShape, thePoint, theShapeType, theTolerance = 1e-07, theName=None):
- """
- Find all sub-shapes of type theShapeType of the given shape,
- which have minimal distance to the given point.
-
- Parameters:
- theShape Any shape.
- thePoint Point, close to the desired shape.
- theShapeType Defines what kind of sub-shapes is searched (see GEOM::shape_type)
- theTolerance The tolerance for distances comparison. All shapes
- with distances to the given point in interval
- [minimal_distance, minimal_distance + theTolerance] will be gathered.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM_Object, containing a group of all found shapes.
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.BlocksOp.GetShapesNearPoint(theShape, thePoint, theShapeType, theTolerance)
- RaiseIfFailed("GetShapesNearPoint", self.BlocksOp)
- self._autoPublish(anObj, theName, "group")
- return anObj
-
- # end of l3_blocks_op
- ## @}
-
- ## @addtogroup l4_blocks_measure
- ## @{
-
- ## Check, if the compound of blocks is given.
- # To be considered as a compound of blocks, the
- # given shape must satisfy the following conditions:
- # - Each element of the compound should be a Block (6 faces and 12 edges).
- # - A connection between two Blocks should be an entire quadrangle face or an entire edge.
- # - The compound should be connexe.
- # - The glue between two quadrangle faces should be applied.
- # @param theCompound The compound to check.
- # @return TRUE, if the given shape is a compound of blocks.
- # If theCompound is not valid, prints all discovered errors.
- #
- # @ref tui_measurement_tools_page "Example 1"
- # \n @ref swig_CheckCompoundOfBlocks "Example 2"
- def CheckCompoundOfBlocks(self,theCompound):
- """
- Check, if the compound of blocks is given.
- To be considered as a compound of blocks, the
- given shape must satisfy the following conditions:
- - Each element of the compound should be a Block (6 faces and 12 edges).
- - A connection between two Blocks should be an entire quadrangle face or an entire edge.
- - The compound should be connexe.
- - The glue between two quadrangle faces should be applied.
-
- Parameters:
- theCompound The compound to check.
-
- Returns:
- TRUE, if the given shape is a compound of blocks.
- If theCompound is not valid, prints all discovered errors.
- """
- # Example: see GEOM_Spanner.py
- (IsValid, BCErrors) = self.BlocksOp.CheckCompoundOfBlocks(theCompound)
- RaiseIfFailed("CheckCompoundOfBlocks", self.BlocksOp)
- if IsValid == 0:
- Descr = self.BlocksOp.PrintBCErrors(theCompound, BCErrors)
- print Descr
- return IsValid
-
- ## Retrieve all non blocks solids and faces from \a theShape.
- # @param theShape The shape to explore.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return A tuple of two GEOM_Objects. The first object is a group of all
- # non block solids (= not 6 faces, or with 6 faces, but with the
- # presence of non-quadrangular faces). The second object is a
- # group of all non quadrangular faces.
- #
- # @ref tui_measurement_tools_page "Example 1"
- # \n @ref swig_GetNonBlocks "Example 2"
- def GetNonBlocks (self, theShape, theName=None):
- """
- Retrieve all non blocks solids and faces from theShape.
-
- Parameters:
- theShape The shape to explore.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- A tuple of two GEOM_Objects. The first object is a group of all
- non block solids (= not 6 faces, or with 6 faces, but with the
- presence of non-quadrangular faces). The second object is a
- group of all non quadrangular faces.
-
- Usage:
- (res_sols, res_faces) = geompy.GetNonBlocks(myShape1)
- """
- # Example: see GEOM_Spanner.py
- aTuple = self.BlocksOp.GetNonBlocks(theShape)
- RaiseIfFailed("GetNonBlocks", self.BlocksOp)
- self._autoPublish(aTuple, theName, ("groupNonHexas", "groupNonQuads"))
- return aTuple
-
- ## Remove all seam and degenerated edges from \a theShape.
- # Unite faces and edges, sharing one surface. It means that
- # this faces must have references to one C++ surface object (handle).
- # @param theShape The compound or single solid to remove irregular edges from.
- # @param doUnionFaces If True, then unite faces. If False (the default value),
- # do not unite faces.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return Improved shape.
- #
- # @ref swig_RemoveExtraEdges "Example"
- def RemoveExtraEdges(self, theShape, doUnionFaces=False, theName=None):
- """
- Remove all seam and degenerated edges from theShape.
- Unite faces and edges, sharing one surface. It means that
- this faces must have references to one C++ surface object (handle).
-
- Parameters:
- theShape The compound or single solid to remove irregular edges from.
- doUnionFaces If True, then unite faces. If False (the default value),
- do not unite faces.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- Improved shape.
- """
- # Example: see GEOM_TestOthers.py
- nbFacesOptimum = -1 # -1 means do not unite faces
- if doUnionFaces is True: nbFacesOptimum = 0 # 0 means unite faces
- anObj = self.BlocksOp.RemoveExtraEdges(theShape, nbFacesOptimum)
- RaiseIfFailed("RemoveExtraEdges", self.BlocksOp)
- self._autoPublish(anObj, theName, "removeExtraEdges")
- return anObj
-
- ## Check, if the given shape is a blocks compound.
- # Fix all detected errors.
- # \note Single block can be also fixed by this method.
- # @param theShape The compound to check and improve.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return Improved compound.
- #
- # @ref swig_CheckAndImprove "Example"
- def CheckAndImprove(self, theShape, theName=None):
- """
- Check, if the given shape is a blocks compound.
- Fix all detected errors.
-
- Note:
- Single block can be also fixed by this method.
-
- Parameters:
- theShape The compound to check and improve.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- Improved compound.
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.BlocksOp.CheckAndImprove(theShape)
- RaiseIfFailed("CheckAndImprove", self.BlocksOp)
- self._autoPublish(anObj, theName, "improved")
- return anObj
-
- # end of l4_blocks_measure
- ## @}
-
- ## @addtogroup l3_blocks_op
- ## @{
-
- ## Get all the blocks, contained in the given compound.
- # @param theCompound The compound to explode.
- # @param theMinNbFaces If solid has lower number of faces, it is not a block.
- # @param theMaxNbFaces If solid has higher number of faces, it is not a block.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @note If theMaxNbFaces = 0, the maximum number of faces is not restricted.
- #
- # @return List of GEOM.GEOM_Object, containing the retrieved blocks.
- #
- # @ref tui_explode_on_blocks "Example 1"
- # \n @ref swig_MakeBlockExplode "Example 2"
- def MakeBlockExplode(self, theCompound, theMinNbFaces, theMaxNbFaces, theName=None):
- """
- Get all the blocks, contained in the given compound.
-
- Parameters:
- theCompound The compound to explode.
- theMinNbFaces If solid has lower number of faces, it is not a block.
- theMaxNbFaces If solid has higher number of faces, it is not a block.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Note:
- If theMaxNbFaces = 0, the maximum number of faces is not restricted.
-
- Returns:
- List of GEOM.GEOM_Object, containing the retrieved blocks.
- """
- # Example: see GEOM_TestOthers.py
- theMinNbFaces,theMaxNbFaces,Parameters = ParseParameters(theMinNbFaces,theMaxNbFaces)
- aList = self.BlocksOp.ExplodeCompoundOfBlocks(theCompound, theMinNbFaces, theMaxNbFaces)
- RaiseIfFailed("ExplodeCompoundOfBlocks", self.BlocksOp)
- for anObj in aList:
- anObj.SetParameters(Parameters)
- pass
- self._autoPublish(aList, theName, "block")
- return aList
-
- ## Find block, containing the given point inside its volume or on boundary.
- # @param theCompound Compound, to find block in.
- # @param thePoint Point, close to the desired block. If the point lays on
- # boundary between some blocks, we return block with nearest center.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the found block.
- #
- # @ref swig_todo "Example"
- def GetBlockNearPoint(self, theCompound, thePoint, theName=None):
- """
- Find block, containing the given point inside its volume or on boundary.
-
- Parameters:
- theCompound Compound, to find block in.
- thePoint Point, close to the desired block. If the point lays on
- boundary between some blocks, we return block with nearest center.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the found block.
- """
- # Example: see GEOM_Spanner.py
- anObj = self.BlocksOp.GetBlockNearPoint(theCompound, thePoint)
- RaiseIfFailed("GetBlockNearPoint", self.BlocksOp)
- self._autoPublish(anObj, theName, "block")
- return anObj
-
- ## Find block, containing all the elements, passed as the parts, or maximum quantity of them.
- # @param theCompound Compound, to find block in.
- # @param theParts List of faces and/or edges and/or vertices to be parts of the found block.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the found block.
- #
- # @ref swig_GetBlockByParts "Example"
- def GetBlockByParts(self, theCompound, theParts, theName=None):
- """
- Find block, containing all the elements, passed as the parts, or maximum quantity of them.
-
- Parameters:
- theCompound Compound, to find block in.
- theParts List of faces and/or edges and/or vertices to be parts of the found block.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM_Object, containing the found block.
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.BlocksOp.GetBlockByParts(theCompound, theParts)
- RaiseIfFailed("GetBlockByParts", self.BlocksOp)
- self._autoPublish(anObj, theName, "block")
- return anObj
-
- ## Return all blocks, containing all the elements, passed as the parts.
- # @param theCompound Compound, to find blocks in.
- # @param theParts List of faces and/or edges and/or vertices to be parts of the found blocks.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of GEOM.GEOM_Object, containing the found blocks.
- #
- # @ref swig_todo "Example"
- def GetBlocksByParts(self, theCompound, theParts, theName=None):
- """
- Return all blocks, containing all the elements, passed as the parts.
-
- Parameters:
- theCompound Compound, to find blocks in.
- theParts List of faces and/or edges and/or vertices to be parts of the found blocks.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of GEOM.GEOM_Object, containing the found blocks.
- """
- # Example: see GEOM_Spanner.py
- aList = self.BlocksOp.GetBlocksByParts(theCompound, theParts)
- RaiseIfFailed("GetBlocksByParts", self.BlocksOp)
- self._autoPublish(aList, theName, "block")
- return aList
-
- ## Multi-transformate block and glue the result.
- # Transformation is defined so, as to superpose direction faces.
- # @param Block Hexahedral solid to be multi-transformed.
- # @param DirFace1 ID of First direction face.
- # @param DirFace2 ID of Second direction face.
- # @param NbTimes Quantity of transformations to be done.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @note Unique ID of sub-shape can be obtained, using method GetSubShapeID().
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_multi_transformation "Example"
- def MakeMultiTransformation1D(self, Block, DirFace1, DirFace2, NbTimes, theName=None):
- """
- Multi-transformate block and glue the result.
- Transformation is defined so, as to superpose direction faces.
-
- Parameters:
- Block Hexahedral solid to be multi-transformed.
- DirFace1 ID of First direction face.
- DirFace2 ID of Second direction face.
- NbTimes Quantity of transformations to be done.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Note:
- Unique ID of sub-shape can be obtained, using method GetSubShapeID().
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
- """
- # Example: see GEOM_Spanner.py
- DirFace1,DirFace2,NbTimes,Parameters = ParseParameters(DirFace1,DirFace2,NbTimes)
- anObj = self.BlocksOp.MakeMultiTransformation1D(Block, DirFace1, DirFace2, NbTimes)
- RaiseIfFailed("MakeMultiTransformation1D", self.BlocksOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "transformed")
- return anObj
-
- ## Multi-transformate block and glue the result.
- # @param Block Hexahedral solid to be multi-transformed.
- # @param DirFace1U,DirFace2U IDs of Direction faces for the first transformation.
- # @param DirFace1V,DirFace2V IDs of Direction faces for the second transformation.
- # @param NbTimesU,NbTimesV Quantity of transformations to be done.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM.GEOM_Object, containing the result shape.
- #
- # @ref tui_multi_transformation "Example"
- def MakeMultiTransformation2D(self, Block, DirFace1U, DirFace2U, NbTimesU,
- DirFace1V, DirFace2V, NbTimesV, theName=None):
- """
- Multi-transformate block and glue the result.
-
- Parameters:
- Block Hexahedral solid to be multi-transformed.
- DirFace1U,DirFace2U IDs of Direction faces for the first transformation.
- DirFace1V,DirFace2V IDs of Direction faces for the second transformation.
- NbTimesU,NbTimesV Quantity of transformations to be done.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM.GEOM_Object, containing the result shape.
- """
- # Example: see GEOM_Spanner.py
- DirFace1U,DirFace2U,NbTimesU,DirFace1V,DirFace2V,NbTimesV,Parameters = ParseParameters(
- DirFace1U,DirFace2U,NbTimesU,DirFace1V,DirFace2V,NbTimesV)
- anObj = self.BlocksOp.MakeMultiTransformation2D(Block, DirFace1U, DirFace2U, NbTimesU,
- DirFace1V, DirFace2V, NbTimesV)
- RaiseIfFailed("MakeMultiTransformation2D", self.BlocksOp)
- anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "transformed")
- return anObj
-
- ## Build all possible propagation groups.
- # Propagation group is a set of all edges, opposite to one (main)
- # edge of this group directly or through other opposite edges.
- # Notion of Opposite Edge make sence only on quadrangle face.
- # @param theShape Shape to build propagation groups on.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of GEOM.GEOM_Object, each of them is a propagation group.
- #
- # @ref swig_Propagate "Example"
- def Propagate(self, theShape, theName=None):
- """
- Build all possible propagation groups.
- Propagation group is a set of all edges, opposite to one (main)
- edge of this group directly or through other opposite edges.
- Notion of Opposite Edge make sence only on quadrangle face.
-
- Parameters:
- theShape Shape to build propagation groups on.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of GEOM.GEOM_Object, each of them is a propagation group.
- """
- # Example: see GEOM_TestOthers.py
- listChains = self.BlocksOp.Propagate(theShape)
- RaiseIfFailed("Propagate", self.BlocksOp)
- self._autoPublish(listChains, theName, "propagate")
- return listChains
-
- # end of l3_blocks_op
- ## @}
-
- ## @addtogroup l3_groups
- ## @{
-
- ## Creates a new group which will store sub-shapes of theMainShape
- # @param theMainShape is a GEOM object on which the group is selected
- # @param theShapeType defines a shape type of the group (see GEOM::shape_type)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return a newly created GEOM group (GEOM.GEOM_Object)
- #
- # @ref tui_working_with_groups_page "Example 1"
- # \n @ref swig_CreateGroup "Example 2"
- def CreateGroup(self, theMainShape, theShapeType, theName=None):
- """
- Creates a new group which will store sub-shapes of theMainShape
-
- Parameters:
- theMainShape is a GEOM object on which the group is selected
- theShapeType defines a shape type of the group:"COMPOUND", "COMPSOLID",
- "SOLID", "SHELL", "FACE", "WIRE", "EDGE", "VERTEX", "SHAPE".
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- a newly created GEOM group
-
- Example of usage:
- group = geompy.CreateGroup(Box, geompy.ShapeType["FACE"])
-
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.GroupOp.CreateGroup(theMainShape, theShapeType)
- RaiseIfFailed("CreateGroup", self.GroupOp)
- self._autoPublish(anObj, theName, "group")
- return anObj
-
- ## Adds a sub-object with ID theSubShapeId to the group
- # @param theGroup is a GEOM group to which the new sub-shape is added
- # @param theSubShapeID is a sub-shape ID in the main object.
- # \note Use method GetSubShapeID() to get an unique ID of the sub-shape
- #
- # @ref tui_working_with_groups_page "Example"
- def AddObject(self,theGroup, theSubShapeID):
- """
- Adds a sub-object with ID theSubShapeId to the group
-
- Parameters:
- theGroup is a GEOM group to which the new sub-shape is added
- theSubShapeID is a sub-shape ID in the main object.
-
- Note:
- Use method GetSubShapeID() to get an unique ID of the sub-shape
- """
- # Example: see GEOM_TestOthers.py
- self.GroupOp.AddObject(theGroup, theSubShapeID)
- if self.GroupOp.GetErrorCode() != "PAL_ELEMENT_ALREADY_PRESENT":
- RaiseIfFailed("AddObject", self.GroupOp)
- pass
- pass
-
- ## Removes a sub-object with ID \a theSubShapeId from the group
- # @param theGroup is a GEOM group from which the new sub-shape is removed
- # @param theSubShapeID is a sub-shape ID in the main object.
- # \note Use method GetSubShapeID() to get an unique ID of the sub-shape
- #
- # @ref tui_working_with_groups_page "Example"
- def RemoveObject(self,theGroup, theSubShapeID):
- """
- Removes a sub-object with ID theSubShapeId from the group
-
- Parameters:
- theGroup is a GEOM group from which the new sub-shape is removed
- theSubShapeID is a sub-shape ID in the main object.
-
- Note:
- Use method GetSubShapeID() to get an unique ID of the sub-shape
- """
- # Example: see GEOM_TestOthers.py
- self.GroupOp.RemoveObject(theGroup, theSubShapeID)
- RaiseIfFailed("RemoveObject", self.GroupOp)
- pass
-
- ## Adds to the group all the given shapes. No errors, if some shapes are alredy included.
- # @param theGroup is a GEOM group to which the new sub-shapes are added.
- # @param theSubShapes is a list of sub-shapes to be added.
- #
- # @ref tui_working_with_groups_page "Example"
- def UnionList (self,theGroup, theSubShapes):
- """
- Adds to the group all the given shapes. No errors, if some shapes are alredy included.
-
- Parameters:
- theGroup is a GEOM group to which the new sub-shapes are added.
- theSubShapes is a list of sub-shapes to be added.
- """
- # Example: see GEOM_TestOthers.py
- self.GroupOp.UnionList(theGroup, theSubShapes)
- RaiseIfFailed("UnionList", self.GroupOp)
- pass
-
- ## Adds to the group all the given shapes. No errors, if some shapes are alredy included.
- # @param theGroup is a GEOM group to which the new sub-shapes are added.
- # @param theSubShapes is a list of indices of sub-shapes to be added.
- #
- # @ref swig_UnionIDs "Example"
- def UnionIDs(self,theGroup, theSubShapes):
- """
- Adds to the group all the given shapes. No errors, if some shapes are alredy included.
-
- Parameters:
- theGroup is a GEOM group to which the new sub-shapes are added.
- theSubShapes is a list of indices of sub-shapes to be added.
- """
- # Example: see GEOM_TestOthers.py
- self.GroupOp.UnionIDs(theGroup, theSubShapes)
- RaiseIfFailed("UnionIDs", self.GroupOp)
- pass
-
- ## Removes from the group all the given shapes. No errors, if some shapes are not included.
- # @param theGroup is a GEOM group from which the sub-shapes are removed.
- # @param theSubShapes is a list of sub-shapes to be removed.
- #
- # @ref tui_working_with_groups_page "Example"
- def DifferenceList (self,theGroup, theSubShapes):
- """
- Removes from the group all the given shapes. No errors, if some shapes are not included.
-
- Parameters:
- theGroup is a GEOM group from which the sub-shapes are removed.
- theSubShapes is a list of sub-shapes to be removed.
- """
- # Example: see GEOM_TestOthers.py
- self.GroupOp.DifferenceList(theGroup, theSubShapes)
- RaiseIfFailed("DifferenceList", self.GroupOp)
- pass
-
- ## Removes from the group all the given shapes. No errors, if some shapes are not included.
- # @param theGroup is a GEOM group from which the sub-shapes are removed.
- # @param theSubShapes is a list of indices of sub-shapes to be removed.
- #
- # @ref swig_DifferenceIDs "Example"
- def DifferenceIDs(self,theGroup, theSubShapes):
- """
- Removes from the group all the given shapes. No errors, if some shapes are not included.
-
- Parameters:
- theGroup is a GEOM group from which the sub-shapes are removed.
- theSubShapes is a list of indices of sub-shapes to be removed.
- """
- # Example: see GEOM_TestOthers.py
- self.GroupOp.DifferenceIDs(theGroup, theSubShapes)
- RaiseIfFailed("DifferenceIDs", self.GroupOp)
- pass
-
- ## Union of two groups.
- # New group is created. It will contain all entities
- # which are present in groups theGroup1 and theGroup2.
- # @param theGroup1, theGroup2 are the initial GEOM groups
- # to create the united group from.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return a newly created GEOM group.
- #
- # @ref tui_union_groups_anchor "Example"
- def UnionGroups (self, theGroup1, theGroup2, theName=None):
- """
- Union of two groups.
- New group is created. It will contain all entities
- which are present in groups theGroup1 and theGroup2.
-
- Parameters:
- theGroup1, theGroup2 are the initial GEOM groups
- to create the united group from.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- a newly created GEOM group.
- """
- # Example: see GEOM_TestOthers.py
- aGroup = self.GroupOp.UnionGroups(theGroup1, theGroup2)
- RaiseIfFailed("UnionGroups", self.GroupOp)
- self._autoPublish(aGroup, theName, "group")
- return aGroup
-
- ## Intersection of two groups.
- # New group is created. It will contain only those entities
- # which are present in both groups theGroup1 and theGroup2.
- # @param theGroup1, theGroup2 are the initial GEOM groups to get common part of.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return a newly created GEOM group.
- #
- # @ref tui_intersect_groups_anchor "Example"
- def IntersectGroups (self, theGroup1, theGroup2, theName=None):
- """
- Intersection of two groups.
- New group is created. It will contain only those entities
- which are present in both groups theGroup1 and theGroup2.
-
- Parameters:
- theGroup1, theGroup2 are the initial GEOM groups to get common part of.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- a newly created GEOM group.
- """
- # Example: see GEOM_TestOthers.py
- aGroup = self.GroupOp.IntersectGroups(theGroup1, theGroup2)
- RaiseIfFailed("IntersectGroups", self.GroupOp)
- self._autoPublish(aGroup, theName, "group")
- return aGroup
-
- ## Cut of two groups.
- # New group is created. It will contain entities which are
- # present in group theGroup1 but are not present in group theGroup2.
- # @param theGroup1 is a GEOM group to include elements of.
- # @param theGroup2 is a GEOM group to exclude elements of.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return a newly created GEOM group.
- #
- # @ref tui_cut_groups_anchor "Example"
- def CutGroups (self, theGroup1, theGroup2, theName=None):
- """
- Cut of two groups.
- New group is created. It will contain entities which are
- present in group theGroup1 but are not present in group theGroup2.
-
- Parameters:
- theGroup1 is a GEOM group to include elements of.
- theGroup2 is a GEOM group to exclude elements of.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- a newly created GEOM group.
- """
- # Example: see GEOM_TestOthers.py
- aGroup = self.GroupOp.CutGroups(theGroup1, theGroup2)
- RaiseIfFailed("CutGroups", self.GroupOp)
- self._autoPublish(aGroup, theName, "group")
- return aGroup
-
- ## Union of list of groups.
- # New group is created. It will contain all entities that are
- # present in groups listed in theGList.
- # @param theGList is a list of GEOM groups to create the united group from.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return a newly created GEOM group.
- #
- # @ref tui_union_groups_anchor "Example"
- def UnionListOfGroups (self, theGList, theName=None):
- """
- Union of list of groups.
- New group is created. It will contain all entities that are
- present in groups listed in theGList.
-
- Parameters:
- theGList is a list of GEOM groups to create the united group from.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- a newly created GEOM group.
- """
- # Example: see GEOM_TestOthers.py
- aGroup = self.GroupOp.UnionListOfGroups(theGList)
- RaiseIfFailed("UnionListOfGroups", self.GroupOp)
- self._autoPublish(aGroup, theName, "group")
- return aGroup
-
- ## Cut of lists of groups.
- # New group is created. It will contain only entities
- # which are present in groups listed in theGList1 but
- # are not present in groups from theGList2.
- # @param theGList1 is a list of GEOM groups to include elements of.
- # @param theGList2 is a list of GEOM groups to exclude elements of.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return a newly created GEOM group.
- #
- # @ref tui_intersect_groups_anchor "Example"
- def IntersectListOfGroups (self, theGList, theName=None):
- """
- Cut of lists of groups.
- New group is created. It will contain only entities
- which are present in groups listed in theGList1 but
- are not present in groups from theGList2.
-
- Parameters:
- theGList1 is a list of GEOM groups to include elements of.
- theGList2 is a list of GEOM groups to exclude elements of.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- a newly created GEOM group.
- """
- # Example: see GEOM_TestOthers.py
- aGroup = self.GroupOp.IntersectListOfGroups(theGList)
- RaiseIfFailed("IntersectListOfGroups", self.GroupOp)
- self._autoPublish(aGroup, theName, "group")
- return aGroup
-
- ## Cut of lists of groups.
- # New group is created. It will contain only entities
- # which are present in groups listed in theGList1 but
- # are not present in groups from theGList2.
- # @param theGList1 is a list of GEOM groups to include elements of.
- # @param theGList2 is a list of GEOM groups to exclude elements of.
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return a newly created GEOM group.
- #
- # @ref tui_cut_groups_anchor "Example"
- def CutListOfGroups (self, theGList1, theGList2, theName=None):
- """
- Cut of lists of groups.
- New group is created. It will contain only entities
- which are present in groups listed in theGList1 but
- are not present in groups from theGList2.
-
- Parameters:
- theGList1 is a list of GEOM groups to include elements of.
- theGList2 is a list of GEOM groups to exclude elements of.
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- a newly created GEOM group.
- """
- # Example: see GEOM_TestOthers.py
- aGroup = self.GroupOp.CutListOfGroups(theGList1, theGList2)
- RaiseIfFailed("CutListOfGroups", self.GroupOp)
- self._autoPublish(aGroup, theName, "group")
- return aGroup
-
- ## Returns a list of sub-objects ID stored in the group
- # @param theGroup is a GEOM group for which a list of IDs is requested
- #
- # @ref swig_GetObjectIDs "Example"
- def GetObjectIDs(self,theGroup):
- """
- Returns a list of sub-objects ID stored in the group
-
- Parameters:
- theGroup is a GEOM group for which a list of IDs is requested
- """
- # Example: see GEOM_TestOthers.py
- ListIDs = self.GroupOp.GetObjects(theGroup)
- RaiseIfFailed("GetObjects", self.GroupOp)
- return ListIDs
-
- ## Returns a type of sub-objects stored in the group
- # @param theGroup is a GEOM group which type is returned.
- #
- # @ref swig_GetType "Example"
- def GetType(self,theGroup):
- """
- Returns a type of sub-objects stored in the group
-
- Parameters:
- theGroup is a GEOM group which type is returned.
- """
- # Example: see GEOM_TestOthers.py
- aType = self.GroupOp.GetType(theGroup)
- RaiseIfFailed("GetType", self.GroupOp)
- return aType
-
- ## Convert a type of geom object from id to string value
- # @param theId is a GEOM obect type id.
- # @return type of geom object (POINT, VECTOR, PLANE, LINE, TORUS, ... )
- # @ref swig_GetType "Example"
- def ShapeIdToType(self, theId):
- """
- Convert a type of geom object from id to string value
-
- Parameters:
- theId is a GEOM obect type id.
-
- Returns:
- type of geom object (POINT, VECTOR, PLANE, LINE, TORUS, ... )
- """
- if theId == 0:
- return "COPY"
- if theId == 1:
- return "IMPORT"
- if theId == 2:
- return "POINT"
- if theId == 3:
- return "VECTOR"
- if theId == 4:
- return "PLANE"
- if theId == 5:
- return "LINE"
- if theId == 6:
- return "TORUS"
- if theId == 7:
- return "BOX"
- if theId == 8:
- return "CYLINDER"
- if theId == 9:
- return "CONE"
- if theId == 10:
- return "SPHERE"
- if theId == 11:
- return "PRISM"
- if theId == 12:
- return "REVOLUTION"
- if theId == 13:
- return "BOOLEAN"
- if theId == 14:
- return "PARTITION"
- if theId == 15:
- return "POLYLINE"
- if theId == 16:
- return "CIRCLE"
- if theId == 17:
- return "SPLINE"
- if theId == 18:
- return "ELLIPSE"
- if theId == 19:
- return "CIRC_ARC"
- if theId == 20:
- return "FILLET"
- if theId == 21:
- return "CHAMFER"
- if theId == 22:
- return "EDGE"
- if theId == 23:
- return "WIRE"
- if theId == 24:
- return "FACE"
- if theId == 25:
- return "SHELL"
- if theId == 26:
- return "SOLID"
- if theId == 27:
- return "COMPOUND"
- if theId == 28:
- return "SUBSHAPE"
- if theId == 29:
- return "PIPE"
- if theId == 30:
- return "ARCHIMEDE"
- if theId == 31:
- return "FILLING"
- if theId == 32:
- return "EXPLODE"
- if theId == 33:
- return "GLUED"
- if theId == 34:
- return "SKETCHER"
- if theId == 35:
- return "CDG"
- if theId == 36:
- return "FREE_BOUNDS"
- if theId == 37:
- return "GROUP"
- if theId == 38:
- return "BLOCK"
- if theId == 39:
- return "MARKER"
- if theId == 40:
- return "THRUSECTIONS"
- if theId == 41:
- return "COMPOUNDFILTER"
- if theId == 42:
- return "SHAPES_ON_SHAPE"
- if theId == 43:
- return "ELLIPSE_ARC"
- if theId == 44:
- return "3DSKETCHER"
- if theId == 45:
- return "FILLET_2D"
- if theId == 46:
- return "FILLET_1D"
- if theId == 201:
- return "PIPETSHAPE"
- return "Shape Id not exist."
-
- ## Returns a main shape associated with the group
- # @param theGroup is a GEOM group for which a main shape object is requested
- # @return a GEOM object which is a main shape for theGroup
- #
- # @ref swig_GetMainShape "Example"
- def GetMainShape(self,theGroup):
- """
- Returns a main shape associated with the group
-
- Parameters:
- theGroup is a GEOM group for which a main shape object is requested
-
- Returns:
- a GEOM object which is a main shape for theGroup
-
- Example of usage: BoxCopy = geompy.GetMainShape(CreateGroup)
- """
- # Example: see GEOM_TestOthers.py
- anObj = self.GroupOp.GetMainShape(theGroup)
- RaiseIfFailed("GetMainShape", self.GroupOp)
- return anObj
-
- ## Create group of edges of theShape, whose length is in range [min_length, max_length].
- # If include_min/max == 0, edges with length == min/max_length will not be included in result.
- # @param theShape given shape (see GEOM.GEOM_Object)
- # @param min_length minimum length of edges of theShape
- # @param max_length maximum length of edges of theShape
- # @param include_max indicating if edges with length == max_length should be included in result, 1-yes, 0-no (default=1)
- # @param include_min indicating if edges with length == min_length should be included in result, 1-yes, 0-no (default=1)
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return a newly created GEOM group of edges
- #
- # @@ref swig_todo "Example"
- def GetEdgesByLength (self, theShape, min_length, max_length, include_min = 1, include_max = 1, theName=None):
- """
- Create group of edges of theShape, whose length is in range [min_length, max_length].
- If include_min/max == 0, edges with length == min/max_length will not be included in result.
-
- Parameters:
- theShape given shape
- min_length minimum length of edges of theShape
- max_length maximum length of edges of theShape
- include_max indicating if edges with length == max_length should be included in result, 1-yes, 0-no (default=1)
- include_min indicating if edges with length == min_length should be included in result, 1-yes, 0-no (default=1)
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- a newly created GEOM group of edges.
- """
- edges = self.SubShapeAll(theShape, ShapeType["EDGE"])
- edges_in_range = []
- for edge in edges:
- Props = self.BasicProperties(edge)
- if min_length <= Props[0] and Props[0] <= max_length:
- if (not include_min) and (min_length == Props[0]):
- skip = 1
- else:
- if (not include_max) and (Props[0] == max_length):
- skip = 1
- else:
- edges_in_range.append(edge)
-
- if len(edges_in_range) <= 0:
- print "No edges found by given criteria"
- return None
-
- # note: auto-publishing is done in self.CreateGroup()
- group_edges = self.CreateGroup(theShape, ShapeType["EDGE"], theName)
- self.UnionList(group_edges, edges_in_range)
-
- return group_edges
-
- ## Create group of edges of selected shape, whose length is in range [min_length, max_length].
- # If include_min/max == 0, edges with length == min/max_length will not be included in result.
- # @param min_length minimum length of edges of selected shape
- # @param max_length maximum length of edges of selected shape
- # @param include_max indicating if edges with length == max_length should be included in result, 1-yes, 0-no (default=1)
- # @param include_min indicating if edges with length == min_length should be included in result, 1-yes, 0-no (default=1)
- # @return a newly created GEOM group of edges
- # @ref swig_todo "Example"
- def SelectEdges (self, min_length, max_length, include_min = 1, include_max = 1):
- """
- Create group of edges of selected shape, whose length is in range [min_length, max_length].
- If include_min/max == 0, edges with length == min/max_length will not be included in result.
-
- Parameters:
- min_length minimum length of edges of selected shape
- max_length maximum length of edges of selected shape
- include_max indicating if edges with length == max_length should be included in result, 1-yes, 0-no (default=1)
- include_min indicating if edges with length == min_length should be included in result, 1-yes, 0-no (default=1)
-
- Returns:
- a newly created GEOM group of edges.
- """
- nb_selected = sg.SelectedCount()
- if nb_selected < 1:
- print "Select a shape before calling this function, please."
- return 0
- if nb_selected > 1:
- print "Only one shape must be selected"
- return 0
-
- id_shape = sg.getSelected(0)
- shape = IDToObject( id_shape )
-
- group_edges = self.GetEdgesByLength(shape, min_length, max_length, include_min, include_max)
-
- left_str = " < "
- right_str = " < "
- if include_min: left_str = " <= "
- if include_max: right_str = " <= "
-
- self.addToStudyInFather(shape, group_edges, "Group of edges with " + `min_length`
- + left_str + "length" + right_str + `max_length`)
-
- sg.updateObjBrowser(1)
-
- return group_edges
-
- # end of l3_groups
- ## @}
-
- ## @addtogroup l4_advanced
- ## @{
-
- ## Create a T-shape object with specified caracteristics for the main
- # and the incident pipes (radius, width, half-length).
- # The extremities of the main pipe are located on junctions points P1 and P2.
- # The extremity of the incident pipe is located on junction point P3.
- # If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
- # the main plane of the T-shape is XOY.
- # @param theR1 Internal radius of main pipe
- # @param theW1 Width of main pipe
- # @param theL1 Half-length of main pipe
- # @param theR2 Internal radius of incident pipe (R2 < R1)
- # @param theW2 Width of incident pipe (R2+W2 < R1+W1)
- # @param theL2 Half-length of incident pipe
- # @param theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
- # @param theP1 1st junction point of main pipe
- # @param theP2 2nd junction point of main pipe
- # @param theP3 Junction point of incident pipe
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of GEOM.GEOM_Object, containing the created shape and propagation groups.
- #
- # @ref tui_creation_pipetshape "Example"
- def MakePipeTShape(self, theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh=True, theP1=None, theP2=None, theP3=None, theName=None):
- """
- Create a T-shape object with specified caracteristics for the main
- and the incident pipes (radius, width, half-length).
- The extremities of the main pipe are located on junctions points P1 and P2.
- The extremity of the incident pipe is located on junction point P3.
- If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
- the main plane of the T-shape is XOY.
-
- Paremeters:
- theR1 Internal radius of main pipe
- theW1 Width of main pipe
- theL1 Half-length of main pipe
- theR2 Internal radius of incident pipe (R2 < R1)
- theW2 Width of incident pipe (R2+W2 < R1+W1)
- theL2 Half-length of incident pipe
- theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
- theP1 1st junction point of main pipe
- theP2 2nd junction point of main pipe
- theP3 Junction point of incident pipe
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of GEOM_Object, containing the created shape and propagation groups.
-
- Example of usage:
- # create PipeTShape object
- pipetshape = geompy.MakePipeTShape(80.0, 20.0, 200.0, 50.0, 20.0, 200.0)
- # create PipeTShape object with position
- pipetshape_position = geompy.MakePipeTShape(80.0, 20.0, 200.0, 50.0, 20.0, 200.0, True, P1, P2, P3)
- """
- theR1, theW1, theL1, theR2, theW2, theL2, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2)
- if (theP1 and theP2 and theP3):
- anObj = self.AdvOp.MakePipeTShapeWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh, theP1, theP2, theP3)
- else:
- anObj = self.AdvOp.MakePipeTShape(theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh)
- RaiseIfFailed("MakePipeTShape", self.AdvOp)
- if Parameters: anObj[0].SetParameters(Parameters)
- def_names = [ "pipeTShape" ] + [ "pipeTShape_grp_%d" % i for i in range(1, len(anObj)) ]
- self._autoPublish(anObj, _toListOfNames(theName, len(anObj)), def_names)
- return anObj
-
- ## Create a T-shape object with chamfer and with specified caracteristics for the main
- # and the incident pipes (radius, width, half-length). The chamfer is
- # created on the junction of the pipes.
- # The extremities of the main pipe are located on junctions points P1 and P2.
- # The extremity of the incident pipe is located on junction point P3.
- # If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
- # the main plane of the T-shape is XOY.
- # @param theR1 Internal radius of main pipe
- # @param theW1 Width of main pipe
- # @param theL1 Half-length of main pipe
- # @param theR2 Internal radius of incident pipe (R2 < R1)
- # @param theW2 Width of incident pipe (R2+W2 < R1+W1)
- # @param theL2 Half-length of incident pipe
- # @param theH Height of the chamfer.
- # @param theW Width of the chamfer.
- # @param theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
- # @param theP1 1st junction point of main pipe
- # @param theP2 2nd junction point of main pipe
- # @param theP3 Junction point of incident pipe
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of GEOM.GEOM_Object, containing the created shape and propagation groups.
- #
- # @ref tui_creation_pipetshape "Example"
- def MakePipeTShapeChamfer(self, theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh=True, theP1=None, theP2=None, theP3=None, theName=None):
- """
- Create a T-shape object with chamfer and with specified caracteristics for the main
- and the incident pipes (radius, width, half-length). The chamfer is
- created on the junction of the pipes.
- The extremities of the main pipe are located on junctions points P1 and P2.
- The extremity of the incident pipe is located on junction point P3.
- If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
- the main plane of the T-shape is XOY.
-
- Paremeters:
- theR1 Internal radius of main pipe
- theW1 Width of main pipe
- theL1 Half-length of main pipe
- theR2 Internal radius of incident pipe (R2 < R1)
- theW2 Width of incident pipe (R2+W2 < R1+W1)
- theL2 Half-length of incident pipe
- theH Height of the chamfer.
- theW Width of the chamfer.
- theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
- theP1 1st junction point of main pipe
- theP2 2nd junction point of main pipe
- theP3 Junction point of incident pipe
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of GEOM_Object, containing the created shape and propagation groups.
-
- Example of usage:
- # create PipeTShape with chamfer object
- pipetshapechamfer = geompy.MakePipeTShapeChamfer(80.0, 20.0, 200.0, 50.0, 20.0, 200.0, 20.0, 20.0)
- # create PipeTShape with chamfer object with position
- pipetshapechamfer_position = geompy.MakePipeTShapeChamfer(80.0, 20.0, 200.0, 50.0, 20.0, 200.0, 20.0, 20.0, True, P1, P2, P3)
- """
- theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW)
- if (theP1 and theP2 and theP3):
- anObj = self.AdvOp.MakePipeTShapeChamferWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh, theP1, theP2, theP3)
- else:
- anObj = self.AdvOp.MakePipeTShapeChamfer(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh)
- RaiseIfFailed("MakePipeTShapeChamfer", self.AdvOp)
- if Parameters: anObj[0].SetParameters(Parameters)
- def_names = [ "pipeTShape" ] + [ "pipeTShape_grp_%d" % i for i in range(1, len(anObj)) ]
- self._autoPublish(anObj, _toListOfNames(theName, len(anObj)), def_names)
- return anObj
-
- ## Create a T-shape object with fillet and with specified caracteristics for the main
- # and the incident pipes (radius, width, half-length). The fillet is
- # created on the junction of the pipes.
- # The extremities of the main pipe are located on junctions points P1 and P2.
- # The extremity of the incident pipe is located on junction point P3.
- # If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
- # the main plane of the T-shape is XOY.
- # @param theR1 Internal radius of main pipe
- # @param theW1 Width of main pipe
- # @param theL1 Half-length of main pipe
- # @param theR2 Internal radius of incident pipe (R2 < R1)
- # @param theW2 Width of incident pipe (R2+W2 < R1+W1)
- # @param theL2 Half-length of incident pipe
- # @param theRF Radius of curvature of fillet.
- # @param theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
- # @param theP1 1st junction point of main pipe
- # @param theP2 2nd junction point of main pipe
- # @param theP3 Junction point of incident pipe
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return List of GEOM.GEOM_Object, containing the created shape and propagation groups.
- #
- # @ref tui_creation_pipetshape "Example"
- def MakePipeTShapeFillet(self, theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh=True, theP1=None, theP2=None, theP3=None, theName=None):
- """
- Create a T-shape object with fillet and with specified caracteristics for the main
- and the incident pipes (radius, width, half-length). The fillet is
- created on the junction of the pipes.
- The extremities of the main pipe are located on junctions points P1 and P2.
- The extremity of the incident pipe is located on junction point P3.
-
- Paremeters:
- If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
- the main plane of the T-shape is XOY.
- theR1 Internal radius of main pipe
- theW1 Width of main pipe
- heL1 Half-length of main pipe
- theR2 Internal radius of incident pipe (R2 < R1)
- theW2 Width of incident pipe (R2+W2 < R1+W1)
- theL2 Half-length of incident pipe
- theRF Radius of curvature of fillet.
- theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
- theP1 1st junction point of main pipe
- theP2 2nd junction point of main pipe
- theP3 Junction point of incident pipe
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- List of GEOM_Object, containing the created shape and propagation groups.
-
- Example of usage:
- # create PipeTShape with fillet object
- pipetshapefillet = geompy.MakePipeTShapeFillet(80.0, 20.0, 200.0, 50.0, 20.0, 200.0, 5.0)
- # create PipeTShape with fillet object with position
- pipetshapefillet_position = geompy.MakePipeTShapeFillet(80.0, 20.0, 200.0, 50.0, 20.0, 200.0, 5.0, True, P1, P2, P3)
-
- """
- theR1, theW1, theL1, theR2, theW2, theL2, theRF, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2, theRF)
- if (theP1 and theP2 and theP3):
- anObj = self.AdvOp.MakePipeTShapeFilletWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh, theP1, theP2, theP3)
- else:
- anObj = self.AdvOp.MakePipeTShapeFillet(theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh)
- RaiseIfFailed("MakePipeTShapeFillet", self.AdvOp)
- if Parameters: anObj[0].SetParameters(Parameters)
- def_names = [ "pipeTShape" ] + [ "pipeTShape_grp_%d" % i for i in range(1, len(anObj)) ]
- self._autoPublish(anObj, _toListOfNames(theName, len(anObj)), def_names)
- return anObj
-
- ## This function allows creating a disk already divided into blocks. It
- # can be used to create divided pipes for later meshing in hexaedra.
- # @param theR Radius of the disk
- # @param theOrientation Orientation of the plane on which the disk will be built
- # 1 = XOY, 2 = OYZ, 3 = OZX
- # @param thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM_Object, containing the created shape.
- #
- # @ref tui_creation_divideddisk "Example"
- def MakeDividedDisk(self, theR, theOrientation, thePattern, theName=None):
- """
- Creates a disk, divided into blocks. It can be used to create divided pipes
- for later meshing in hexaedra.
-
- Parameters:
- theR Radius of the disk
- theOrientation Orientation of the plane on which the disk will be built:
- 1 = XOY, 2 = OYZ, 3 = OZX
- thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM_Object, containing the created shape.
- """
- theR, Parameters = ParseParameters(theR)
- anObj = self.AdvOp.MakeDividedDisk(theR, 67.0, theOrientation, thePattern)
- RaiseIfFailed("MakeDividedDisk", self.AdvOp)
- if Parameters: anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "dividedDisk")
- return anObj
-
- ## This function allows creating a disk already divided into blocks. It
- # can be used to create divided pipes for later meshing in hexaedra.
- # @param theCenter Center of the disk
- # @param theVector Normal vector to the plane of the created disk
- # @param theRadius Radius of the disk
- # @param thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM_Object, containing the created shape.
- #
- # @ref tui_creation_divideddisk "Example"
- def MakeDividedDiskPntVecR(self, theCenter, theVector, theRadius, thePattern, theName=None):
- """
- Creates a disk already divided into blocks. It can be used to create divided pipes
- for later meshing in hexaedra.
-
- Parameters:
- theCenter Center of the disk
- theVector Normal vector to the plane of the created disk
- theRadius Radius of the disk
- thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM_Object, containing the created shape.
- """
- theRadius, Parameters = ParseParameters(theRadius)
- anObj = self.AdvOp.MakeDividedDiskPntVecR(theCenter, theVector, theRadius, 67.0, thePattern)
- RaiseIfFailed("MakeDividedDiskPntVecR", self.AdvOp)
- if Parameters: anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "dividedDisk")
- return anObj
-
- ## Builds a cylinder prepared for hexa meshes
- # @param theR Radius of the cylinder
- # @param theH Height of the cylinder
- # @param thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM_Object, containing the created shape.
- #
- # @ref tui_creation_dividedcylinder "Example"
- def MakeDividedCylinder(self, theR, theH, thePattern, theName=None):
- """
- Builds a cylinder prepared for hexa meshes
-
- Parameters:
- theR Radius of the cylinder
- theH Height of the cylinder
- thePattern Division pattern. It can be GEOM.SQUARE or GEOM.HEXAGON
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM_Object, containing the created shape.
- """
- theR, theH, Parameters = ParseParameters(theR, theH)
- anObj = self.AdvOp.MakeDividedCylinder(theR, theH, thePattern)
- RaiseIfFailed("MakeDividedCylinder", self.AdvOp)
- if Parameters: anObj.SetParameters(Parameters)
- self._autoPublish(anObj, theName, "dividedCylinder")
- return anObj
-
- #@@ insert new functions before this line @@ do not remove this line @@#
-
- # end of l4_advanced
- ## @}
-
- ## Create a copy of the given object
- #
- # @param theOriginal geometry object for copy
- # @return unique object identifier
- # @ingroup l1_geompyDC_auxiliary
- # @param theName Object name; when specified, this parameter is used
- # for result publication in the study. Otherwise, if automatic
- # publication is switched on, default value is used for result name.
- #
- # @return New GEOM_Object, containing the copied shape.
- #
- # @ingroup l1_geompy_auxiliary
- # @ref swig_MakeCopy "Example"
- def MakeCopy(self, theOriginal, theName=None):
- """
- Create a copy of the given object
-
- Paremeters:
- theOriginal geometry object for copy
- theName Object name; when specified, this parameter is used
- for result publication in the study. Otherwise, if automatic
- publication is switched on, default value is used for result name.
-
- Returns:
- New GEOM_Object, containing the copied shape.
-
- Example of usage: Copy = geompy.MakeCopy(Box)
- """
- # Example: see GEOM_TestAll.py
- anObj = self.InsertOp.MakeCopy(theOriginal)
- RaiseIfFailed("MakeCopy", self.InsertOp)
- self._autoPublish(anObj, theName, "copy")
- return anObj
-
- ## Add Path to load python scripts from
- # @param Path a path to load python scripts from
- # @ingroup l1_geompyDC_auxiliary
- def addPath(self,Path):
- """
- Add Path to load python scripts from
-
- Parameters:
- Path a path to load python scripts from
- """
- if (sys.path.count(Path) < 1):
- sys.path.append(Path)
- pass
- pass
-
- ## Load marker texture from the file
- # @param Path a path to the texture file
- # @return unique texture identifier
- # @ingroup l1_geompyDC_auxiliary
- def LoadTexture(self, Path):
- """
- Load marker texture from the file
-
- Parameters:
- Path a path to the texture file
-
- Returns:
- unique texture identifier
- """
- # Example: see GEOM_TestAll.py
- ID = self.InsertOp.LoadTexture(Path)
- RaiseIfFailed("LoadTexture", self.InsertOp)
- return ID
-
- ## Get internal name of the object based on its study entry
- # @note This method does not provide an unique identifier of the geometry object.
- # @note This is internal function of GEOM component, though it can be used outside it for
- # appropriate reason (e.g. for identification of geometry object).
- # @param obj geometry object
- # @return unique object identifier
- # @ingroup l1_geompyDC_auxiliary
- def getObjectID(self, obj):
- """
- Get internal name of the object based on its study entry.
- Note: this method does not provide an unique identifier of the geometry object.
- It is an internal function of GEOM component, though it can be used outside GEOM for
- appropriate reason (e.g. for identification of geometry object).
-
- Parameters:
- obj geometry object
-
- Returns:
- unique object identifier
- """
- ID = ""
- entry = salome.ObjectToID(obj)
- if entry is not None:
- lst = entry.split(":")
- if len(lst) > 0:
- ID = lst[-1] # -1 means last item in the list
- return "GEOM_" + ID
- return ID
-
-
-
- ## Add marker texture. @a Width and @a Height parameters
- # specify width and height of the texture in pixels.
- # If @a RowData is @c True, @a Texture parameter should represent texture data
- # packed into the byte array. If @a RowData is @c False (default), @a Texture
- # parameter should be unpacked string, in which '1' symbols represent opaque
- # pixels and '0' represent transparent pixels of the texture bitmap.
- #
- # @param Width texture width in pixels
- # @param Height texture height in pixels
- # @param Texture texture data
- # @param RowData if @c True, @a Texture data are packed in the byte stream
- # @return unique texture identifier
- # @ingroup l1_geompyDC_auxiliary
- def AddTexture(self, Width, Height, Texture, RowData=False):
- """
- Add marker texture. Width and Height parameters
- specify width and height of the texture in pixels.
- If RowData is True, Texture parameter should represent texture data
- packed into the byte array. If RowData is False (default), Texture
- parameter should be unpacked string, in which '1' symbols represent opaque
- pixels and '0' represent transparent pixels of the texture bitmap.
-
- Parameters:
- Width texture width in pixels
- Height texture height in pixels
- Texture texture data
- RowData if True, Texture data are packed in the byte stream
-
- Returns:
- return unique texture identifier
- """
- if not RowData: Texture = PackData(Texture)
- ID = self.InsertOp.AddTexture(Width, Height, Texture)
- RaiseIfFailed("AddTexture", self.InsertOp)
- return ID
-
-import omniORB
-# Register the new proxy for GEOM_Gen
-omniORB.registerObjref(GEOM._objref_GEOM_Gen._NP_RepositoryId, geompyDC)
-
-def geomInstance( study, instance=None):
- print "geomInstance ", study, instance
- global engine
- global geom
- global doLcc
- engine = instance
- if engine is None:
- doLcc = True
- geom = geompyDC()
- assert isinstance(geom,geompyDC), "Geom engine class is %s but should be geompyDC.geompyDC. Import geompyDC before creating the instance."%geom.__class__
- geom.init_geom(study)
- return geom