# Curvature of a Face along given direction import salome salome.salome_init_without_session() import GEOM from salome.geom import geomBuilder geompy = geomBuilder.New() import math import numpy as np def test_acceptance(): """ Acceptance test [tuleap29472] """ Vector = [0,100,100] O = geompy.MakeVertex(0, 0, 0) OX = geompy.MakeVectorDXDYDZ(1, 0, 0) OY = geompy.MakeVectorDXDYDZ(0, 1, 0) OZ = geompy.MakeVectorDXDYDZ(0, 0, 1) Cylinder_1 = geompy.MakeCylinderRH(100, 300) Translation_1 = geompy.MakeTranslation(Cylinder_1, 0, 0, -150) Vertex_1 = geompy.MakeVertex(100, 0, 0) Vertex_2 = geompy.MakeVertex(100, -Vector[2], Vector[1]) Line_1 = geompy.MakeLineTwoPnt(Vertex_1, Vertex_2) Plane_1 = geompy.MakePlane(Vertex_1, Line_1, 2000) Rotation_1 = geompy.MakeRotation(Translation_1, OZ, 90*math.pi/180.0)# avoid to have degenerated edge across Vertex_1 [Face_1,Face_2,Face_3] = geompy.ExtractShapes(Rotation_1, geompy.ShapeType["FACE"], True) curvature_29472 = np.array( geompy.VectorCoordinates( geompy.CurvatureOnFace(Face_2, Vertex_1, geompy.MakeVectorDXDYDZ(*Vector))) ).reshape(1,3) expected_curvature = np.array( [-200.0,0.0,0.0] ).reshape(1,3) assert( np.isclose( 0.0, np.linalg.norm( curvature_29472 - expected_curvature ) ,rtol=0,atol=1e-5 ) ) Intersection_1 = geompy.MakeSection(Face_2, Plane_1, True) geompy.addToStudy( O, 'O' ) geompy.addToStudy( OX, 'OX' ) geompy.addToStudy( OY, 'OY' ) geompy.addToStudy( OZ, 'OZ' ) geompy.addToStudy( Vertex_1, 'Vertex_1' ) geompy.addToStudy( Cylinder_1, 'Cylinder_1' ) geompy.addToStudy( Translation_1, 'Translation_1' ) geompy.addToStudy( Vertex_2, 'Vertex_2' ) geompy.addToStudy( Line_1, 'Line_1' ) geompy.addToStudy( Plane_1, 'Plane_1' ) geompy.addToStudy( Rotation_1, 'Rotation_1' ) geompy.addToStudyInFather( Rotation_1, Face_1, 'Face_1' ) geompy.addToStudyInFather( Rotation_1, Face_2, 'Face_2' ) geompy.addToStudyInFather( Rotation_1, Face_3, 'Face_3' ) geompy.addToStudy( Intersection_1, 'Intersection_1' ) angle = math.asin(Vector[2]/math.sqrt(Vector[1]*Vector[1]+Vector[2]*Vector[2])) tmp = geompy.MakeTranslation(Intersection_1,*[-elt for elt in geompy.PointCoordinates(Vertex_1)]) tmp = geompy.MakeRotation(tmp,OX,-angle) Intersection_1_OXY = geompy.MakeTranslation(tmp,*geompy.PointCoordinates(Vertex_1)) geompy.addToStudy( Intersection_1_OXY, 'Intersection_1_OXY' ) eps = 0.01 offset = 0.75 p0 = np.array( geompy.PointCoordinates( geompy.MakeVertexOnCurve(Intersection_1_OXY,offset-eps) ) ).reshape(1,3) p1 = np.array( geompy.PointCoordinates( geompy.MakeVertexOnCurve(Intersection_1_OXY,offset) ) ).reshape(1,3) p2 = np.array( geompy.PointCoordinates( geompy.MakeVertexOnCurve(Intersection_1_OXY,offset+eps) ) ).reshape(1,3) assert( np.isclose(0.0,np.linalg.norm(p1- np.array(geompy.PointCoordinates(Vertex_1)).reshape(1,3) ),rtol=0,atol=1e-8) ) p01=(p0+p1)/2 p12=(p1+p2)/2 v0 = (p1-p0)/np.linalg.norm(p1-p0) v1 = (p2-p1)/np.linalg.norm(p2-p1) computedRadius = 1/np.linalg.norm((v1-v0)/np.linalg.norm(p12-p01)) # manual detection of radius : https://fr.wikipedia.org/wiki/Courbure_d%27un_arc circle = geompy.MakeCircle(O,OZ,computedRadius) circle = geompy.MakeTranslation(circle,100-computedRadius,0,0) geompy.addToStudy(circle, "expectedCircle") print("Radius expected is {}".format(computedRadius)) print("Radius obtain by CurvatureOnFace is {}".format(np.linalg.norm(curvature_29472))) O = geompy.MakeVertex(0, 0, 0, 'O') OX = geompy.MakeVectorDXDYDZ(1, 0, 0, 'OX') OY = geompy.MakeVectorDXDYDZ(0, 1, 0, 'OY') OZ = geompy.MakeVectorDXDYDZ(0, 0, 1, 'OZ') pXYZ = geompy.MakeVertex(105, 105, 105, 'pXYZ') pY = geompy.MakeVertex(0, 105, 0, 'pY') pZ = geompy.MakeVertex(0, 0, 105, 'pZ') vZ_XY = geompy.MakeVectorDXDYDZ(-1, -1, 1, 'vZ-XY') vZ_XY2 = geompy.MakeVectorDXDYDZ(-1, -1, 10, 'vZ-XY') vZ_XY3 = geompy.MakeVectorDXDYDZ(-1, -1, 100, 'vZ-XY') R = 100.0 # I. Curvature of a Sphere Sphere_1 = geompy.MakeSphereR(R, 'Sphere_1') [Sph] = geompy.ExtractShapes(Sphere_1, geompy.ShapeType["FACE"], True, "Sph") curvature_1 = geompy.CurvatureOnFace(Sph, pXYZ, OX, 'curvature_sph_pXYZ_OX') curvature_2 = geompy.CurvatureOnFace(Sph, pXYZ, vZ_XY, 'curvature_sph_pXYZ_vt') curvature_3 = geompy.CurvatureOnFace(Sph, pY, OX, 'curvature_sph_pY_OX') # All sphere curvature radiuces = R assert(abs(geompy.BasicProperties(curvature_1)[0] - R) < 1e-07) assert(abs(geompy.BasicProperties(curvature_2)[0] - R) < 1e-07) assert(abs(geompy.BasicProperties(curvature_3)[0] - R) < 1e-07) # Pole isExcept = False try: geompy.CurvatureOnFace(Sph, pZ, OX) except: isExcept = True assert(isExcept) # Normal direction isExcept = False try: geompy.CurvatureOnFace(Sph, pY, OY) except: isExcept = True assert(isExcept) # II. Curvature of a Cylinder Cylinder_1 = geompy.MakeCylinderRH(R, 300, 'Cylinder_1') [Face_1,Face_2,Face_3] = geompy.ExtractShapes(Cylinder_1, geompy.ShapeType["FACE"], True, "Face") # Curvature radius of a cylinder along any direction, orthogonal to its Z axis, equal to R curvature_4 = geompy.CurvatureOnFace(Face_2, pY, OX, 'curvature_cyl_pY_OX') assert(abs(geompy.BasicProperties(curvature_4)[0] - R) < 1e-07) # Curvature radius of a cylinder along its Z direction is infinite curvature_zero = geompy.CurvatureOnFace(Face_2, pY, OZ) assert(geompy.MeasuOp.GetErrorCode() == "ZERO_CURVATURE") assert(not curvature_zero) # Curvature radius of a cylinder along some direction, different from two above curvature_5 = geompy.CurvatureOnFace(Face_2, pY, vZ_XY, 'curvature_cyl_pY_vZ_XY') curvature_6 = geompy.CurvatureOnFace(Face_2, pY, vZ_XY2, 'curvature_cyl_pY_vZ_XY2') curvature_7 = geompy.CurvatureOnFace(Face_2, pY, vZ_XY3, 'curvature_cyl_pY_vZ_XY3') # R < r5 < r6 < r7 # r5 = 100.01, r6 = 101.0, r7 = 200 r5 = geompy.BasicProperties(curvature_5)[0] r6 = geompy.BasicProperties(curvature_6)[0] r7 = geompy.BasicProperties(curvature_7)[0] assert(R + 1e-07 < r5) assert(r5 + 1e-07 < r6) assert(r6 + 1e-07 < r7) # Projection aborted. Point is out of the face boundaries. isExcept = False try: pXY_Z = geompy.MakeVertex(105, 105, -105, 'pXY_Z') geompy.CurvatureOnFace(Face_2, pXY_Z, OX, 'curvature_cyl_pXY_Z') except: isExcept = True assert(isExcept) # Projection aborted (point on axis). Equal distances to many points. isExcept = False try: geompy.CurvatureOnFace(Face_2, O, vZ_XY, 'curvature_cyl_O') except: isExcept = True assert(isExcept) # Curvature radius of a planar face is infinite curvature_zero_2 = geompy.CurvatureOnFace(Face_1, pZ, OX) assert(geompy.MeasuOp.GetErrorCode() == "ZERO_CURVATURE") assert(not curvature_zero_2) # III. Curvature of a "Horse saddle" [Edge_1,Edge_2,Edge_3] = geompy.ExtractShapes(Sphere_1, geompy.ShapeType["EDGE"], True) geompy.addToStudyInFather( Sphere_1, Edge_1, 'Edge_1' ) geompy.addToStudyInFather( Sphere_1, Edge_2, 'Edge_2' ) geompy.addToStudyInFather( Sphere_1, Edge_3, 'Edge_3' ) Rotation_1 = geompy.MakeRotation(Edge_3, OX, 90*math.pi/180.0, 'Rotation_1') Rotation_2 = geompy.MakeRotation(Rotation_1, OY, 180*math.pi/180.0, 'Rotation_2') Translation_1 = geompy.MakeTranslation(Rotation_2, 200, 0, 0, 'Translation_1') Translation_2 = geompy.MakeTranslation(Edge_3, 100, 100, 0, 'Translation_2') Translation_3 = geompy.MakeTranslation(Translation_2, 0, -200, 0, 'Translation_3') Filling_1 = geompy.MakeFilling([Translation_2, Edge_3, Translation_3]) geompy.addToStudy(Filling_1, 'Filling_1') Vertex_2 = geompy.MakeVertex(100, 0, 0, 'Vertex_2') curvature_Y = geompy.CurvatureOnFace(Filling_1, Vertex_2, OY, 'curvature_Y') curvature_Z = geompy.CurvatureOnFace(Filling_1, Vertex_2, OZ, 'curvature_Z') cury = np.array( geompy.VectorCoordinates(curvature_Y) ).reshape(1,3) curz = np.array( geompy.VectorCoordinates(curvature_Z) ).reshape(1,3) cury_expected = np.array( [50,0,0] ).reshape(1,3) curz_expected = np.array( [-100,0,0] ).reshape(1,3) assert( np.isclose( 0.0, np.linalg.norm( cury - cury_expected ) ,rtol=0,atol=1e-5 ) ) assert( np.isclose( 0.0, np.linalg.norm( curz - curz_expected ) ,rtol=0,atol=1e-5 ) ) # Normal direction norm_1 = geompy.GetNormal(Filling_1, Vertex_2, "Normal_1") isExcept = False try: geompy.CurvatureOnFace(Filling_1, Vertex_2, norm_1) except: isExcept = True assert(isExcept) # acceptance case test_acceptance()