// GEOM ARCHIMEDE : algorithm implementation // // Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org // // // // File : Archimede_VolumeSection.cxx // Author : Nicolas REJNERI // Module : GEOM // $Header$ using namespace std; #include "Archimede_VolumeSection.hxx" #include "utilities.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //------------------------------------------------------------------------------------------------------- //----------------------------------- Methodes publiques ------------------------------------------------- //------------------------------------------------------------------------------------------------------- // Maillage de la shape VolumeSection::VolumeSection(TopoDS_Shape S , Standard_Real Precision):myShape(S),Tolerance(Precision) { // Maillage de la shape myShape BRepMesh_IncrementalMesh(myShape,Tolerance); } TopoDS_Shape VolumeSection::GetShape() { return myShape; } void VolumeSection::SetPlane(Handle (Geom_Plane) P) { myPlane = P; } void VolumeSection::CenterOfGravity() { Standard_Integer i; Standard_Integer nbNodes; TopExp_Explorer ex; TopLoc_Location L; // Boucle sur les faces de la shape Xmin = 1000000000; Ymin = 1000000000; Zmin = 1000000000; Xmax = -1000000000; Ymax = -1000000000; Zmax = -1000000000; for (ex.Init(myShape, TopAbs_FACE); ex.More(); ex.Next()) { TopoDS_Face F = TopoDS::Face(ex.Current()); Handle(Poly_Triangulation) Tr = BRep_Tool::Triangulation(F, L); if(Tr.IsNull()) MESSAGE("Error, null layer" ) nbNodes = Tr->NbNodes(); const TColgp_Array1OfPnt& Nodes = Tr->Nodes(); // Calcul des dimensions de la boite englobante du solide for(i=1;i<=nbNodes;i++) { InitPoint = Nodes(i).Transformed(L.Transformation()); if(InitPoint.X() < Xmin) Xmin = InitPoint.X(); if(InitPoint.X() > Xmax) Xmax = InitPoint.X(); if(InitPoint.Y() < Ymin) Ymin = InitPoint.Y(); if(InitPoint.Y() > Ymax) Ymax = InitPoint.Y(); if(InitPoint.Z() < Zmin) Zmin = InitPoint.Z(); if(InitPoint.Z() > Zmax) Zmax = InitPoint.Z(); } } // Creation du point d'initialisation, c'est à dire le centre de gravité //géométrique de la boite englobante InitPoint.SetX(0.5 * (Xmin + Xmax)); InitPoint.SetY(0.5 * (Ymin + Ymax)); InitPoint.SetZ(0); } Standard_Real VolumeSection::CalculateVolume(Standard_Real Elevation) { Standard_Integer i,noeud[3],flag[3]; Standard_Integer nbNodes; TopExp_Explorer ex; TopLoc_Location L; Standard_Real z[3]; Standard_Real Volume=0; Standard_Real Determinant=0; gp_Pnt P[3]; // Projection du point d'initialisation sur le plan de section InitPoint.SetZ(Elevation); for (ex.Init(myShape, TopAbs_FACE); ex.More(); ex.Next()) { TopoDS_Face F = TopoDS::Face(ex.Current()); Handle(Poly_Triangulation) Tr = BRep_Tool::Triangulation(F, L); if(Tr.IsNull()) MESSAGE("Error, null layer" ) const Poly_Array1OfTriangle& triangles = Tr->Triangles(); Standard_Integer nbTriangles = Tr->NbTriangles(); nbNodes = Tr->NbNodes(); const TColgp_Array1OfPnt& Nodes = Tr->Nodes(); // Calcul des volumes de chaque triangle, de chaque face //en tenant compte des triangles coupés par le plan de section for (i=1;i<=nbTriangles;i++) { Determinant=0; //Gardons la meme orientation des noeuds if (F.Orientation() == TopAbs_REVERSED) triangles(i).Get(noeud[0], noeud[2], noeud[1]); else triangles(i).Get(noeud[0], noeud[1], noeud[2]); P[0] = Nodes(noeud[0]).Transformed(L.Transformation()); z[0] = P[0].Z(); P[1] = Nodes(noeud[1]).Transformed(L.Transformation()); z[1] = P[1].Z(); P[2] = Nodes(noeud[2]).Transformed(L.Transformation()); z[2] = P[2].Z(); // Determination des cas aux limites pour les triangles Standard_Integer i,compteur=0; for (i=0;i<=2;i++) { flag[i]=Standard_False; if(z[i]>=Elevation) { flag[i]=Standard_True; compteur++; } } switch(compteur) { case 0: Determinant = ElementaryVolume(P[0],P[1],P[2]); break; case 1: for (i=0;i<=2;i++) { if (flag[i]==Standard_True) { gp_Pnt Result1 = Intersection(P[i],P[(i+1)%3],Elevation); gp_Pnt Result2 = Intersection(P[i],P[(i+2)%3],Elevation); Determinant = ElementaryVolume(Result1,P[(i+1)%3],P[(i+2)%3]) + ElementaryVolume(Result1,P[(i+2)%3],Result2); } } break; case 2: for (i=0;i<=2;i++) { if (flag[i]==Standard_False) { gp_Pnt Result1 = Intersection(P[i],P[(i+1)%3],Elevation); gp_Pnt Result2 = Intersection(P[i],P[(i+2)%3],Elevation); Determinant = ElementaryVolume(P[i],Result1,Result2); } } break; case 3: break; } Volume += Determinant; } } return Volume; } Standard_Real VolumeSection::Archimede(Standard_Real Constante , Standard_Real Epsilon) { // Resolution de l equation V(h) = Constante a l aide de l algorithme de dichotomie avec ponderation type // Lagrange Standard_Real c,Binf,Bsup; Standard_Real tempBsupVolume=0; Standard_Real tempBinfVolume=0; Standard_Real tempCVolume = 0; Binf = Zmin; Bsup = Zmax; if(Binf>Bsup) { MESSAGE("error, Bound + < Bound - in dichotomy") return -1; } tempBsupVolume = CalculateVolume(Bsup); tempBinfVolume = CalculateVolume(Binf); if (Constante>tempBsupVolume || ConstanteEpsilon) { if((tempBinfVolume-Constante)*(tempCVolume-Constante)>0 && Abs(tempCVolume-Constante)>Epsilon) { Binf = c; tempBinfVolume=tempCVolume; c = ((Binf*(tempBsupVolume-Constante))-(Bsup*(tempBinfVolume-Constante))) /((tempBsupVolume-Constante)-(tempBinfVolume-Constante)); tempCVolume=CalculateVolume(c); } else if((tempBinfVolume-Constante)*(tempCVolume-Constante)<0 && Abs(tempCVolume-Constante)>Epsilon) { Bsup = c; tempBsupVolume =tempCVolume; c = ((Binf*(tempBsupVolume-Constante))-(Bsup*(tempBinfVolume-Constante))) /((tempBsupVolume-Constante)-(tempBinfVolume-Constante)); tempCVolume=CalculateVolume(c); } else { goto endMethod; } } goto endMethod; } endMethod: MESSAGE("La ligne de flottaison correspondant a la constante :"<