// Copyright (C) 2007-2010 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include //======================================================================= //function : GetID //purpose : //======================================================================= const Standard_GUID& GEOMImpl_PrismDriver::GetID() { static Standard_GUID aPrismDriver("FF1BBB17-5D14-4df2-980B-3A668264EA16"); return aPrismDriver; } //======================================================================= //function : GEOMImpl_PrismDriver //purpose : //======================================================================= GEOMImpl_PrismDriver::GEOMImpl_PrismDriver() { } //======================================================================= //function : Execute //purpose : //======================================================================= Standard_Integer GEOMImpl_PrismDriver::Execute(TFunction_Logbook& log) const { if (Label().IsNull()) return 0; Handle(GEOM_Function) aFunction = GEOM_Function::GetFunction(Label()); GEOMImpl_IPrism aCI (aFunction); Standard_Integer aType = aFunction->GetType(); TopoDS_Shape aShape; if (aType == PRISM_BASE_VEC_H || aType == PRISM_BASE_VEC_H_2WAYS) { Handle(GEOM_Function) aRefBase = aCI.GetBase(); Handle(GEOM_Function) aRefVector = aCI.GetVector(); TopoDS_Shape aShapeBase = aRefBase->GetValue(); TopoDS_Shape aShapeVec = aRefVector->GetValue(); if (aShapeVec.ShapeType() == TopAbs_EDGE) { TopoDS_Edge anE = TopoDS::Edge(aShapeVec); TopoDS_Vertex V1, V2; TopExp::Vertices(anE, V1, V2, Standard_True); if (!V1.IsNull() && !V2.IsNull()) { gp_Vec aV (BRep_Tool::Pnt(V1), BRep_Tool::Pnt(V2)); if (Abs(aCI.GetH()) < Precision::Confusion()) { Standard_ConstructionError::Raise("Absolute value of prism height is too small"); } if (aV.Magnitude() > Precision::Confusion()) { aV.Normalize(); if (aType != PRISM_BASE_DXDYDZ_2WAYS && aCI.GetScale() > Precision::Confusion()) { aShape = MakeScaledPrism(aShapeBase, aV * aCI.GetH(), aCI.GetScale()); } else { if (aType == PRISM_BASE_VEC_H_2WAYS) { gp_Trsf aTrsf; aTrsf.SetTranslation((-aV) * aCI.GetH()); BRepBuilderAPI_Transform aTransformation(aShapeBase, aTrsf, Standard_False); aShapeBase = aTransformation.Shape(); aCI.SetH(aCI.GetH()*2); } aShape = BRepPrimAPI_MakePrism(aShapeBase, aV * aCI.GetH(), Standard_False).Shape(); } } } } } else if (aType == PRISM_BASE_TWO_PNT || aType == PRISM_BASE_TWO_PNT_2WAYS) { Handle(GEOM_Function) aRefBase = aCI.GetBase(); Handle(GEOM_Function) aRefPnt1 = aCI.GetFirstPoint(); Handle(GEOM_Function) aRefPnt2 = aCI.GetLastPoint(); TopoDS_Shape aShapeBase = aRefBase->GetValue(); TopoDS_Shape aShapePnt1 = aRefPnt1->GetValue(); TopoDS_Shape aShapePnt2 = aRefPnt2->GetValue(); if (aShapePnt1.ShapeType() == TopAbs_VERTEX && aShapePnt2.ShapeType() == TopAbs_VERTEX) { TopoDS_Vertex V1 = TopoDS::Vertex(aShapePnt1); TopoDS_Vertex V2 = TopoDS::Vertex(aShapePnt2); if (!V1.IsNull() && !V2.IsNull()) { gp_Vec aV (BRep_Tool::Pnt(V1), BRep_Tool::Pnt(V2)); if (aV.Magnitude() > gp::Resolution()) { if (aType != PRISM_BASE_DXDYDZ_2WAYS && aCI.GetScale() > Precision::Confusion()) { aShape = MakeScaledPrism(aShapeBase, aV, aCI.GetScale()); } else { if (aType == PRISM_BASE_TWO_PNT_2WAYS) { gp_Trsf aTrsf; aTrsf.SetTranslation(-aV); BRepBuilderAPI_Transform aTransformation(aShapeBase, aTrsf, Standard_False); aShapeBase = aTransformation.Shape(); aV = aV * 2; } aShape = BRepPrimAPI_MakePrism(aShapeBase, aV, Standard_False).Shape(); } } } } } else if (aType == PRISM_BASE_DXDYDZ || aType == PRISM_BASE_DXDYDZ_2WAYS) { Handle(GEOM_Function) aRefBase = aCI.GetBase(); TopoDS_Shape aShapeBase = aRefBase->GetValue(); gp_Vec aV (aCI.GetDX(), aCI.GetDY(), aCI.GetDZ()); if (aV.Magnitude() > gp::Resolution()) { if (aType != PRISM_BASE_DXDYDZ_2WAYS && aCI.GetScale() > Precision::Confusion()) { aShape = MakeScaledPrism(aShapeBase, aV, aCI.GetScale()); } else { if (aType == PRISM_BASE_DXDYDZ_2WAYS) { gp_Trsf aTrsf; aTrsf.SetTranslation(-aV); BRepBuilderAPI_Transform aTransformation(aShapeBase, aTrsf, Standard_False); aShapeBase = aTransformation.Shape(); aV = aV * 2; } aShape = BRepPrimAPI_MakePrism(aShapeBase, aV, Standard_False).Shape(); } } } if (aShape.IsNull()) return 0; TopoDS_Shape aRes = GEOMImpl_IShapesOperations::CompsolidToCompound(aShape); aFunction->SetValue(aRes); log.SetTouched(Label()); return 1; } //======================================================================= //function : MakeScaledPrism //purpose : //======================================================================= TopoDS_Shape GEOMImpl_PrismDriver::MakeScaledPrism (const TopoDS_Shape& theShapeBase, const gp_Vec& theVector, const Standard_Real theScaleFactor) { TopoDS_Shape aShape; // 1. aCDG = geompy.MakeCDG(theBase) gp_Ax3 aPos = GEOMImpl_IMeasureOperations::GetPosition(theShapeBase); gp_Pnt aCDG = aPos.Location(); TopoDS_Shape aShapeCDG_1 = BRepBuilderAPI_MakeVertex(aCDG).Shape(); // 2. Scale = geompy.MakeScaleTransform(theBase, aCDG, theScaleFactor) // Bug 6839: Check for standalone (not included in faces) degenerated edges TopTools_IndexedDataMapOfShapeListOfShape aEFMap; TopExp::MapShapesAndAncestors(theShapeBase, TopAbs_EDGE, TopAbs_FACE, aEFMap); Standard_Integer i, nbE = aEFMap.Extent(); for (i = 1; i <= nbE; i++) { TopoDS_Shape anEdgeSh = aEFMap.FindKey(i); if (BRep_Tool::Degenerated(TopoDS::Edge(anEdgeSh))) { const TopTools_ListOfShape& aFaces = aEFMap.FindFromIndex(i); if (aFaces.IsEmpty()) Standard_ConstructionError::Raise ("Scaling aborted : cannot scale standalone degenerated edge"); } } // Perform Scaling gp_Trsf aTrsf; aTrsf.SetScale(aCDG, theScaleFactor); BRepBuilderAPI_Transform aBRepTrsf (theShapeBase, aTrsf, Standard_False); TopoDS_Shape aScale = aBRepTrsf.Shape(); // 3. aBase2 = geompy.MakeTranslationVectorDistance(Scale, theVec, theH) gp_Trsf aTrsf3; aTrsf3.SetTranslation(theVector); TopLoc_Location aLocOrig = aScale.Location(); gp_Trsf aTrsfOrig = aLocOrig.Transformation(); TopLoc_Location aLocRes (aTrsf3 * aTrsfOrig); TopoDS_Shape aBase2 = aScale.Located(aLocRes); // 4. aCDG_2 = geompy.MakeTranslationVectorDistance(aCDG, theVec, theH) gp_Pnt aCDG_2 = aCDG.Translated(theVector); TopoDS_Shape aShapeCDG_2 = BRepBuilderAPI_MakeVertex(aCDG_2).Shape(); // 5. Vector = geompy.MakeVector(aCDG, aCDG_2) TopoDS_Shape aShapeVec = BRepBuilderAPI_MakeEdge(aCDG, aCDG_2).Shape(); TopoDS_Edge anEdge = TopoDS::Edge(aShapeVec); TopoDS_Wire aWirePath = BRepBuilderAPI_MakeWire(anEdge); // 6. aPrism = geompy.MakePipeWithDifferentSections([theBase, aBase2], [aCDG, aCDG_2], Vector, False, False) Handle(TopTools_HSequenceOfShape) aBases = new TopTools_HSequenceOfShape; aBases->Append(theShapeBase); aBases->Append(aBase2); Handle(TopTools_HSequenceOfShape) aLocs = new TopTools_HSequenceOfShape; aLocs->Append(aShapeCDG_1); aLocs->Append(aShapeCDG_2); aShape = GEOMImpl_PipeDriver::CreatePipeWithDifferentSections(aWirePath, aBases, aLocs, false, false); return aShape; } //======================================================================= //function : GEOMImpl_PrismDriver_Type_ //purpose : //======================================================================= Standard_EXPORT Handle_Standard_Type& GEOMImpl_PrismDriver_Type_() { static Handle_Standard_Type aType1 = STANDARD_TYPE(TFunction_Driver); if (aType1.IsNull()) aType1 = STANDARD_TYPE(TFunction_Driver); static Handle_Standard_Type aType2 = STANDARD_TYPE(MMgt_TShared); if (aType2.IsNull()) aType2 = STANDARD_TYPE(MMgt_TShared); static Handle_Standard_Type aType3 = STANDARD_TYPE(Standard_Transient); if (aType3.IsNull()) aType3 = STANDARD_TYPE(Standard_Transient); static Handle_Standard_Transient _Ancestors[]= {aType1,aType2,aType3,NULL}; static Handle_Standard_Type _aType = new Standard_Type("GEOMImpl_PrismDriver", sizeof(GEOMImpl_PrismDriver), 1, (Standard_Address)_Ancestors, (Standard_Address)NULL); return _aType; } //======================================================================= //function : DownCast //purpose : //======================================================================= const Handle(GEOMImpl_PrismDriver) Handle(GEOMImpl_PrismDriver)::DownCast(const Handle(Standard_Transient)& AnObject) { Handle(GEOMImpl_PrismDriver) _anOtherObject; if (!AnObject.IsNull()) { if (AnObject->IsKind(STANDARD_TYPE(GEOMImpl_PrismDriver))) { _anOtherObject = Handle(GEOMImpl_PrismDriver)((Handle(GEOMImpl_PrismDriver)&)AnObject); } } return _anOtherObject; }