// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE // // Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN, // CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS // // This library is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 2.1 of the License. // // This library is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU // Lesser General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License along with this library; if not, write to the Free Software // Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA // // See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com // #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "utilities.h" //======================================================================= //function : GetID //purpose : //======================================================================= const Standard_GUID& GEOMImpl_PrismDriver::GetID() { static Standard_GUID aPrismDriver("FF1BBB17-5D14-4df2-980B-3A668264EA16"); return aPrismDriver; } //======================================================================= //function : GEOMImpl_PrismDriver //purpose : //======================================================================= GEOMImpl_PrismDriver::GEOMImpl_PrismDriver() { } //======================================================================= //function : Execute //purpose : //======================================================================= Standard_Integer GEOMImpl_PrismDriver::Execute(TFunction_Logbook& log) const { if (Label().IsNull()) return 0; Handle(GEOM_Function) aFunction = GEOM_Function::GetFunction(Label()); GEOMImpl_IPrism aCI (aFunction); Standard_Integer aType = aFunction->GetType(); TopoDS_Shape aShape; if (aType == PRISM_BASE_VEC_H || aType == PRISM_BASE_VEC_H_2WAYS) { Handle(GEOM_Function) aRefBase = aCI.GetBase(); Handle(GEOM_Function) aRefVector = aCI.GetVector(); TopoDS_Shape aShapeBase = aRefBase->GetValue(); TopoDS_Shape aShapeVec = aRefVector->GetValue(); if (aShapeVec.ShapeType() == TopAbs_EDGE) { TopoDS_Edge anE = TopoDS::Edge(aShapeVec); TopoDS_Vertex V1, V2; TopExp::Vertices(anE, V1, V2, Standard_True); if (!V1.IsNull() && !V2.IsNull()) { gp_Vec aV (BRep_Tool::Pnt(V1), BRep_Tool::Pnt(V2)); if (Abs(aCI.GetH()) < Precision::Confusion()) { Standard_ConstructionError::Raise("Absolute value of prism height is too small"); } if (aV.Magnitude() > Precision::Confusion()) { aV.Normalize(); if (aType != PRISM_BASE_DXDYDZ_2WAYS && aCI.GetScale() > Precision::Confusion()) { aShape = MakeScaledPrism(aShapeBase, aV * aCI.GetH(), aCI.GetScale()); } else { if (aType == PRISM_BASE_VEC_H_2WAYS) { gp_Trsf aTrsf; aTrsf.SetTranslation((-aV) * aCI.GetH()); BRepBuilderAPI_Transform aTransformation(aShapeBase, aTrsf, Standard_False); aShapeBase = aTransformation.Shape(); aCI.SetH(aCI.GetH()*2); } aShape = BRepPrimAPI_MakePrism(aShapeBase, aV * aCI.GetH(), Standard_False).Shape(); } } } } } else if (aType == PRISM_BASE_TWO_PNT || aType == PRISM_BASE_TWO_PNT_2WAYS) { Handle(GEOM_Function) aRefBase = aCI.GetBase(); Handle(GEOM_Function) aRefPnt1 = aCI.GetFirstPoint(); Handle(GEOM_Function) aRefPnt2 = aCI.GetLastPoint(); TopoDS_Shape aShapeBase = aRefBase->GetValue(); TopoDS_Shape aShapePnt1 = aRefPnt1->GetValue(); TopoDS_Shape aShapePnt2 = aRefPnt2->GetValue(); if (aShapePnt1.ShapeType() == TopAbs_VERTEX && aShapePnt2.ShapeType() == TopAbs_VERTEX) { TopoDS_Vertex V1 = TopoDS::Vertex(aShapePnt1); TopoDS_Vertex V2 = TopoDS::Vertex(aShapePnt2); if (!V1.IsNull() && !V2.IsNull()) { gp_Vec aV (BRep_Tool::Pnt(V1), BRep_Tool::Pnt(V2)); if (aV.Magnitude() > gp::Resolution()) { if (aType != PRISM_BASE_DXDYDZ_2WAYS && aCI.GetScale() > Precision::Confusion()) { aShape = MakeScaledPrism(aShapeBase, aV, aCI.GetScale()); } else { if (aType == PRISM_BASE_TWO_PNT_2WAYS) { gp_Trsf aTrsf; aTrsf.SetTranslation(-aV); BRepBuilderAPI_Transform aTransformation(aShapeBase, aTrsf, Standard_False); aShapeBase = aTransformation.Shape(); aV = aV * 2; } aShape = BRepPrimAPI_MakePrism(aShapeBase, aV, Standard_False).Shape(); } } } } } else if (aType == PRISM_BASE_DXDYDZ || aType == PRISM_BASE_DXDYDZ_2WAYS) { Handle(GEOM_Function) aRefBase = aCI.GetBase(); TopoDS_Shape aShapeBase = aRefBase->GetValue(); gp_Vec aV (aCI.GetDX(), aCI.GetDY(), aCI.GetDZ()); if (aV.Magnitude() > gp::Resolution()) { if (aType != PRISM_BASE_DXDYDZ_2WAYS && aCI.GetScale() > Precision::Confusion()) { aShape = MakeScaledPrism(aShapeBase, aV, aCI.GetScale()); } else { if (aType == PRISM_BASE_DXDYDZ_2WAYS) { gp_Trsf aTrsf; aTrsf.SetTranslation(-aV); BRepBuilderAPI_Transform aTransformation(aShapeBase, aTrsf, Standard_False); aShapeBase = aTransformation.Shape(); aV = aV * 2; } aShape = BRepPrimAPI_MakePrism(aShapeBase, aV, Standard_False).Shape(); } } } else if (aType == DRAFT_PRISM_FEATURE) { Handle(GEOM_Function) aRefInit = aCI.GetInitShape(); Handle(GEOM_Function) aRefBase = aCI.GetBase(); TopoDS_Shape anInitShape = aRefInit->GetValue(); // Initial shape TopoDS_Shape aSketch = aRefBase->GetValue(); Standard_Real aHeight = aCI.GetH(); // Height of the extrusion Standard_Real anAngle = aCI.GetDraftAngle(); // Draft angle Standard_Boolean isProtrusion = (aCI.GetFuseFlag()==1); // Flag to know wether the feature is a protrusion (fuse) or a depression (cut) // history of the Base wire (RefBase) Handle(GEOM_Object) aSuppObj; TDF_LabelSequence aLabelSeq; aRefBase->GetDependency(aLabelSeq); // If the base wire has only one dependency we use it // to determine the right normal of the face which // must be oriented towards outside of the solid (like the support face) if (aLabelSeq.Length()==1) { TDF_Label anArgumentRefLabel = aLabelSeq.Value(1); aSuppObj = GEOM_Object::GetReferencedObject(anArgumentRefLabel); } TopoDS_Shape aSupport; if(!aSuppObj.IsNull()) // If the wire has a support aSupport = aSuppObj->GetValue(); aShape = MakeDraftPrism(anInitShape, aSketch, aHeight, anAngle, isProtrusion, aSupport); } if (aShape.IsNull()) return 0; if (aType == DRAFT_PRISM_FEATURE) { TopoDS_Shape aRes = aShape; // If the result is a compound with only one solid, // return the solid if (aShape.ShapeType() == TopAbs_COMPOUND) { TopExp_Explorer anExp(aShape, TopAbs_SOLID); int solidNb = 0; TopoDS_Solid aSolid; for(;anExp.More();anExp.Next()) { aSolid = TopoDS::Solid(anExp.Current()); solidNb++; if (solidNb > 1) break; } if (solidNb == 1) aRes = aSolid; } aFunction->SetValue(aRes); } else { TopoDS_Shape aRes = GEOMUtils::CompsolidToCompound(aShape); aFunction->SetValue(aRes); } log.SetTouched(Label()); return 1; } //======================================================================= //function : MakeScaledPrism //purpose : //======================================================================= TopoDS_Shape GEOMImpl_PrismDriver::MakeScaledPrism (const TopoDS_Shape& theShapeBase, const gp_Vec& theVector, const Standard_Real theScaleFactor, const gp_Pnt& theCDG, bool isCDG) { TopoDS_Shape aShape; BRep_Builder B; // 1. aCDG = geompy.MakeCDG(theBase) gp_Pnt aCDG = theCDG; if (!isCDG) { gp_Ax3 aPos = GEOMUtils::GetPosition(theShapeBase); aCDG = aPos.Location(); } TopoDS_Shape aShapeCDG_1 = BRepBuilderAPI_MakeVertex(aCDG).Shape(); // Process case of several given shapes if (theShapeBase.ShapeType() == TopAbs_COMPOUND || theShapeBase.ShapeType() == TopAbs_SHELL) { int nbSub = 0; TopoDS_Shape aShapeI; TopoDS_Compound aCompound; B.MakeCompound(aCompound); TopoDS_Iterator It (theShapeBase, Standard_True, Standard_True); for (; It.More(); It.Next()) { nbSub++; aShapeI = MakeScaledPrism(It.Value(), theVector, theScaleFactor, aCDG, true); B.Add(aCompound, aShapeI); } if (nbSub == 1) aShape = aShapeI; else if (nbSub > 1) aShape = GEOMImpl_GlueDriver::GlueFaces(aCompound, Precision::Confusion(), Standard_True); return aShape; } // 2. Scale = geompy.MakeScaleTransform(theBase, aCDG, theScaleFactor) // Bug 6839: Check for standalone (not included in faces) degenerated edges TopTools_IndexedDataMapOfShapeListOfShape aEFMap; TopExp::MapShapesAndAncestors(theShapeBase, TopAbs_EDGE, TopAbs_FACE, aEFMap); Standard_Integer i, nbE = aEFMap.Extent(); for (i = 1; i <= nbE; i++) { TopoDS_Shape anEdgeSh = aEFMap.FindKey(i); if (BRep_Tool::Degenerated(TopoDS::Edge(anEdgeSh))) { const TopTools_ListOfShape& aFaces = aEFMap.FindFromIndex(i); if (aFaces.IsEmpty()) Standard_ConstructionError::Raise ("Scaling aborted : cannot scale standalone degenerated edge"); } } // Perform Scaling gp_Trsf aTrsf; aTrsf.SetScale(aCDG, theScaleFactor); BRepBuilderAPI_Transform aBRepTrsf (theShapeBase, aTrsf, Standard_False); TopoDS_Shape aScale = aBRepTrsf.Shape(); // 3. aBase2 = geompy.MakeTranslationVectorDistance(Scale, theVec, theH) gp_Trsf aTrsf3; aTrsf3.SetTranslation(theVector); TopLoc_Location aLocOrig = aScale.Location(); gp_Trsf aTrsfOrig = aLocOrig.Transformation(); TopLoc_Location aLocRes (aTrsf3 * aTrsfOrig); TopoDS_Shape aBase2 = aScale.Located(aLocRes); // 4. aCDG_2 = geompy.MakeTranslationVectorDistance(aCDG, theVec, theH) gp_Pnt aCDG_2 = aCDG.Translated(theVector); TopoDS_Shape aShapeCDG_2 = BRepBuilderAPI_MakeVertex(aCDG_2).Shape(); // 5. Vector = geompy.MakeVector(aCDG, aCDG_2) TopoDS_Shape aShapeVec = BRepBuilderAPI_MakeEdge(aCDG, aCDG_2).Shape(); TopoDS_Edge anEdge = TopoDS::Edge(aShapeVec); TopoDS_Wire aWirePath = BRepBuilderAPI_MakeWire(anEdge); // 6. aPrism = geompy.MakePipeWithDifferentSections([theBase, aBase2], [aCDG, aCDG_2], Vector, False, False) Handle(TopTools_HSequenceOfShape) aBases = new TopTools_HSequenceOfShape; aBases->Append(theShapeBase); aBases->Append(aBase2); Handle(TopTools_HSequenceOfShape) aLocs = new TopTools_HSequenceOfShape; aLocs->Append(aShapeCDG_1); aLocs->Append(aShapeCDG_2); aShape = GEOMImpl_PipeDriver::CreatePipeWithDifferentSections(aWirePath, aBases, aLocs, false, false); // 7. Make a solid, if possible if (theShapeBase.ShapeType() == TopAbs_FACE) { BRepBuilderAPI_Sewing aSewing (Precision::Confusion()*10.0); TopExp_Explorer expF (aShape, TopAbs_FACE); Standard_Integer ifa = 0; for (; expF.More(); expF.Next()) { aSewing.Add(expF.Current()); ifa++; } if (ifa > 0) { aSewing.Perform(); TopoDS_Shape aShell; TopoDS_Shape sh = aSewing.SewedShape(); if (sh.ShapeType() == TopAbs_FACE && ifa == 1) { // case for creation of shell from one face TopoDS_Shell ss; B.MakeShell(ss); B.Add(ss,sh); aShell = ss; } else { TopExp_Explorer exp (sh, TopAbs_SHELL); Standard_Integer ish = 0; for (; exp.More(); exp.Next()) { aShell = exp.Current(); ish++; } if (ish != 1) aShell = sh; } BRepCheck_Shell chkShell (TopoDS::Shell(aShell)); if (chkShell.Closed() == BRepCheck_NoError) { TopoDS_Solid Sol; B.MakeSolid(Sol); B.Add(Sol, aShell); BRepClass3d_SolidClassifier SC (Sol); SC.PerformInfinitePoint(Precision::Confusion()); if (SC.State() == TopAbs_IN) { B.MakeSolid(Sol); B.Add(Sol, aShell.Reversed()); } aShape = Sol; } } } return aShape; } //======================================================================= //function : MakeDraftPrism //purpose : //======================================================================= TopoDS_Shape GEOMImpl_PrismDriver::MakeDraftPrism ( const TopoDS_Shape& theInitShape, const TopoDS_Shape& theBaseShape, const Standard_Real theHeight, const Standard_Real theAngle, bool isProtrusion, const TopoDS_Shape& theSupport) { TopoDS_Shape aShape; if (theInitShape.ShapeType() == TopAbs_COMPOUND) { TopExp_Explorer anExp(theInitShape, TopAbs_SOLID); int solidCount = 0; for(;anExp.More();anExp.Next()) { solidCount++; if (solidCount > 1) Standard_ConstructionError::Raise("The input shape is a compound with more than one solid"); } if (solidCount == 0) Standard_ConstructionError::Raise("The input shape is a compound without any solid"); } TopoDS_Wire aWire = TopoDS_Wire(); if (theBaseShape.ShapeType() == TopAbs_EDGE) { aWire = BRepBuilderAPI_MakeWire(TopoDS::Edge(theBaseShape)); } else if (theBaseShape.ShapeType() == TopAbs_WIRE) { aWire = TopoDS::Wire(theBaseShape); } else { Standard_ConstructionError::Raise("The input profile is neither a wire, nor edge"); } TopoDS_Vertex aV1, aV2; TopExp::Vertices(aWire, aV1, aV2); if ( !aV1.IsNull() && !aV2.IsNull() && aV1.IsSame(aV2) ) aWire.Closed( true ); if (!aWire.Closed()) Standard_ConstructionError::Raise("The input profile is not closed"); // Construction of the face if the wire hasn't any support face; // the face must be planar for BRepFeat_MakeDPrism TopoDS_Face aFaceBase = BRepBuilderAPI_MakeFace(aWire, /*OnlyPlane=*/true); if(!theSupport.IsNull() && theSupport.ShapeType() == TopAbs_FACE) // If the wire has a support { Handle(Geom_Surface) aSurf = BRep_Tool::Surface(TopoDS::Face(theSupport)); TopoDS_Face aTempFace = BRepBuilderAPI_MakeFace(aSurf, aWire); if(aTempFace.Orientation() != TopoDS::Face(theSupport).Orientation()) { aFaceBase=TopoDS::Face(aTempFace.Reversed()); } else aFaceBase=aTempFace; } // Invert height and angle if the operation is an extruded cut bool invert = !isProtrusion; // If the face has a reversed orientation invert for extruded boss operations if(aFaceBase.Orientation() == TopAbs_REVERSED) invert = isProtrusion; Standard_Real anAngle = theAngle; Standard_Real aHeight = theHeight; if(invert) { anAngle = -theAngle; // Invert angle and height aHeight = -theHeight; } BRepFeat_MakeDPrism aPrism(theInitShape, aFaceBase, aFaceBase, anAngle*M_PI/180., isProtrusion, Standard_True); aPrism.Perform(aHeight); aPrism.Check(); // Raises NotDone if done is false aShape = aPrism.Shape(); return aShape; } //================================================================================ /*! * \brief Returns a name of creation operation and names and values of creation parameters */ //================================================================================ bool GEOMImpl_PrismDriver:: GetCreationInformation(std::string& theOperationName, std::vector& theParams) { if (Label().IsNull()) return 0; Handle(GEOM_Function) function = GEOM_Function::GetFunction(Label()); GEOMImpl_IPrism aCI( function ); Standard_Integer aType = function->GetType(); theOperationName = "EXTRUSION"; switch ( aType ) { case PRISM_BASE_VEC_H: case PRISM_BASE_VEC_H_2WAYS: AddParam( theParams, "Base", aCI.GetBase() ); AddParam( theParams, "Vector", aCI.GetVector() ); AddParam( theParams, "Height", aCI.GetH() ); AddParam( theParams, "Both Directions", aType == PRISM_BASE_VEC_H_2WAYS ); AddParam( theParams, "Scale base-opposite face", aCI.GetScale() ); break; case PRISM_BASE_TWO_PNT: case PRISM_BASE_TWO_PNT_2WAYS: AddParam( theParams, "Base", aCI.GetBase() ); AddParam( theParams, "Point 1", aCI.GetFirstPoint() ); AddParam( theParams, "Point 2", aCI.GetLastPoint() ); AddParam( theParams, "Both Directions", aType == PRISM_BASE_VEC_H_2WAYS ); AddParam( theParams, "Scale base-opposite face", aCI.GetScale() ); break; case PRISM_BASE_DXDYDZ: case PRISM_BASE_DXDYDZ_2WAYS: AddParam( theParams, "Base", aCI.GetBase() ); AddParam( theParams, "Dx", aCI.GetDX() ); AddParam( theParams, "Dy", aCI.GetDY() ); AddParam( theParams, "Dz", aCI.GetDZ() ); AddParam( theParams, "Both Directions", aType == PRISM_BASE_VEC_H_2WAYS ); AddParam( theParams, "Scale base-opposite face", aCI.GetScale() ); break; case DRAFT_PRISM_FEATURE: theOperationName = aCI.GetFuseFlag() ? "EXTRUDED_BOSS" : "EXTRUDED_CUT"; AddParam( theParams, "Initial shape", aCI.GetInitShape() ); AddParam( theParams, "Profile", aCI.GetBase() ); AddParam( theParams, "Height", aCI.GetH() ); AddParam( theParams, "Draft angle", aCI.GetDraftAngle() ); break; default: return false; } return true; } IMPLEMENT_STANDARD_HANDLE (GEOMImpl_PrismDriver,GEOM_BaseDriver); IMPLEMENT_STANDARD_RTTIEXT (GEOMImpl_PrismDriver,GEOM_BaseDriver);