geom/src/ShapeRecognition/ShapeRec_FeatureDetector.cxx
2013-04-01 12:25:01 +00:00

314 lines
10 KiB
C++

// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : ShapeRec_FeatureDetector.cxx
// Author : Renaud NEDELEC, Open CASCADE S.A.S.
#include "ShapeRec_FeatureDetector.hxx"
#include <stdio.h>
#include "utilities.h"
using namespace cv;
//TODO : All the following methods but ComputeContours use the C API of OpenCV while ComputContours
// uses the C++ API of the library.
// This should be homogenized and preferably by using the C++ API (which is more recent for all the methods
// The code has to be "cleaned up" too
/*!
Constructor
\param theFilename - image to process
*/
ShapeRec_FeatureDetector::ShapeRec_FeatureDetector():
corners()
{
cornerCount = 2000;
rect=cvRect(0,0,0,0);
imagePath = ""; //theFilename;
// Store the dimensions of the picture
imgHeight = 0;
imgWidth = 0;
}
/*!
Sets the path of the image file to be processed
\param thePath - Location of the image file
*/
void ShapeRec_FeatureDetector::SetPath( const std::string& thePath )
{
imagePath = thePath;
if (imagePath != "")
{
IplImage* src = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
imgHeight = src->height;
imgWidth = src->width;
}
}
/*!
Computes the corners of the image located at imagePath
*/
void ShapeRec_FeatureDetector::ComputeCorners(){
// Parameters for the corner detection
double qualityLevel = 0.2;
double minDistance = 1;
// Images to be used for detection
IplImage *eig_img, *temp_img, *src_img_gray;
// Load image
src_img_gray = cvLoadImage (imagePath.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
if ( rect.width > 1 )
{
// If a ROI as been set use it for detection
cvSetImageROI( src_img_gray, rect );
}
eig_img = cvCreateImage (cvGetSize (src_img_gray), IPL_DEPTH_32F, 1);
temp_img = cvCreateImage (cvGetSize (src_img_gray), IPL_DEPTH_32F, 1);
corners = (CvPoint2D32f *) cvAlloc (cornerCount * sizeof (CvPoint2D32f));
// image height and width
imgHeight = src_img_gray->height;
imgWidth = src_img_gray->width;
// Corner detection using cvCornerMinEigenVal
// (one of the methods available inOpenCV, there is also a cvConerHarris method that can be used by setting a flag in cvGoodFeaturesToTrack)
cvGoodFeaturesToTrack (src_img_gray, eig_img, temp_img, corners, &cornerCount, /*quality-level=*/qualityLevel, /*min-distance=*/minDistance);
cvFindCornerSubPix (src_img_gray, corners, cornerCount,
cvSize (3, 3), cvSize (-1, -1), cvTermCriteria (CV_TERMCRIT_ITER | CV_TERMCRIT_EPS, 20, 0.03));
cvReleaseImage (&eig_img);
cvReleaseImage (&temp_img);
cvReleaseImage (&src_img_gray);
}
/*!
Computes the contours of the image located at imagePath
*/
bool ShapeRec_FeatureDetector::ComputeContours( int detection_method ){
// Initialising images
Mat src, src_gray;
Mat detected_edges;
// Read image
src = imread( imagePath.c_str() );
if( !src.data )
return false;
if ( detection_method == CANNY ) // The problem is that with that filter the detector detects double contours
{
// Thresholds for Canny detector
int lowThreshold = 100;
int ratio = 3;
int kernel_size = 3; // 3,5 or 7
// Convert the image to grayscale
if (src.channels() == 3)
cvtColor( src, src_gray, CV_BGR2GRAY );
else if (src.channels() == 1)
src_gray = src;
// Reduce noise with a kernel 3x3
blur( src_gray, detected_edges, Size(3,3) );
// Canny detector
Canny( detected_edges, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size, /*L2gradient =*/true );
}
else if ( detection_method == COLORFILTER )
{
if ( !rect.width > 1 )
return false;
detected_edges = _colorFiltering();
}
else if ( detection_method == RIDGE_DETECTOR ) // Method adapted for engineering drawings (e.g. watershed functionnality could be used here cf.OpenCV documentation and samples)
{
// TODO
return false;
}
_detectAndRetrieveContours( detected_edges );
return true;
}
/*!
Computes the lines in the image located at imagePath
*/
bool ShapeRec_FeatureDetector::ComputeLines(){
MESSAGE("ShapeRec_FeatureDetector::ComputeLines()")
// Initialising images
Mat src, src_gray, detected_edges, dst;
src=imread(imagePath.c_str(), 0);
Canny( src, dst, 50, 200, 3 );
HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 );
return true;
}
/*!
Stores a region of interest given by user in rect
\param theRect - Region Of Interest of the image located at imagePath
*/
void ShapeRec_FeatureDetector::SetROI( const QRect& theRect )
{
if (!theRect.isEmpty()){
rect = cvRect(theRect.x(),theRect.y(),theRect.width(),theRect.height());
}
}
/*!
Crops the image located at imagePath to the region of interest given by the user via SetROI
and stores the result in /tmp
\param theRect - Region Of Interest of the image located at imagePath
*/
std::string ShapeRec_FeatureDetector::CroppImage()
{
IplImage* src = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
cvSetImageROI(src, rect);
IplImage* cropped_image = cvCreateImage(cvGetSize(src),
src->depth,
src->nChannels);
cvCopy(src, cropped_image, NULL);
cvResetImageROI(src);
cvSaveImage ("/tmp/cropped_image.bmp", cropped_image);
return "/tmp/cropped_image.bmp";
}
/*!
Performs contours detection and store them in contours
\param binaryImg - src image to find contours of
*/
void ShapeRec_FeatureDetector::_detectAndRetrieveContours( Mat binaryImg )
{
binaryImg = binaryImg > 1;
int method = CV_CHAIN_APPROX_NONE;
findContours( binaryImg, contours, hierarchy,CV_RETR_CCOMP, method);
// Other possible approximations CV_CHAIN_APPROX_TC89_KCOS, CV_CHAIN_APPROX_TC89_L1, CV_CHAIN_APPROX_SIMPLE cf. OpenCV documentation
// for precise information
}
/*!
Performs color filtering from the image sample contained in the ROI rect of the image
located at imagePath
Thresholds the result in order ot obtain a binary image
\return binary image resulting from filtering and thersholding
*/
Mat ShapeRec_FeatureDetector::_colorFiltering()
{
IplImage* find_image = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
// Reduce noise with a kernel 3x3
cvSmooth( find_image, find_image, CV_GAUSSIAN, 3, 3 );
if ( !rect.width > 1 )
return Mat(find_image);
// Crop the image to build an histogram from the selected part
cvSetImageROI(find_image, rect);
IplImage* test_image = cvCreateImage(cvGetSize(find_image),
find_image->depth,
find_image->nChannels);
cvCopy(find_image, test_image, NULL);
cvResetImageROI(find_image);
IplImage* test_hsv = cvCreateImage(cvGetSize(test_image),8,3);
IplImage* h_plane = cvCreateImage( cvGetSize(test_image), 8, 1 );
IplImage* s_plane = cvCreateImage( cvGetSize(test_image), 8, 1 );
CvHistogram* hist;
cvCvtColor(test_image, test_hsv, CV_BGR2HSV);
cvCvtPixToPlane(test_hsv, h_plane, s_plane, 0, 0);
IplImage* planes[] = { h_plane, s_plane };
//create hist
int hbins = 30, sbins = 32; // TODO think to the best values here
int hist_size[] = { hbins, sbins };
float hranges[] = { 0, 180 };
float sranges[] = { 0, 255 };
float* ranges[] = { hranges, sranges };
hist = cvCreateHist(2, hist_size, CV_HIST_ARRAY, ranges, 1);
//calculate hue /saturation histogram
cvCalcHist(planes, hist, 0 ,0);
// // TEST print of the histogram for debugging
// IplImage* hist_image = cvCreateImage(cvSize(320,300),8,3);
//
// //draw hist on hist_test image.
// cvZero(hist_image);
// float max_value = 0;
// cvGetMinMaxHistValue(hist, 0 , &max_value, 0, 0);
// int bin_w = hist_image->width/size_hist;
// for(int i = 0; i < size_hist; i++ )
// {
// //prevent overflow
// int val = cvRound( cvGetReal1D(hist->bins,i)*hist_image->
// height/max_value);
// CvScalar color = CV_RGB(200,0,0);
// //hsv2rgb(i*180.f/size_hist);
// cvRectangle( hist_image, cvPoint(i*bin_w,hist_image->height),
// cvPoint((i+1)*bin_w,hist_image->height - val),
// color, -1, 8, 0 );
// }
//
//
// cvNamedWindow("hist", 1); cvShowImage("hist",hist_image);
//calculate back projection of hue and saturation planes of input image
IplImage* backproject = cvCreateImage(cvGetSize(find_image), 8, 1);
IplImage* binary_backproject = cvCreateImage(cvGetSize(find_image), 8, 1);
IplImage* find_hsv = cvCreateImage(cvGetSize(find_image),8,3);
IplImage* find_hplane = cvCreateImage(cvGetSize(find_image),8,1);
IplImage* find_splane = cvCreateImage(cvGetSize(find_image),8,1);
cvCvtColor(find_image, find_hsv, CV_BGR2HSV);
cvCvtPixToPlane(find_hsv, find_hplane, find_splane, 0, 0);
IplImage* find_planes[] = { find_hplane, find_splane };
cvCalcBackProject(find_planes, backproject, hist);
// Threshold in order to obtain binary image
cvThreshold(backproject, binary_backproject, 1, 255, CV_THRESH_BINARY); // NOTE it would be good to think about the best threshold to use (it's 1 for now)
cvReleaseImage(&test_image);
cvReleaseImage(&test_hsv);
cvReleaseImage(&h_plane);
cvReleaseImage(&s_plane);
cvReleaseImage(&find_image);
cvReleaseImage(&find_hsv);
cvReleaseImage(&find_hplane);
cvReleaseImage(&find_splane);
cvReleaseImage(&backproject);
return Mat(binary_backproject);
}