mirror of
https://git.salome-platform.org/gitpub/modules/geom.git
synced 2025-01-26 22:50:33 +05:00
409 lines
12 KiB
C++
409 lines
12 KiB
C++
// GEOM ARCHIMEDE : algorithm implementation
|
||
//
|
||
// Copyright (C) 2003 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
|
||
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
|
||
//
|
||
// This library is free software; you can redistribute it and/or
|
||
// modify it under the terms of the GNU Lesser General Public
|
||
// License as published by the Free Software Foundation; either
|
||
// version 2.1 of the License.
|
||
//
|
||
// This library is distributed in the hope that it will be useful,
|
||
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
||
// Lesser General Public License for more details.
|
||
//
|
||
// You should have received a copy of the GNU Lesser General Public
|
||
// License along with this library; if not, write to the Free Software
|
||
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
||
//
|
||
// See http://www.opencascade.org/SALOME/ or email : webmaster.salome@opencascade.org
|
||
//
|
||
//
|
||
//
|
||
// File : Archimede_VolumeSection.cxx
|
||
// Author : Nicolas REJNERI
|
||
// Module : GEOM
|
||
// $Header$
|
||
|
||
using namespace std;
|
||
#include "Archimede_VolumeSection.hxx"
|
||
#include "utilities.h"
|
||
|
||
#include <iostream.h>
|
||
#include <BRepMesh_IncrementalMesh.hxx>
|
||
#include <TopExp_Explorer.hxx>
|
||
#include <TopLoc_Location.hxx>
|
||
#include <Poly_Triangulation.hxx>
|
||
#include <Poly_Array1OfTriangle.hxx>
|
||
#include <BRep_Tool.hxx>
|
||
#include <TopoDS.hxx>
|
||
#include <TopoDS_Face.hxx>
|
||
#include <TopoDS_Shape.hxx>
|
||
#include <math_Matrix.hxx>
|
||
#include <math.h>
|
||
#include <GC_MakePlane.hxx>
|
||
#include <stdlib.h>
|
||
#include <gp_Trsf.hxx>
|
||
#include <gp_Dir.hxx>
|
||
#include <gp_Ax1.hxx>
|
||
#include <gp_Pnt.hxx>
|
||
#include <gp_Pln.hxx>
|
||
|
||
#include <GeomAPI_ProjectPointOnSurf.hxx>
|
||
#include <Geom_RectangularTrimmedSurface.hxx>
|
||
|
||
//-------------------------------------------------------------------------------------------------------
|
||
//----------------------------------- Methodes publiques -------------------------------------------------
|
||
//-------------------------------------------------------------------------------------------------------
|
||
|
||
// Maillage de la shape
|
||
VolumeSection::VolumeSection(TopoDS_Shape S , Standard_Real Precision):myShape(S),Tolerance(Precision)
|
||
{
|
||
// Maillage de la shape myShape
|
||
BRepMesh_IncrementalMesh(myShape,Tolerance);
|
||
}
|
||
|
||
TopoDS_Shape VolumeSection::GetShape()
|
||
{
|
||
return myShape;
|
||
}
|
||
|
||
void VolumeSection::SetPlane(Handle (Geom_Plane) P)
|
||
{
|
||
myPlane = P;
|
||
}
|
||
|
||
void VolumeSection::CenterOfGravity()
|
||
{
|
||
Standard_Integer i;
|
||
Standard_Integer nbNodes;
|
||
TopExp_Explorer ex;
|
||
TopLoc_Location L;
|
||
|
||
// Boucle sur les faces de la shape
|
||
|
||
Xmin = 1000000000;
|
||
Ymin = 1000000000;
|
||
Zmin = 1000000000;
|
||
Xmax = -1000000000;
|
||
Ymax = -1000000000;
|
||
Zmax = -1000000000;
|
||
|
||
for (ex.Init(myShape, TopAbs_FACE); ex.More(); ex.Next())
|
||
{
|
||
TopoDS_Face F = TopoDS::Face(ex.Current());
|
||
Handle(Poly_Triangulation) Tr = BRep_Tool::Triangulation(F, L);
|
||
if(Tr.IsNull())
|
||
MESSAGE("Error, null layer" )
|
||
nbNodes = Tr->NbNodes();
|
||
const TColgp_Array1OfPnt& Nodes = Tr->Nodes();
|
||
|
||
// Calcul des dimensions de la boite englobante du solide
|
||
|
||
for(i=1;i<=nbNodes;i++)
|
||
{
|
||
InitPoint = Nodes(i).Transformed(L.Transformation());
|
||
if(InitPoint.X() < Xmin)
|
||
Xmin = InitPoint.X();
|
||
if(InitPoint.X() > Xmax)
|
||
Xmax = InitPoint.X();
|
||
if(InitPoint.Y() < Ymin)
|
||
Ymin = InitPoint.Y();
|
||
if(InitPoint.Y() > Ymax)
|
||
Ymax = InitPoint.Y();
|
||
if(InitPoint.Z() < Zmin)
|
||
Zmin = InitPoint.Z();
|
||
if(InitPoint.Z() > Zmax)
|
||
Zmax = InitPoint.Z();
|
||
|
||
}
|
||
}
|
||
|
||
// Creation du point d'initialisation, c'est <20> dire le centre de gravit<69>
|
||
//g<>om<6F>trique de la boite englobante
|
||
|
||
InitPoint.SetX(0.5 * (Xmin + Xmax));
|
||
InitPoint.SetY(0.5 * (Ymin + Ymax));
|
||
InitPoint.SetZ(0);
|
||
}
|
||
|
||
Standard_Real VolumeSection::CalculateVolume(Standard_Real Elevation)
|
||
{
|
||
Standard_Integer i,noeud[3],flag[3];
|
||
Standard_Integer nbNodes;
|
||
TopExp_Explorer ex;
|
||
TopLoc_Location L;
|
||
Standard_Real z[3];
|
||
Standard_Real Volume=0;
|
||
Standard_Real Determinant=0;
|
||
gp_Pnt P[3];
|
||
|
||
// Projection du point d'initialisation sur le plan de section
|
||
|
||
InitPoint.SetZ(Elevation);
|
||
|
||
for (ex.Init(myShape, TopAbs_FACE); ex.More(); ex.Next())
|
||
{
|
||
TopoDS_Face F = TopoDS::Face(ex.Current());
|
||
Handle(Poly_Triangulation) Tr = BRep_Tool::Triangulation(F, L);
|
||
if(Tr.IsNull())
|
||
MESSAGE("Error, null layer" )
|
||
const Poly_Array1OfTriangle& triangles = Tr->Triangles();
|
||
Standard_Integer nbTriangles = Tr->NbTriangles();
|
||
nbNodes = Tr->NbNodes();
|
||
const TColgp_Array1OfPnt& Nodes = Tr->Nodes();
|
||
|
||
// Calcul des volumes de chaque triangle, de chaque face
|
||
//en tenant compte des triangles coup<75>s par le plan de section
|
||
|
||
for (i=1;i<=nbTriangles;i++)
|
||
{
|
||
Determinant=0;
|
||
//Gardons la meme orientation des noeuds
|
||
if (F.Orientation() == TopAbs_REVERSED)
|
||
triangles(i).Get(noeud[0], noeud[2], noeud[1]);
|
||
else
|
||
triangles(i).Get(noeud[0], noeud[1], noeud[2]);
|
||
|
||
P[0] = Nodes(noeud[0]).Transformed(L.Transformation());
|
||
z[0] = P[0].Z();
|
||
P[1] = Nodes(noeud[1]).Transformed(L.Transformation());
|
||
z[1] = P[1].Z();
|
||
P[2] = Nodes(noeud[2]).Transformed(L.Transformation());
|
||
z[2] = P[2].Z();
|
||
|
||
// Determination des cas aux limites pour les triangles
|
||
Standard_Integer i,compteur=0;
|
||
|
||
for (i=0;i<=2;i++)
|
||
{
|
||
flag[i]=Standard_False;
|
||
if(z[i]>=Elevation)
|
||
{
|
||
flag[i]=Standard_True;
|
||
compteur++;
|
||
}
|
||
}
|
||
|
||
switch(compteur)
|
||
{
|
||
case 0:
|
||
Determinant = ElementaryVolume(P[0],P[1],P[2]);
|
||
break;
|
||
|
||
case 1:
|
||
for (i=0;i<=2;i++)
|
||
{
|
||
if (flag[i]==Standard_True)
|
||
{
|
||
gp_Pnt Result1 = Intersection(P[i],P[(i+1)%3],Elevation);
|
||
gp_Pnt Result2 = Intersection(P[i],P[(i+2)%3],Elevation);
|
||
Determinant = ElementaryVolume(Result1,P[(i+1)%3],P[(i+2)%3])
|
||
+ ElementaryVolume(Result1,P[(i+2)%3],Result2);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case 2:
|
||
for (i=0;i<=2;i++)
|
||
{
|
||
if (flag[i]==Standard_False)
|
||
{
|
||
gp_Pnt Result1 = Intersection(P[i],P[(i+1)%3],Elevation);
|
||
gp_Pnt Result2 = Intersection(P[i],P[(i+2)%3],Elevation);
|
||
Determinant = ElementaryVolume(P[i],Result1,Result2);
|
||
}
|
||
}
|
||
break;
|
||
|
||
case 3:
|
||
break;
|
||
}
|
||
Volume += Determinant;
|
||
}
|
||
}
|
||
|
||
return Volume;
|
||
}
|
||
|
||
Standard_Real VolumeSection::Archimede(Standard_Real Constante , Standard_Real Epsilon)
|
||
{
|
||
// Resolution de l equation V(h) = Constante a l aide de l algorithme de dichotomie avec ponderation type
|
||
// Lagrange
|
||
|
||
Standard_Real c,Binf,Bsup;
|
||
Standard_Real tempBsupVolume=0;
|
||
Standard_Real tempBinfVolume=0;
|
||
Standard_Real tempCVolume = 0;
|
||
|
||
Binf = Zmin;
|
||
Bsup = Zmax;
|
||
if(Binf>Bsup)
|
||
{
|
||
MESSAGE("error, Bound + < Bound - in dichotomy")
|
||
return -1;
|
||
}
|
||
tempBsupVolume = CalculateVolume(Bsup);
|
||
tempBinfVolume = CalculateVolume(Binf);
|
||
|
||
if (Constante>tempBsupVolume || Constante<tempBinfVolume)
|
||
{
|
||
MESSAGE("error, algorithm start Impossible. Wrong constant value" )
|
||
return -1;
|
||
}
|
||
|
||
c = ((Binf*(tempBsupVolume-Constante))-(Bsup*(tempBinfVolume-Constante)))
|
||
/((tempBsupVolume-Constante)-(tempBinfVolume-Constante));
|
||
tempCVolume = CalculateVolume(c);
|
||
|
||
|
||
if(Abs(tempCVolume-Constante)<=Epsilon)
|
||
{
|
||
goto endMethod;
|
||
}
|
||
else
|
||
{
|
||
while((Bsup-Binf)>Epsilon)
|
||
{
|
||
if((tempBinfVolume-Constante)*(tempCVolume-Constante)>0 && Abs(tempCVolume-Constante)>Epsilon)
|
||
{
|
||
Binf = c;
|
||
tempBinfVolume=tempCVolume;
|
||
|
||
c = ((Binf*(tempBsupVolume-Constante))-(Bsup*(tempBinfVolume-Constante)))
|
||
/((tempBsupVolume-Constante)-(tempBinfVolume-Constante));
|
||
tempCVolume=CalculateVolume(c);
|
||
}
|
||
else if((tempBinfVolume-Constante)*(tempCVolume-Constante)<0 && Abs(tempCVolume-Constante)>Epsilon)
|
||
{
|
||
Bsup = c;
|
||
tempBsupVolume =tempCVolume;
|
||
|
||
c = ((Binf*(tempBsupVolume-Constante))-(Bsup*(tempBinfVolume-Constante)))
|
||
/((tempBsupVolume-Constante)-(tempBinfVolume-Constante));
|
||
tempCVolume=CalculateVolume(c);
|
||
}
|
||
else
|
||
{
|
||
goto endMethod;
|
||
}
|
||
}
|
||
goto endMethod;
|
||
|
||
}
|
||
endMethod:
|
||
MESSAGE("La ligne de flottaison correspondant a la constante :"<<Constante<<" est a la cote Z = "<<c)
|
||
|
||
return c;
|
||
}
|
||
|
||
void VolumeSection::MakeRotation(gp_Dir PlaneDirection)
|
||
{
|
||
gp_Dir Zdirection(0.0,0.0,1.0);
|
||
Standard_Real VariationAngle = 0;
|
||
gp_Pnt RotationAxeLocation(0.0,0.0,0.0);
|
||
gp_Dir RotationAxeDirection(1.0,1.0,1.0);
|
||
gp_Ax1 RotationAxe(RotationAxeLocation,RotationAxeDirection);
|
||
gp_Trsf Transformation;
|
||
|
||
VariationAngle = Zdirection.Angle(PlaneDirection);
|
||
RotationAxe.SetDirection(PlaneDirection.Crossed(Zdirection));
|
||
Transformation.SetRotation(RotationAxe,VariationAngle);
|
||
TopLoc_Location L(Transformation);
|
||
myShape.Move(L);
|
||
myPlane->Transform(Transformation);
|
||
}
|
||
|
||
Handle (Geom_RectangularTrimmedSurface) VolumeSection::TrimSurf()
|
||
{
|
||
Standard_Real Umin,Umax,Vmin,Vmax;
|
||
gp_Pnt Pmin(Xmin,Ymin,Zmin);
|
||
GeomAPI_ProjectPointOnSurf Projection(Pmin,myPlane);
|
||
Projection.Parameters(1,Umin,Vmin);
|
||
gp_Pnt Pmax(Xmax,Ymax,Zmax);
|
||
GeomAPI_ProjectPointOnSurf Projection2(Pmax,myPlane);
|
||
Projection2.Parameters(1,Umax,Vmax);
|
||
Handle (Geom_RectangularTrimmedSurface) Plane = new Geom_RectangularTrimmedSurface(myPlane,Umin,Umax,Vmin,Vmax);
|
||
return Plane;
|
||
}
|
||
|
||
Handle (Geom_RectangularTrimmedSurface) VolumeSection::InvMakeRotation(gp_Dir PlaneDirection, Handle (Geom_RectangularTrimmedSurface) SurfTrim)
|
||
{
|
||
gp_Dir Zdirection(0.0,0.0,1.0);
|
||
Standard_Real VariationAngle = 0;
|
||
gp_Pnt RotationAxeLocation(0.0,0.0,0.0);
|
||
gp_Dir RotationAxeDirection(1.0,1.0,1.0);
|
||
gp_Ax1 RotationAxe(RotationAxeLocation,RotationAxeDirection);
|
||
gp_Trsf Transformation;
|
||
|
||
VariationAngle = Zdirection.Angle(PlaneDirection);
|
||
RotationAxe.SetDirection(PlaneDirection.Crossed(Zdirection));
|
||
Transformation.SetRotation(RotationAxe,-VariationAngle);
|
||
SurfTrim->Transform(Transformation);
|
||
TopLoc_Location L(Transformation);
|
||
myShape.Move(L);
|
||
|
||
return SurfTrim;
|
||
}
|
||
|
||
Handle (Geom_RectangularTrimmedSurface) VolumeSection::AjustePlan(Handle (Geom_RectangularTrimmedSurface) SurfTrim, Standard_Real Cote, gp_Pnt PosPlan)
|
||
{
|
||
gp_Trsf Transformation;
|
||
gp_Pnt PosArchi(PosPlan.X(),PosPlan.Y(),Cote);
|
||
|
||
Transformation.SetTranslation(PosPlan,PosArchi);
|
||
SurfTrim->Transform(Transformation);
|
||
|
||
return SurfTrim;
|
||
|
||
}
|
||
|
||
//-------------------------------------------------------------------------------------------------------
|
||
//----------------------------------- Methodes privees ---------------------------------------------------
|
||
//-------------------------------------------------------------------------------------------------------
|
||
|
||
|
||
//Fonction calculant l'intersection de la droite passant par les points P1 et P2
|
||
//avec le plan horizontal Z=Hauteur
|
||
gp_Pnt VolumeSection::Intersection(gp_Pnt P1,gp_Pnt P2,Standard_Real Hauteur)
|
||
{
|
||
Standard_Real constante;
|
||
gp_Pnt Point;
|
||
|
||
constante = (Hauteur-P1.Z())/(P2.Z()-P1.Z());
|
||
Point.SetX(P1.X()*(1-constante) + constante*P2.X());
|
||
Point.SetY(P1.Y()*(1-constante) + constante*P2.Y());
|
||
Point.SetZ(Hauteur);
|
||
|
||
return Point;
|
||
}
|
||
|
||
//Fonction calculant le volume <20>l<EFBFBD>mentaire de chaque t<>traedre <20> partir de 3 points
|
||
Standard_Real VolumeSection::ElementaryVolume(gp_Pnt P1,gp_Pnt P2,gp_Pnt P3)
|
||
{
|
||
Standard_Real Determinant;
|
||
|
||
math_Matrix M(1,3,1,3);
|
||
|
||
M(1,1)=P1.X()-InitPoint.X();
|
||
M(1,2)=P2.X()-InitPoint.X();
|
||
M(1,3)=P3.X()-InitPoint.X();
|
||
M(2,1)=P1.Y()-InitPoint.Y();
|
||
M(2,2)=P2.Y()-InitPoint.Y();
|
||
M(2,3)=P3.Y()-InitPoint.Y();
|
||
M(3,1)=P1.Z()-InitPoint.Z();
|
||
M(3,2)=P2.Z()-InitPoint.Z();
|
||
M(3,3)=P3.Z()-InitPoint.Z();
|
||
|
||
Determinant = (1.0/6) * M.Determinant();
|
||
|
||
return Determinant;
|
||
}
|
||
|
||
void VolumeSection::getZ( double& min, double& max)
|
||
{
|
||
min = Zmin;
|
||
max = Zmax;
|
||
}
|