geom/src/GEOM_SWIG/geompyDC.py

4284 lines
202 KiB
Python

# -*- coding: iso-8859-1 -*-
# Copyright (C) 2007-2010 CEA/DEN, EDF R&D, OPEN CASCADE
#
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Lesser General Public
# License as published by the Free Software Foundation; either
# version 2.1 of the License.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this library; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
#
# GEOM GEOM_SWIG : binding of C++ omplementaion with Python
# File : geompy.py
# Author : Paul RASCLE, EDF
# Module : GEOM
"""
\namespace geompy
\brief Module geompy
"""
## @defgroup l1_geompy_auxiliary Auxiliary data structures and methods
## @defgroup l1_geompy_purpose All package methods, grouped by their purpose
## @{
## @defgroup l2_import_export Importing/exporting geometrical objects
## @defgroup l2_creating Creating geometrical objects
## @{
## @defgroup l3_basic_go Creating Basic Geometric Objects
## @{
## @defgroup l4_curves Creating Curves
## @}
## @defgroup l3_3d_primitives Creating 3D Primitives
## @defgroup l3_complex Creating Complex Objects
## @defgroup l3_groups Working with groups
## @defgroup l3_blocks Building by blocks
## @{
## @defgroup l4_blocks_measure Check and Improve
## @}
## @defgroup l3_sketcher Sketcher
## @defgroup l3_advanced Creating Advanced Geometrical Objects
## @{
## @defgroup l4_decompose Decompose objects
## @defgroup l4_access Access to sub-shapes by their unique IDs inside the main shape
## @defgroup l4_obtain Access to subshapes by a criteria
## @defgroup l4_advanced Advanced objects creation functions
## @}
## @}
## @defgroup l2_transforming Transforming geometrical objects
## @{
## @defgroup l3_basic_op Basic Operations
## @defgroup l3_boolean Boolean Operations
## @defgroup l3_transform Transformation Operations
## @defgroup l3_local Local Operations (Fillet and Chamfer)
## @defgroup l3_blocks_op Blocks Operations
## @defgroup l3_healing Repairing Operations
## @defgroup l3_restore_ss Restore presentation parameters and a tree of subshapes
## @}
## @defgroup l2_measure Using measurement tools
## @}
import salome
salome.salome_init()
from salome import *
from salome_notebook import *
import GEOM
import math
## Enumeration ShapeType as a dictionary
# @ingroup l1_geompy_auxiliary
ShapeType = {"COMPOUND":0, "COMPSOLID":1, "SOLID":2, "SHELL":3, "FACE":4, "WIRE":5, "EDGE":6, "VERTEX":7, "SHAPE":8}
## Raise an Error, containing the Method_name, if Operation is Failed
## @ingroup l1_geompy_auxiliary
def RaiseIfFailed (Method_name, Operation):
if Operation.IsDone() == 0 and Operation.GetErrorCode() != "NOT_FOUND_ANY":
raise RuntimeError, Method_name + " : " + Operation.GetErrorCode()
## Return list of variables value from salome notebook
## @ingroup l1_geompy_auxiliary
def ParseParameters(*parameters):
Result = []
StringResult = []
for parameter in parameters:
if isinstance(parameter, list):
lResults = ParseParameters(*parameter)
if len(lResults) > 0:
Result.append(lResults[:-1])
StringResult += lResults[-1].split(":")
pass
pass
else:
if isinstance(parameter,str):
if notebook.isVariable(parameter):
Result.append(notebook.get(parameter))
else:
raise RuntimeError, "Variable with name '" + parameter + "' doesn't exist!!!"
pass
else:
Result.append(parameter)
pass
StringResult.append(str(parameter))
pass
pass
if Result:
Result.append(":".join(StringResult))
else:
Result = ":".join(StringResult)
return Result
## Return list of variables value from salome notebook
## @ingroup l1_geompy_auxiliary
def ParseList(list):
Result = []
StringResult = ""
for parameter in list:
if isinstance(parameter,str) and notebook.isVariable(parameter):
Result.append(str(notebook.get(parameter)))
pass
else:
Result.append(str(parameter))
pass
StringResult = StringResult + str(parameter)
StringResult = StringResult + ":"
pass
StringResult = StringResult[:len(StringResult)-1]
return Result, StringResult
## Return list of variables value from salome notebook
## @ingroup l1_geompy_auxiliary
def ParseSketcherCommand(command):
Result = ""
StringResult = ""
sections = command.split(":")
for section in sections:
parameters = section.split(" ")
paramIndex = 1
for parameter in parameters:
if paramIndex > 1 and parameter.find("'") != -1:
parameter = parameter.replace("'","")
if notebook.isVariable(parameter):
Result = Result + str(notebook.get(parameter)) + " "
pass
else:
raise RuntimeError, "Variable with name '" + parameter + "' doesn't exist!!!"
pass
pass
else:
Result = Result + str(parameter) + " "
pass
if paramIndex > 1:
StringResult = StringResult + parameter
StringResult = StringResult + ":"
pass
paramIndex = paramIndex + 1
pass
Result = Result[:len(Result)-1] + ":"
pass
Result = Result[:len(Result)-1]
return Result, StringResult
## Helper function which can be used to pack the passed string to the byte data.
## Only '1' an '0' symbols are valid for the string. The missing bits are replaced by zeroes.
## If the string contains invalid symbol (neither '1' nor '0'), the function raises an exception.
## For example,
## \code
## val = PackData("10001110") # val = 0xAE
## val = PackData("1") # val = 0x80
## \endcode
## @param data unpacked data - a string containing '1' and '0' symbols
## @return data packed to the byte stream
## @ingroup l1_geompy_auxiliary
def PackData(data):
bytes = len(data)/8
if len(data)%8: bytes += 1
res = ""
for b in range(bytes):
d = data[b*8:(b+1)*8]
val = 0
for i in range(8):
val *= 2
if i < len(d):
if d[i] == "1": val += 1
elif d[i] != "0":
raise "Invalid symbol %s" % d[i]
pass
pass
res += chr(val)
pass
return res
## Read bitmap texture from the text file.
## In that file, any non-zero symbol represents '1' opaque pixel of the bitmap.
## A zero symbol ('0') represents transparent pixel of the texture bitmap.
## The function returns width and height of the pixmap in pixels and byte stream representing
## texture bitmap itself.
##
## This function can be used to read the texture to the byte stream in order to pass it to
## the AddTexture() function of geompy class.
## For example,
## \code
## import geompy
## geompy.init_geom(salome.myStudy)
## texture = geompy.readtexture('mytexture.dat')
## texture = geompy.AddTexture(*texture)
## obj.SetMarkerTexture(texture)
## \endcode
## @param fname texture file name
## @return sequence of tree values: texture's width, height in pixels and its byte stream
## @ingroup l1_geompy_auxiliary
def ReadTexture(fname):
try:
f = open(fname)
lines = [ l.strip() for l in f.readlines()]
f.close()
maxlen = 0
if lines: maxlen = max([len(x) for x in lines])
lenbytes = maxlen/8
if maxlen%8: lenbytes += 1
bytedata=""
for line in lines:
if len(line)%8:
lenline = (len(line)/8+1)*8
pass
else:
lenline = (len(line)/8)*8
pass
for i in range(lenline/8):
byte=""
for j in range(8):
if i*8+j < len(line) and line[i*8+j] != "0": byte += "1"
else: byte += "0"
pass
bytedata += PackData(byte)
pass
for i in range(lenline/8, lenbytes):
bytedata += PackData("0")
pass
return lenbytes*8, len(lines), bytedata
except:
pass
return 0, 0, ""
## Kinds of shape enumeration
# @ingroup l1_geompy_auxiliary
kind = GEOM.GEOM_IKindOfShape
## Information about closed/unclosed state of shell or wire
# @ingroup l1_geompy_auxiliary
class info:
UNKNOWN = 0
CLOSED = 1
UNCLOSED = 2
class geompyDC(GEOM._objref_GEOM_Gen):
def __init__(self):
GEOM._objref_GEOM_Gen.__init__(self)
self.myBuilder = None
self.myStudyId = 0
self.father = None
self.BasicOp = None
self.CurvesOp = None
self.PrimOp = None
self.ShapesOp = None
self.HealOp = None
self.InsertOp = None
self.BoolOp = None
self.TrsfOp = None
self.LocalOp = None
self.MeasuOp = None
self.BlocksOp = None
self.GroupOp = None
self.AdvOp = None
pass
## @addtogroup l1_geompy_auxiliary
## @{
def init_geom(self,theStudy):
self.myStudy = theStudy
self.myStudyId = self.myStudy._get_StudyId()
self.myBuilder = self.myStudy.NewBuilder()
self.father = self.myStudy.FindComponent("GEOM")
if self.father is None:
self.father = self.myBuilder.NewComponent("GEOM")
A1 = self.myBuilder.FindOrCreateAttribute(self.father, "AttributeName")
FName = A1._narrow(SALOMEDS.AttributeName)
FName.SetValue("Geometry")
A2 = self.myBuilder.FindOrCreateAttribute(self.father, "AttributePixMap")
aPixmap = A2._narrow(SALOMEDS.AttributePixMap)
aPixmap.SetPixMap("ICON_OBJBROWSER_Geometry")
self.myBuilder.DefineComponentInstance(self.father,self)
pass
self.BasicOp = self.GetIBasicOperations (self.myStudyId)
self.CurvesOp = self.GetICurvesOperations (self.myStudyId)
self.PrimOp = self.GetI3DPrimOperations (self.myStudyId)
self.ShapesOp = self.GetIShapesOperations (self.myStudyId)
self.HealOp = self.GetIHealingOperations (self.myStudyId)
self.InsertOp = self.GetIInsertOperations (self.myStudyId)
self.BoolOp = self.GetIBooleanOperations (self.myStudyId)
self.TrsfOp = self.GetITransformOperations(self.myStudyId)
self.LocalOp = self.GetILocalOperations (self.myStudyId)
self.MeasuOp = self.GetIMeasureOperations (self.myStudyId)
self.BlocksOp = self.GetIBlocksOperations (self.myStudyId)
self.GroupOp = self.GetIGroupOperations (self.myStudyId)
self.AdvOp = self.GetIAdvancedOperations (self.myStudyId)
pass
## Get name for sub-shape aSubObj of shape aMainObj
#
# @ref swig_SubShapeAllSorted "Example"
def SubShapeName(self,aSubObj, aMainObj):
# Example: see GEOM_TestAll.py
#aSubId = orb.object_to_string(aSubObj)
#aMainId = orb.object_to_string(aMainObj)
#index = gg.getIndexTopology(aSubId, aMainId)
#name = gg.getShapeTypeString(aSubId) + "_%d"%(index)
index = self.ShapesOp.GetTopologyIndex(aMainObj, aSubObj)
name = self.ShapesOp.GetShapeTypeString(aSubObj) + "_%d"%(index)
return name
## Publish in study aShape with name aName
#
# \param aShape the shape to be published
# \param aName the name for the shape
# \param doRestoreSubShapes if True, finds and publishes also
# sub-shapes of <VAR>aShape</VAR>, corresponding to its arguments
# and published sub-shapes of arguments
# \param theArgs,theFindMethod,theInheritFirstArg see geompy.RestoreSubShapes for
# these arguments description
# \return study entry of the published shape in form of string
#
# @ref swig_MakeQuad4Vertices "Example"
def addToStudy(self, aShape, aName, doRestoreSubShapes=False,
theArgs=[], theFindMethod=GEOM.FSM_GetInPlace, theInheritFirstArg=False):
# Example: see GEOM_TestAll.py
try:
aSObject = self.AddInStudy(self.myStudy, aShape, aName, None)
if doRestoreSubShapes:
self.RestoreSubShapesSO(self.myStudy, aSObject, theArgs,
theFindMethod, theInheritFirstArg, True )
except:
print "addToStudy() failed"
return ""
return aShape.GetStudyEntry()
## Publish in study aShape with name aName as sub-object of previously published aFather
#
# @ref swig_SubShapeAllSorted "Example"
def addToStudyInFather(self, aFather, aShape, aName):
# Example: see GEOM_TestAll.py
try:
aSObject = self.AddInStudy(self.myStudy, aShape, aName, aFather)
except:
print "addToStudyInFather() failed"
return ""
return aShape.GetStudyEntry()
# end of l1_geompy_auxiliary
## @}
## @addtogroup l3_restore_ss
## @{
## Publish sub-shapes, standing for arguments and sub-shapes of arguments
# To be used from python scripts out of geompy.addToStudy (non-default usage)
# \param theObject published GEOM object, arguments of which will be published
# \param theArgs list of GEOM_Object, operation arguments to be published.
# If this list is empty, all operation arguments will be published
# \param theFindMethod method to search subshapes, corresponding to arguments and
# their subshapes. Value from enumeration GEOM::find_shape_method.
# \param theInheritFirstArg set properties of the first argument for <VAR>theObject</VAR>.
# Do not publish subshapes in place of arguments, but only
# in place of subshapes of the first argument,
# because the whole shape corresponds to the first argument.
# Mainly to be used after transformations, but it also can be
# usefull after partition with one object shape, and some other
# operations, where only the first argument has to be considered.
# If theObject has only one argument shape, this flag is automatically
# considered as True, not regarding really passed value.
# \param theAddPrefix add prefix "from_" to names of restored sub-shapes,
# and prefix "from_subshapes_of_" to names of partially restored subshapes.
# \return list of published sub-shapes
#
# @ref tui_restore_prs_params "Example"
def RestoreSubShapes (self, theObject, theArgs=[], theFindMethod=GEOM.FSM_GetInPlace,
theInheritFirstArg=False, theAddPrefix=True):
# Example: see GEOM_TestAll.py
return self.RestoreSubShapesO(self.myStudy, theObject, theArgs,
theFindMethod, theInheritFirstArg, theAddPrefix)
# end of l3_restore_ss
## @}
## @addtogroup l3_basic_go
## @{
## Create point by three coordinates.
# @param theX The X coordinate of the point.
# @param theY The Y coordinate of the point.
# @param theZ The Z coordinate of the point.
# @return New GEOM_Object, containing the created point.
#
# @ref tui_creation_point "Example"
def MakeVertex(self,theX, theY, theZ):
# Example: see GEOM_TestAll.py
theX,theY,theZ,Parameters = ParseParameters(theX, theY, theZ)
anObj = self.BasicOp.MakePointXYZ(theX, theY, theZ)
RaiseIfFailed("MakePointXYZ", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
## Create a point, distant from the referenced point
# on the given distances along the coordinate axes.
# @param theReference The referenced point.
# @param theX Displacement from the referenced point along OX axis.
# @param theY Displacement from the referenced point along OY axis.
# @param theZ Displacement from the referenced point along OZ axis.
# @return New GEOM_Object, containing the created point.
#
# @ref tui_creation_point "Example"
def MakeVertexWithRef(self,theReference, theX, theY, theZ):
# Example: see GEOM_TestAll.py
theX,theY,theZ,Parameters = ParseParameters(theX, theY, theZ)
anObj = self.BasicOp.MakePointWithReference(theReference, theX, theY, theZ)
RaiseIfFailed("MakePointWithReference", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
## Create a point, corresponding to the given parameter on the given curve.
# @param theRefCurve The referenced curve.
# @param theParameter Value of parameter on the referenced curve.
# @return New GEOM_Object, containing the created point.
#
# @ref tui_creation_point "Example"
def MakeVertexOnCurve(self,theRefCurve, theParameter):
# Example: see GEOM_TestAll.py
theParameter, Parameters = ParseParameters(theParameter)
anObj = self.BasicOp.MakePointOnCurve(theRefCurve, theParameter)
RaiseIfFailed("MakePointOnCurve", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
## Create a point by projection give coordinates on the given curve
# @param theRefCurve The referenced curve.
# @param theX X-coordinate in 3D space
# @param theY Y-coordinate in 3D space
# @param theZ Z-coordinate in 3D space
# @return New GEOM_Object, containing the created point.
#
# @ref tui_creation_point "Example"
def MakeVertexOnCurveByCoord(self,theRefCurve, theX, theY, theZ):
# Example: see GEOM_TestAll.py
theX, theY, theZ, Parameters = ParseParameters(theX, theY, theZ)
anObj = self.BasicOp.MakePointOnCurveByCoord(theRefCurve, theX, theY, theZ)
RaiseIfFailed("MakeVertexOnCurveByCoord", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
## Create a point, corresponding to the given parameters on the
# given surface.
# @param theRefSurf The referenced surface.
# @param theUParameter Value of U-parameter on the referenced surface.
# @param theVParameter Value of V-parameter on the referenced surface.
# @return New GEOM_Object, containing the created point.
#
# @ref swig_MakeVertexOnSurface "Example"
def MakeVertexOnSurface(self, theRefSurf, theUParameter, theVParameter):
theUParameter, theVParameter, Parameters = ParseParameters(theUParameter, theVParameter)
# Example: see GEOM_TestAll.py
anObj = self.BasicOp.MakePointOnSurface(theRefSurf, theUParameter, theVParameter)
RaiseIfFailed("MakePointOnSurface", self.BasicOp)
anObj.SetParameters(Parameters);
return anObj
## Create a point by projection give coordinates on the given surface
# @param theRefSurf The referenced surface.
# @param theX X-coordinate in 3D space
# @param theY Y-coordinate in 3D space
# @param theZ Z-coordinate in 3D space
# @return New GEOM_Object, containing the created point.
#
# @ref swig_MakeVertexOnSurfaceByCoord "Example"
def MakeVertexOnSurfaceByCoord(self, theRefSurf, theX, theY, theZ):
theX, theY, theZ, Parameters = ParseParameters(theX, theY, theZ)
# Example: see GEOM_TestAll.py
anObj = self.BasicOp.MakePointOnSurfaceByCoord(theRefSurf, theX, theY, theZ)
RaiseIfFailed("MakeVertexOnSurfaceByCoord", self.BasicOp)
anObj.SetParameters(Parameters);
return anObj
## Create a point on intersection of two lines.
# @param theRefLine1, theRefLine2 The referenced lines.
# @return New GEOM_Object, containing the created point.
#
# @ref swig_MakeVertexOnLinesIntersection "Example"
def MakeVertexOnLinesIntersection(self, theRefLine1, theRefLine2):
# Example: see GEOM_TestAll.py
anObj = self.BasicOp.MakePointOnLinesIntersection(theRefLine1, theRefLine2)
RaiseIfFailed("MakePointOnLinesIntersection", self.BasicOp)
return anObj
## Create a tangent, corresponding to the given parameter on the given curve.
# @param theRefCurve The referenced curve.
# @param theParameter Value of parameter on the referenced curve.
# @return New GEOM_Object, containing the created tangent.
#
# @ref swig_MakeTangentOnCurve "Example"
def MakeTangentOnCurve(self, theRefCurve, theParameter):
anObj = self.BasicOp.MakeTangentOnCurve(theRefCurve, theParameter)
RaiseIfFailed("MakeTangentOnCurve", self.BasicOp)
return anObj
## Create a tangent plane, corresponding to the given parameter on the given face.
# @param theFace The face for which tangent plane should be built.
# @param theParameterV vertical value of the center point (0.0 - 1.0).
# @param theParameterU horisontal value of the center point (0.0 - 1.0).
# @param theTrimSize the size of plane.
# @return New GEOM_Object, containing the created tangent.
#
# @ref swig_MakeTangentPlaneOnFace "Example"
def MakeTangentPlaneOnFace(self, theFace, theParameterU, theParameterV, theTrimSize):
anObj = self.BasicOp.MakeTangentPlaneOnFace(theFace, theParameterU, theParameterV, theTrimSize)
RaiseIfFailed("MakeTangentPlaneOnFace", self.BasicOp)
return anObj
## Create a vector with the given components.
# @param theDX X component of the vector.
# @param theDY Y component of the vector.
# @param theDZ Z component of the vector.
# @return New GEOM_Object, containing the created vector.
#
# @ref tui_creation_vector "Example"
def MakeVectorDXDYDZ(self,theDX, theDY, theDZ):
# Example: see GEOM_TestAll.py
theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
anObj = self.BasicOp.MakeVectorDXDYDZ(theDX, theDY, theDZ)
RaiseIfFailed("MakeVectorDXDYDZ", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
## Create a vector between two points.
# @param thePnt1 Start point for the vector.
# @param thePnt2 End point for the vector.
# @return New GEOM_Object, containing the created vector.
#
# @ref tui_creation_vector "Example"
def MakeVector(self,thePnt1, thePnt2):
# Example: see GEOM_TestAll.py
anObj = self.BasicOp.MakeVectorTwoPnt(thePnt1, thePnt2)
RaiseIfFailed("MakeVectorTwoPnt", self.BasicOp)
return anObj
## Create a line, passing through the given point
# and parrallel to the given direction
# @param thePnt Point. The resulting line will pass through it.
# @param theDir Direction. The resulting line will be parallel to it.
# @return New GEOM_Object, containing the created line.
#
# @ref tui_creation_line "Example"
def MakeLine(self,thePnt, theDir):
# Example: see GEOM_TestAll.py
anObj = self.BasicOp.MakeLine(thePnt, theDir)
RaiseIfFailed("MakeLine", self.BasicOp)
return anObj
## Create a line, passing through the given points
# @param thePnt1 First of two points, defining the line.
# @param thePnt2 Second of two points, defining the line.
# @return New GEOM_Object, containing the created line.
#
# @ref tui_creation_line "Example"
def MakeLineTwoPnt(self,thePnt1, thePnt2):
# Example: see GEOM_TestAll.py
anObj = self.BasicOp.MakeLineTwoPnt(thePnt1, thePnt2)
RaiseIfFailed("MakeLineTwoPnt", self.BasicOp)
return anObj
## Create a line on two faces intersection.
# @param theFace1 First of two faces, defining the line.
# @param theFace2 Second of two faces, defining the line.
# @return New GEOM_Object, containing the created line.
#
# @ref swig_MakeLineTwoFaces "Example"
def MakeLineTwoFaces(self, theFace1, theFace2):
# Example: see GEOM_TestAll.py
anObj = self.BasicOp.MakeLineTwoFaces(theFace1, theFace2)
RaiseIfFailed("MakeLineTwoFaces", self.BasicOp)
return anObj
## Create a plane, passing through the given point
# and normal to the given vector.
# @param thePnt Point, the plane has to pass through.
# @param theVec Vector, defining the plane normal direction.
# @param theTrimSize Half size of a side of quadrangle face, representing the plane.
# @return New GEOM_Object, containing the created plane.
#
# @ref tui_creation_plane "Example"
def MakePlane(self,thePnt, theVec, theTrimSize):
# Example: see GEOM_TestAll.py
theTrimSize, Parameters = ParseParameters(theTrimSize);
anObj = self.BasicOp.MakePlanePntVec(thePnt, theVec, theTrimSize)
RaiseIfFailed("MakePlanePntVec", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
## Create a plane, passing through the three given points
# @param thePnt1 First of three points, defining the plane.
# @param thePnt2 Second of three points, defining the plane.
# @param thePnt3 Fird of three points, defining the plane.
# @param theTrimSize Half size of a side of quadrangle face, representing the plane.
# @return New GEOM_Object, containing the created plane.
#
# @ref tui_creation_plane "Example"
def MakePlaneThreePnt(self,thePnt1, thePnt2, thePnt3, theTrimSize):
# Example: see GEOM_TestAll.py
theTrimSize, Parameters = ParseParameters(theTrimSize);
anObj = self.BasicOp.MakePlaneThreePnt(thePnt1, thePnt2, thePnt3, theTrimSize)
RaiseIfFailed("MakePlaneThreePnt", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
## Create a plane, similar to the existing one, but with another size of representing face.
# @param theFace Referenced plane or LCS(Marker).
# @param theTrimSize New half size of a side of quadrangle face, representing the plane.
# @return New GEOM_Object, containing the created plane.
#
# @ref tui_creation_plane "Example"
def MakePlaneFace(self,theFace, theTrimSize):
# Example: see GEOM_TestAll.py
theTrimSize, Parameters = ParseParameters(theTrimSize);
anObj = self.BasicOp.MakePlaneFace(theFace, theTrimSize)
RaiseIfFailed("MakePlaneFace", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
## Create a plane, passing through the 2 vectors
# with center in a start point of the first vector.
# @param theVec1 Vector, defining center point and plane direction.
# @param theVec2 Vector, defining the plane normal direction.
# @param theTrimSize Half size of a side of quadrangle face, representing the plane.
# @return New GEOM_Object, containing the created plane.
#
# @ref tui_creation_plane "Example"
def MakePlane2Vec(self,theVec1, theVec2, theTrimSize):
# Example: see GEOM_TestAll.py
theTrimSize, Parameters = ParseParameters(theTrimSize);
anObj = self.BasicOp.MakePlane2Vec(theVec1, theVec2, theTrimSize)
RaiseIfFailed("MakePlane2Vec", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
## Create a plane, based on a Local coordinate system.
# @param theLCS coordinate system, defining plane.
# @param theTrimSize Half size of a side of quadrangle face, representing the plane.
# @param theOrientation OXY, OYZ or OZX orientation - (1, 2 or 3)
# @return New GEOM_Object, containing the created plane.
#
# @ref tui_creation_plane "Example"
def MakePlaneLCS(self,theLCS, theTrimSize, theOrientation):
# Example: see GEOM_TestAll.py
theTrimSize, Parameters = ParseParameters(theTrimSize);
anObj = self.BasicOp.MakePlaneLCS(theLCS, theTrimSize, theOrientation)
RaiseIfFailed("MakePlaneLCS", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
## Create a local coordinate system.
# @param OX,OY,OZ Three coordinates of coordinate system origin.
# @param XDX,XDY,XDZ Three components of OX direction
# @param YDX,YDY,YDZ Three components of OY direction
# @return New GEOM_Object, containing the created coordinate system.
#
# @ref swig_MakeMarker "Example"
def MakeMarker(self, OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ):
# Example: see GEOM_TestAll.py
OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ, Parameters = ParseParameters(OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ);
anObj = self.BasicOp.MakeMarker(OX,OY,OZ, XDX,XDY,XDZ, YDX,YDY,YDZ)
RaiseIfFailed("MakeMarker", self.BasicOp)
anObj.SetParameters(Parameters)
return anObj
## Create a local coordinate system from shape.
# @param theShape The initial shape to detect the coordinate system.
# @return New GEOM_Object, containing the created coordinate system.
#
# @ref tui_creation_lcs "Example"
def MakeMarkerFromShape(self, theShape):
anObj = self.BasicOp.MakeMarkerFromShape(theShape)
RaiseIfFailed("MakeMarkerFromShape", self.BasicOp)
return anObj
## Create a local coordinate system from point and two vectors.
# @param theOrigin Point of coordinate system origin.
# @param theXVec Vector of X direction
# @param theYVec Vector of Y direction
# @return New GEOM_Object, containing the created coordinate system.
#
# @ref tui_creation_lcs "Example"
def MakeMarkerPntTwoVec(self, theOrigin, theXVec, theYVec):
anObj = self.BasicOp.MakeMarkerPntTwoVec(theOrigin, theXVec, theYVec)
RaiseIfFailed("MakeMarkerPntTwoVec", self.BasicOp)
return anObj
# end of l3_basic_go
## @}
## @addtogroup l4_curves
## @{
## Create an arc of circle, passing through three given points.
# @param thePnt1 Start point of the arc.
# @param thePnt2 Middle point of the arc.
# @param thePnt3 End point of the arc.
# @return New GEOM_Object, containing the created arc.
#
# @ref swig_MakeArc "Example"
def MakeArc(self,thePnt1, thePnt2, thePnt3):
# Example: see GEOM_TestAll.py
anObj = self.CurvesOp.MakeArc(thePnt1, thePnt2, thePnt3)
RaiseIfFailed("MakeArc", self.CurvesOp)
return anObj
## Create an arc of circle from a center and 2 points.
# @param thePnt1 Center of the arc
# @param thePnt2 Start point of the arc. (Gives also the radius of the arc)
# @param thePnt3 End point of the arc (Gives also a direction)
# @param theSense Orientation of the arc
# @return New GEOM_Object, containing the created arc.
#
# @ref swig_MakeArc "Example"
def MakeArcCenter(self, thePnt1, thePnt2, thePnt3, theSense=False):
# Example: see GEOM_TestAll.py
anObj = self.CurvesOp.MakeArcCenter(thePnt1, thePnt2, thePnt3, theSense)
RaiseIfFailed("MakeArcCenter", self.CurvesOp)
return anObj
## Create an arc of ellipse, of center and two points.
# @param theCenter Center of the arc.
# @param thePnt1 defines major radius of the arc by distance from Pnt1 to Pnt2.
# @param thePnt2 defines plane of ellipse and minor radius as distance from Pnt3 to line from Pnt1 to Pnt2.
# @return New GEOM_Object, containing the created arc.
#
# @ref swig_MakeArc "Example"
def MakeArcOfEllipse(self,theCenter, thePnt1, thePnt2):
# Example: see GEOM_TestAll.py
anObj = self.CurvesOp.MakeArcOfEllipse(theCenter, thePnt1, thePnt2)
RaiseIfFailed("MakeArcOfEllipse", self.CurvesOp)
return anObj
## Create a circle with given center, normal vector and radius.
# @param thePnt Circle center.
# @param theVec Vector, normal to the plane of the circle.
# @param theR Circle radius.
# @return New GEOM_Object, containing the created circle.
#
# @ref tui_creation_circle "Example"
def MakeCircle(self, thePnt, theVec, theR):
# Example: see GEOM_TestAll.py
theR, Parameters = ParseParameters(theR)
anObj = self.CurvesOp.MakeCirclePntVecR(thePnt, theVec, theR)
RaiseIfFailed("MakeCirclePntVecR", self.CurvesOp)
anObj.SetParameters(Parameters)
return anObj
## Create a circle with given radius.
# Center of the circle will be in the origin of global
# coordinate system and normal vector will be codirected with Z axis
# @param theR Circle radius.
# @return New GEOM_Object, containing the created circle.
def MakeCircleR(self, theR):
anObj = self.CurvesOp.MakeCirclePntVecR(None, None, theR)
RaiseIfFailed("MakeCirclePntVecR", self.CurvesOp)
return anObj
## Create a circle, passing through three given points
# @param thePnt1,thePnt2,thePnt3 Points, defining the circle.
# @return New GEOM_Object, containing the created circle.
#
# @ref tui_creation_circle "Example"
def MakeCircleThreePnt(self,thePnt1, thePnt2, thePnt3):
# Example: see GEOM_TestAll.py
anObj = self.CurvesOp.MakeCircleThreePnt(thePnt1, thePnt2, thePnt3)
RaiseIfFailed("MakeCircleThreePnt", self.CurvesOp)
return anObj
## Create a circle, with given point1 as center,
# passing through the point2 as radius and laying in the plane,
# defined by all three given points.
# @param thePnt1,thePnt2,thePnt3 Points, defining the circle.
# @return New GEOM_Object, containing the created circle.
#
# @ref swig_MakeCircle "Example"
def MakeCircleCenter2Pnt(self,thePnt1, thePnt2, thePnt3):
# Example: see GEOM_example6.py
anObj = self.CurvesOp.MakeCircleCenter2Pnt(thePnt1, thePnt2, thePnt3)
RaiseIfFailed("MakeCircleCenter2Pnt", self.CurvesOp)
return anObj
## Create an ellipse with given center, normal vector and radiuses.
# @param thePnt Ellipse center.
# @param theVec Vector, normal to the plane of the ellipse.
# @param theRMajor Major ellipse radius.
# @param theRMinor Minor ellipse radius.
# @param theVecMaj Vector, direction of the ellipse's main axis.
# @return New GEOM_Object, containing the created ellipse.
#
# @ref tui_creation_ellipse "Example"
def MakeEllipse(self, thePnt, theVec, theRMajor, theRMinor, theVecMaj=None):
# Example: see GEOM_TestAll.py
theRMajor, theRMinor, Parameters = ParseParameters(theRMajor, theRMinor)
if theVecMaj is not None:
anObj = self.CurvesOp.MakeEllipseVec(thePnt, theVec, theRMajor, theRMinor, theVecMaj)
else:
anObj = self.CurvesOp.MakeEllipse(thePnt, theVec, theRMajor, theRMinor)
pass
RaiseIfFailed("MakeEllipse", self.CurvesOp)
anObj.SetParameters(Parameters)
return anObj
## Create an ellipse with given radiuses.
# Center of the ellipse will be in the origin of global
# coordinate system and normal vector will be codirected with Z axis
# @param theRMajor Major ellipse radius.
# @param theRMinor Minor ellipse radius.
# @return New GEOM_Object, containing the created ellipse.
def MakeEllipseRR(self, theRMajor, theRMinor):
anObj = self.CurvesOp.MakeEllipse(None, None, theRMajor, theRMinor)
RaiseIfFailed("MakeEllipse", self.CurvesOp)
return anObj
## Create a polyline on the set of points.
# @param thePoints Sequence of points for the polyline.
# @return New GEOM_Object, containing the created polyline.
#
# @ref tui_creation_curve "Example"
def MakePolyline(self,thePoints):
# Example: see GEOM_TestAll.py
anObj = self.CurvesOp.MakePolyline(thePoints)
RaiseIfFailed("MakePolyline", self.CurvesOp)
return anObj
## Create bezier curve on the set of points.
# @param thePoints Sequence of points for the bezier curve.
# @return New GEOM_Object, containing the created bezier curve.
#
# @ref tui_creation_curve "Example"
def MakeBezier(self,thePoints):
# Example: see GEOM_TestAll.py
anObj = self.CurvesOp.MakeSplineBezier(thePoints)
RaiseIfFailed("MakeSplineBezier", self.CurvesOp)
return anObj
## Create B-Spline curve on the set of points.
# @param thePoints Sequence of points for the B-Spline curve.
# @param theIsClosed If True, build a closed curve.
# @return New GEOM_Object, containing the created B-Spline curve.
#
# @ref tui_creation_curve "Example"
def MakeInterpol(self, thePoints, theIsClosed=False):
# Example: see GEOM_TestAll.py
anObj = self.CurvesOp.MakeSplineInterpolation(thePoints, theIsClosed)
RaiseIfFailed("MakeSplineInterpolation", self.CurvesOp)
return anObj
# end of l4_curves
## @}
## @addtogroup l3_sketcher
## @{
## Create a sketcher (wire or face), following the textual description,
# passed through <VAR>theCommand</VAR> argument. \n
# Edges of the resulting wire or face will be arcs of circles and/or linear segments. \n
# Format of the description string have to be the following:
#
# "Sketcher[:F x1 y1]:CMD[:CMD[:CMD...]]"
#
# Where:
# - x1, y1 are coordinates of the first sketcher point (zero by default),
# - CMD is one of
# - "R angle" : Set the direction by angle
# - "D dx dy" : Set the direction by DX & DY
# .
# \n
# - "TT x y" : Create segment by point at X & Y
# - "T dx dy" : Create segment by point with DX & DY
# - "L length" : Create segment by direction & Length
# - "IX x" : Create segment by direction & Intersect. X
# - "IY y" : Create segment by direction & Intersect. Y
# .
# \n
# - "C radius length" : Create arc by direction, radius and length(in degree)
# .
# \n
# - "WW" : Close Wire (to finish)
# - "WF" : Close Wire and build face (to finish)
#
# @param theCommand String, defining the sketcher in local
# coordinates of the working plane.
# @param theWorkingPlane Nine double values, defining origin,
# OZ and OX directions of the working plane.
# @return New GEOM_Object, containing the created wire.
#
# @ref tui_sketcher_page "Example"
def MakeSketcher(self, theCommand, theWorkingPlane = [0,0,0, 0,0,1, 1,0,0]):
# Example: see GEOM_TestAll.py
theCommand,Parameters = ParseSketcherCommand(theCommand)
anObj = self.CurvesOp.MakeSketcher(theCommand, theWorkingPlane)
RaiseIfFailed("MakeSketcher", self.CurvesOp)
anObj.SetParameters(Parameters)
return anObj
## Create a sketcher (wire or face), following the textual description,
# passed through <VAR>theCommand</VAR> argument. \n
# For format of the description string see the previous method.\n
# @param theCommand String, defining the sketcher in local
# coordinates of the working plane.
# @param theWorkingPlane Planar Face or LCS(Marker) of the working plane.
# @return New GEOM_Object, containing the created wire.
#
# @ref tui_sketcher_page "Example"
def MakeSketcherOnPlane(self, theCommand, theWorkingPlane):
anObj = self.CurvesOp.MakeSketcherOnPlane(theCommand, theWorkingPlane)
RaiseIfFailed("MakeSketcherOnPlane", self.CurvesOp)
return anObj
## Create a sketcher wire, following the numerical description,
# passed through <VAR>theCoordinates</VAR> argument. \n
# @param theCoordinates double values, defining points to create a wire,
# passing from it.
# @return New GEOM_Object, containing the created wire.
#
# @ref tui_sketcher_page "Example"
def Make3DSketcher(self, theCoordinates):
theCoordinates,Parameters = ParseParameters(theCoordinates)
anObj = self.CurvesOp.Make3DSketcher(theCoordinates)
RaiseIfFailed("Make3DSketcher", self.CurvesOp)
anObj.SetParameters(Parameters)
return anObj
# end of l3_sketcher
## @}
## @addtogroup l3_3d_primitives
## @{
## Create a box by coordinates of two opposite vertices.
#
# @ref tui_creation_box "Example"
def MakeBox(self,x1,y1,z1,x2,y2,z2):
# Example: see GEOM_TestAll.py
pnt1 = self.MakeVertex(x1,y1,z1)
pnt2 = self.MakeVertex(x2,y2,z2)
return self.MakeBoxTwoPnt(pnt1,pnt2)
## Create a box with specified dimensions along the coordinate axes
# and with edges, parallel to the coordinate axes.
# Center of the box will be at point (DX/2, DY/2, DZ/2).
# @param theDX Length of Box edges, parallel to OX axis.
# @param theDY Length of Box edges, parallel to OY axis.
# @param theDZ Length of Box edges, parallel to OZ axis.
# @return New GEOM_Object, containing the created box.
#
# @ref tui_creation_box "Example"
def MakeBoxDXDYDZ(self,theDX, theDY, theDZ):
# Example: see GEOM_TestAll.py
theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
anObj = self.PrimOp.MakeBoxDXDYDZ(theDX, theDY, theDZ)
RaiseIfFailed("MakeBoxDXDYDZ", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a box with two specified opposite vertices,
# and with edges, parallel to the coordinate axes
# @param thePnt1 First of two opposite vertices.
# @param thePnt2 Second of two opposite vertices.
# @return New GEOM_Object, containing the created box.
#
# @ref tui_creation_box "Example"
def MakeBoxTwoPnt(self,thePnt1, thePnt2):
# Example: see GEOM_TestAll.py
anObj = self.PrimOp.MakeBoxTwoPnt(thePnt1, thePnt2)
RaiseIfFailed("MakeBoxTwoPnt", self.PrimOp)
return anObj
## Create a face with specified dimensions along OX-OY coordinate axes,
# with edges, parallel to this coordinate axes.
# @param theH height of Face.
# @param theW width of Face.
# @param theOrientation orientation belong axis OXY OYZ OZX
# @return New GEOM_Object, containing the created face.
#
# @ref tui_creation_face "Example"
def MakeFaceHW(self,theH, theW, theOrientation):
# Example: see GEOM_TestAll.py
theH,theW,Parameters = ParseParameters(theH, theW)
anObj = self.PrimOp.MakeFaceHW(theH, theW, theOrientation)
RaiseIfFailed("MakeFaceHW", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a face from another plane and two sizes,
# vertical size and horisontal size.
# @param theObj Normale vector to the creating face or
# the face object.
# @param theH Height (vertical size).
# @param theW Width (horisontal size).
# @return New GEOM_Object, containing the created face.
#
# @ref tui_creation_face "Example"
def MakeFaceObjHW(self, theObj, theH, theW):
# Example: see GEOM_TestAll.py
theH,theW,Parameters = ParseParameters(theH, theW)
anObj = self.PrimOp.MakeFaceObjHW(theObj, theH, theW)
RaiseIfFailed("MakeFaceObjHW", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a disk with given center, normal vector and radius.
# @param thePnt Disk center.
# @param theVec Vector, normal to the plane of the disk.
# @param theR Disk radius.
# @return New GEOM_Object, containing the created disk.
#
# @ref tui_creation_disk "Example"
def MakeDiskPntVecR(self,thePnt, theVec, theR):
# Example: see GEOM_TestAll.py
theR,Parameters = ParseParameters(theR)
anObj = self.PrimOp.MakeDiskPntVecR(thePnt, theVec, theR)
RaiseIfFailed("MakeDiskPntVecR", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a disk, passing through three given points
# @param thePnt1,thePnt2,thePnt3 Points, defining the disk.
# @return New GEOM_Object, containing the created disk.
#
# @ref tui_creation_disk "Example"
def MakeDiskThreePnt(self,thePnt1, thePnt2, thePnt3):
# Example: see GEOM_TestAll.py
anObj = self.PrimOp.MakeDiskThreePnt(thePnt1, thePnt2, thePnt3)
RaiseIfFailed("MakeDiskThreePnt", self.PrimOp)
return anObj
## Create a disk with specified dimensions along OX-OY coordinate axes.
# @param theR Radius of Face.
# @param theOrientation set the orientation belong axis OXY or OYZ or OZX
# @return New GEOM_Object, containing the created disk.
#
# @ref tui_creation_face "Example"
def MakeDiskR(self,theR, theOrientation):
# Example: see GEOM_TestAll.py
theR,Parameters = ParseParameters(theR)
anObj = self.PrimOp.MakeDiskR(theR, theOrientation)
RaiseIfFailed("MakeDiskR", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a cylinder with given base point, axis, radius and height.
# @param thePnt Central point of cylinder base.
# @param theAxis Cylinder axis.
# @param theR Cylinder radius.
# @param theH Cylinder height.
# @return New GEOM_Object, containing the created cylinder.
#
# @ref tui_creation_cylinder "Example"
def MakeCylinder(self,thePnt, theAxis, theR, theH):
# Example: see GEOM_TestAll.py
theR,theH,Parameters = ParseParameters(theR, theH)
anObj = self.PrimOp.MakeCylinderPntVecRH(thePnt, theAxis, theR, theH)
RaiseIfFailed("MakeCylinderPntVecRH", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a cylinder with given radius and height at
# the origin of coordinate system. Axis of the cylinder
# will be collinear to the OZ axis of the coordinate system.
# @param theR Cylinder radius.
# @param theH Cylinder height.
# @return New GEOM_Object, containing the created cylinder.
#
# @ref tui_creation_cylinder "Example"
def MakeCylinderRH(self,theR, theH):
# Example: see GEOM_TestAll.py
theR,theH,Parameters = ParseParameters(theR, theH)
anObj = self.PrimOp.MakeCylinderRH(theR, theH)
RaiseIfFailed("MakeCylinderRH", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a sphere with given center and radius.
# @param thePnt Sphere center.
# @param theR Sphere radius.
# @return New GEOM_Object, containing the created sphere.
#
# @ref tui_creation_sphere "Example"
def MakeSpherePntR(self, thePnt, theR):
# Example: see GEOM_TestAll.py
theR,Parameters = ParseParameters(theR)
anObj = self.PrimOp.MakeSpherePntR(thePnt, theR)
RaiseIfFailed("MakeSpherePntR", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a sphere with given center and radius.
# @param x,y,z Coordinates of sphere center.
# @param theR Sphere radius.
# @return New GEOM_Object, containing the created sphere.
#
# @ref tui_creation_sphere "Example"
def MakeSphere(self, x, y, z, theR):
# Example: see GEOM_TestAll.py
point = self.MakeVertex(x, y, z)
anObj = self.MakeSpherePntR(point, theR)
return anObj
## Create a sphere with given radius at the origin of coordinate system.
# @param theR Sphere radius.
# @return New GEOM_Object, containing the created sphere.
#
# @ref tui_creation_sphere "Example"
def MakeSphereR(self, theR):
# Example: see GEOM_TestAll.py
theR,Parameters = ParseParameters(theR)
anObj = self.PrimOp.MakeSphereR(theR)
RaiseIfFailed("MakeSphereR", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a cone with given base point, axis, height and radiuses.
# @param thePnt Central point of the first cone base.
# @param theAxis Cone axis.
# @param theR1 Radius of the first cone base.
# @param theR2 Radius of the second cone base.
# \note If both radiuses are non-zero, the cone will be truncated.
# \note If the radiuses are equal, a cylinder will be created instead.
# @param theH Cone height.
# @return New GEOM_Object, containing the created cone.
#
# @ref tui_creation_cone "Example"
def MakeCone(self,thePnt, theAxis, theR1, theR2, theH):
# Example: see GEOM_TestAll.py
theR1,theR2,theH,Parameters = ParseParameters(theR1,theR2,theH)
anObj = self.PrimOp.MakeConePntVecR1R2H(thePnt, theAxis, theR1, theR2, theH)
RaiseIfFailed("MakeConePntVecR1R2H", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a cone with given height and radiuses at
# the origin of coordinate system. Axis of the cone will
# be collinear to the OZ axis of the coordinate system.
# @param theR1 Radius of the first cone base.
# @param theR2 Radius of the second cone base.
# \note If both radiuses are non-zero, the cone will be truncated.
# \note If the radiuses are equal, a cylinder will be created instead.
# @param theH Cone height.
# @return New GEOM_Object, containing the created cone.
#
# @ref tui_creation_cone "Example"
def MakeConeR1R2H(self,theR1, theR2, theH):
# Example: see GEOM_TestAll.py
theR1,theR2,theH,Parameters = ParseParameters(theR1,theR2,theH)
anObj = self.PrimOp.MakeConeR1R2H(theR1, theR2, theH)
RaiseIfFailed("MakeConeR1R2H", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a torus with given center, normal vector and radiuses.
# @param thePnt Torus central point.
# @param theVec Torus axis of symmetry.
# @param theRMajor Torus major radius.
# @param theRMinor Torus minor radius.
# @return New GEOM_Object, containing the created torus.
#
# @ref tui_creation_torus "Example"
def MakeTorus(self, thePnt, theVec, theRMajor, theRMinor):
# Example: see GEOM_TestAll.py
theRMajor,theRMinor,Parameters = ParseParameters(theRMajor,theRMinor)
anObj = self.PrimOp.MakeTorusPntVecRR(thePnt, theVec, theRMajor, theRMinor)
RaiseIfFailed("MakeTorusPntVecRR", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a torus with given radiuses at the origin of coordinate system.
# @param theRMajor Torus major radius.
# @param theRMinor Torus minor radius.
# @return New GEOM_Object, containing the created torus.
#
# @ref tui_creation_torus "Example"
def MakeTorusRR(self, theRMajor, theRMinor):
# Example: see GEOM_TestAll.py
theRMajor,theRMinor,Parameters = ParseParameters(theRMajor,theRMinor)
anObj = self.PrimOp.MakeTorusRR(theRMajor, theRMinor)
RaiseIfFailed("MakeTorusRR", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
# end of l3_3d_primitives
## @}
## @addtogroup l3_complex
## @{
## Create a shape by extrusion of the base shape along a vector, defined by two points.
# @param theBase Base shape to be extruded.
# @param thePoint1 First end of extrusion vector.
# @param thePoint2 Second end of extrusion vector.
# @return New GEOM_Object, containing the created prism.
#
# @ref tui_creation_prism "Example"
def MakePrism(self, theBase, thePoint1, thePoint2):
# Example: see GEOM_TestAll.py
anObj = self.PrimOp.MakePrismTwoPnt(theBase, thePoint1, thePoint2)
RaiseIfFailed("MakePrismTwoPnt", self.PrimOp)
return anObj
## Create a shape by extrusion of the base shape along the vector,
# i.e. all the space, transfixed by the base shape during its translation
# along the vector on the given distance.
# @param theBase Base shape to be extruded.
# @param theVec Direction of extrusion.
# @param theH Prism dimension along theVec.
# @return New GEOM_Object, containing the created prism.
#
# @ref tui_creation_prism "Example"
def MakePrismVecH(self, theBase, theVec, theH):
# Example: see GEOM_TestAll.py
theH,Parameters = ParseParameters(theH)
anObj = self.PrimOp.MakePrismVecH(theBase, theVec, theH)
RaiseIfFailed("MakePrismVecH", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a shape by extrusion of the base shape along the vector,
# i.e. all the space, transfixed by the base shape during its translation
# along the vector on the given distance in 2 Ways (forward/backward) .
# @param theBase Base shape to be extruded.
# @param theVec Direction of extrusion.
# @param theH Prism dimension along theVec in forward direction.
# @return New GEOM_Object, containing the created prism.
#
# @ref tui_creation_prism "Example"
def MakePrismVecH2Ways(self, theBase, theVec, theH):
# Example: see GEOM_TestAll.py
theH,Parameters = ParseParameters(theH)
anObj = self.PrimOp.MakePrismVecH2Ways(theBase, theVec, theH)
RaiseIfFailed("MakePrismVecH2Ways", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a shape by extrusion of the base shape along the dx, dy, dz direction
# @param theBase Base shape to be extruded.
# @param theDX, theDY, theDZ Directions of extrusion.
# @return New GEOM_Object, containing the created prism.
#
# @ref tui_creation_prism "Example"
def MakePrismDXDYDZ(self, theBase, theDX, theDY, theDZ):
# Example: see GEOM_TestAll.py
theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
anObj = self.PrimOp.MakePrismDXDYDZ(theBase, theDX, theDY, theDZ)
RaiseIfFailed("MakePrismDXDYDZ", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a shape by extrusion of the base shape along the dx, dy, dz direction
# i.e. all the space, transfixed by the base shape during its translation
# along the vector on the given distance in 2 Ways (forward/backward) .
# @param theBase Base shape to be extruded.
# @param theDX, theDY, theDZ Directions of extrusion.
# @return New GEOM_Object, containing the created prism.
#
# @ref tui_creation_prism "Example"
def MakePrismDXDYDZ2Ways(self, theBase, theDX, theDY, theDZ):
# Example: see GEOM_TestAll.py
theDX,theDY,theDZ,Parameters = ParseParameters(theDX, theDY, theDZ)
anObj = self.PrimOp.MakePrismDXDYDZ2Ways(theBase, theDX, theDY, theDZ)
RaiseIfFailed("MakePrismDXDYDZ2Ways", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a shape by revolution of the base shape around the axis
# on the given angle, i.e. all the space, transfixed by the base
# shape during its rotation around the axis on the given angle.
# @param theBase Base shape to be rotated.
# @param theAxis Rotation axis.
# @param theAngle Rotation angle in radians.
# @return New GEOM_Object, containing the created revolution.
#
# @ref tui_creation_revolution "Example"
def MakeRevolution(self, theBase, theAxis, theAngle):
# Example: see GEOM_TestAll.py
theAngle,Parameters = ParseParameters(theAngle)
anObj = self.PrimOp.MakeRevolutionAxisAngle(theBase, theAxis, theAngle)
RaiseIfFailed("MakeRevolutionAxisAngle", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## The Same Revolution but in both ways forward&backward.
def MakeRevolution2Ways(self, theBase, theAxis, theAngle):
theAngle,Parameters = ParseParameters(theAngle)
anObj = self.PrimOp.MakeRevolutionAxisAngle2Ways(theBase, theAxis, theAngle)
RaiseIfFailed("MakeRevolutionAxisAngle2Ways", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a filling from the given compound of contours.
# @param theShape the compound of contours
# @param theMinDeg a minimal degree of BSpline surface to create
# @param theMaxDeg a maximal degree of BSpline surface to create
# @param theTol2D a 2d tolerance to be reached
# @param theTol3D a 3d tolerance to be reached
# @param theNbIter a number of iteration of approximation algorithm
# @param theMethod Kind of method to perform filling operation:
# 0 - Default - standard behaviour
# 1 - Use edges orientation - orientation of edges are
# used: if edge is reversed curve from this edge
# is reversed before using in filling algorithm.
# 2 - Auto-correct orientation - change orientation
# of curves using minimization of sum of distances
# between ends points of edges.
# @param isApprox if True, BSpline curves are generated in the process
# of surface construction. By default it is False, that means
# the surface is created using Besier curves. The usage of
# Approximation makes the algorithm work slower, but allows
# building the surface for rather complex cases
# @return New GEOM_Object, containing the created filling surface.
#
# @ref tui_creation_filling "Example"
def MakeFilling(self, theShape, theMinDeg, theMaxDeg, theTol2D,
theTol3D, theNbIter, theMethod=GEOM.FOM_Default, isApprox=0):
# Example: see GEOM_TestAll.py
theMinDeg,theMaxDeg,theTol2D,theTol3D,theNbIter,Parameters = ParseParameters(theMinDeg, theMaxDeg, theTol2D, theTol3D, theNbIter)
anObj = self.PrimOp.MakeFilling(theShape, theMinDeg, theMaxDeg,
theTol2D, theTol3D, theNbIter,
theMethod, isApprox)
RaiseIfFailed("MakeFilling", self.PrimOp)
anObj.SetParameters(Parameters)
return anObj
## Create a shell or solid passing through set of sections.Sections should be wires,edges or vertices.
# @param theSeqSections - set of specified sections.
# @param theModeSolid - mode defining building solid or shell
# @param thePreci - precision 3D used for smoothing by default 1.e-6
# @param theRuled - mode defining type of the result surfaces (ruled or smoothed).
# @return New GEOM_Object, containing the created shell or solid.
#
# @ref swig_todo "Example"
def MakeThruSections(self,theSeqSections,theModeSolid,thePreci,theRuled):
# Example: see GEOM_TestAll.py
anObj = self.PrimOp.MakeThruSections(theSeqSections,theModeSolid,thePreci,theRuled)
RaiseIfFailed("MakeThruSections", self.PrimOp)
return anObj
## Create a shape by extrusion of the base shape along
# the path shape. The path shape can be a wire or an edge.
# @param theBase Base shape to be extruded.
# @param thePath Path shape to extrude the base shape along it.
# @return New GEOM_Object, containing the created pipe.
#
# @ref tui_creation_pipe "Example"
def MakePipe(self,theBase, thePath):
# Example: see GEOM_TestAll.py
anObj = self.PrimOp.MakePipe(theBase, thePath)
RaiseIfFailed("MakePipe", self.PrimOp)
return anObj
## Create a shape by extrusion of the profile shape along
# the path shape. The path shape can be a wire or an edge.
# the several profiles can be specified in the several locations of path.
# @param theSeqBases - list of Bases shape to be extruded.
# @param theLocations - list of locations on the path corresponding
# specified list of the Bases shapes. Number of locations
# should be equal to number of bases or list of locations can be empty.
# @param thePath - Path shape to extrude the base shape along it.
# @param theWithContact - the mode defining that the section is translated to be in
# contact with the spine.
# @param theWithCorrection - defining that the section is rotated to be
# orthogonal to the spine tangent in the correspondent point
# @return New GEOM_Object, containing the created pipe.
#
# @ref tui_creation_pipe_with_diff_sec "Example"
def MakePipeWithDifferentSections(self, theSeqBases,
theLocations, thePath,
theWithContact, theWithCorrection):
anObj = self.PrimOp.MakePipeWithDifferentSections(theSeqBases,
theLocations, thePath,
theWithContact, theWithCorrection)
RaiseIfFailed("MakePipeWithDifferentSections", self.PrimOp)
return anObj
## Create a shape by extrusion of the profile shape along
# the path shape. The path shape can be a wire or a edge.
# the several profiles can be specified in the several locations of path.
# @param theSeqBases - list of Bases shape to be extruded. Base shape must be
# shell or face. If number of faces in neighbour sections
# aren't coincided result solid between such sections will
# be created using external boundaries of this shells.
# @param theSeqSubBases - list of corresponding subshapes of section shapes.
# This list is used for searching correspondences between
# faces in the sections. Size of this list must be equal
# to size of list of base shapes.
# @param theLocations - list of locations on the path corresponding
# specified list of the Bases shapes. Number of locations
# should be equal to number of bases. First and last
# locations must be coincided with first and last vertexes
# of path correspondingly.
# @param thePath - Path shape to extrude the base shape along it.
# @param theWithContact - the mode defining that the section is translated to be in
# contact with the spine.
# @param theWithCorrection - defining that the section is rotated to be
# orthogonal to the spine tangent in the correspondent point
# @return New GEOM_Object, containing the created solids.
#
# @ref tui_creation_pipe_with_shell_sec "Example"
def MakePipeWithShellSections(self,theSeqBases, theSeqSubBases,
theLocations, thePath,
theWithContact, theWithCorrection):
anObj = self.PrimOp.MakePipeWithShellSections(theSeqBases, theSeqSubBases,
theLocations, thePath,
theWithContact, theWithCorrection)
RaiseIfFailed("MakePipeWithShellSections", self.PrimOp)
return anObj
## Create a shape by extrusion of the profile shape along
# the path shape. This function is used only for debug pipe
# functionality - it is a version of previous function
# (MakePipeWithShellSections(...)) which give a possibility to
# recieve information about creating pipe between each pair of
# sections step by step.
def MakePipeWithShellSectionsBySteps(self, theSeqBases, theSeqSubBases,
theLocations, thePath,
theWithContact, theWithCorrection):
res = []
nbsect = len(theSeqBases)
nbsubsect = len(theSeqSubBases)
#print "nbsect = ",nbsect
for i in range(1,nbsect):
#print " i = ",i
tmpSeqBases = [ theSeqBases[i-1], theSeqBases[i] ]
tmpLocations = [ theLocations[i-1], theLocations[i] ]
tmpSeqSubBases = []
if nbsubsect>0: tmpSeqSubBases = [ theSeqSubBases[i-1], theSeqSubBases[i] ]
anObj = self.PrimOp.MakePipeWithShellSections(tmpSeqBases, tmpSeqSubBases,
tmpLocations, thePath,
theWithContact, theWithCorrection)
if self.PrimOp.IsDone() == 0:
print "Problems with pipe creation between ",i," and ",i+1," sections"
RaiseIfFailed("MakePipeWithShellSections", self.PrimOp)
break
else:
print "Pipe between ",i," and ",i+1," sections is OK"
res.append(anObj)
pass
pass
resc = self.MakeCompound(res)
#resc = self.MakeSewing(res, 0.001)
#print "resc: ",resc
return resc
## Create solids between given sections
# @param theSeqBases - list of sections (shell or face).
# @param theLocations - list of corresponding vertexes
# @return New GEOM_Object, containing the created solids.
#
# @ref tui_creation_pipe_without_path "Example"
def MakePipeShellsWithoutPath(self, theSeqBases, theLocations):
anObj = self.PrimOp.MakePipeShellsWithoutPath(theSeqBases, theLocations)
RaiseIfFailed("MakePipeShellsWithoutPath", self.PrimOp)
return anObj
## Create a shape by extrusion of the base shape along
# the path shape with constant bi-normal direction along the given vector.
# The path shape can be a wire or an edge.
# @param theBase Base shape to be extruded.
# @param thePath Path shape to extrude the base shape along it.
# @param theVec Vector defines a constant binormal direction to keep the
# same angle beetween the direction and the sections
# along the sweep surface.
# @return New GEOM_Object, containing the created pipe.
#
# @ref tui_creation_pipe "Example"
def MakePipeBiNormalAlongVector(self,theBase, thePath, theVec):
# Example: see GEOM_TestAll.py
anObj = self.PrimOp.MakePipeBiNormalAlongVector(theBase, thePath, theVec)
RaiseIfFailed("MakePipeBiNormalAlongVector", self.PrimOp)
return anObj
# end of l3_complex
## @}
## @addtogroup l3_advanced
## @{
## Create a linear edge with specified ends.
# @param thePnt1 Point for the first end of edge.
# @param thePnt2 Point for the second end of edge.
# @return New GEOM_Object, containing the created edge.
#
# @ref tui_creation_edge "Example"
def MakeEdge(self,thePnt1, thePnt2):
# Example: see GEOM_TestAll.py
anObj = self.ShapesOp.MakeEdge(thePnt1, thePnt2)
RaiseIfFailed("MakeEdge", self.ShapesOp)
return anObj
## Create a wire from the set of edges and wires.
# @param theEdgesAndWires List of edges and/or wires.
# @param theTolerance Maximum distance between vertices, that will be merged.
# Values less than 1e-07 are equivalent to 1e-07 (Precision::Confusion()).
# @return New GEOM_Object, containing the created wire.
#
# @ref tui_creation_wire "Example"
def MakeWire(self, theEdgesAndWires, theTolerance = 1e-07):
# Example: see GEOM_TestAll.py
anObj = self.ShapesOp.MakeWire(theEdgesAndWires, theTolerance)
RaiseIfFailed("MakeWire", self.ShapesOp)
return anObj
## Create a face on the given wire.
# @param theWire closed Wire or Edge to build the face on.
# @param isPlanarWanted If TRUE, only planar face will be built.
# If impossible, NULL object will be returned.
# @return New GEOM_Object, containing the created face.
#
# @ref tui_creation_face "Example"
def MakeFace(self,theWire, isPlanarWanted):
# Example: see GEOM_TestAll.py
anObj = self.ShapesOp.MakeFace(theWire, isPlanarWanted)
RaiseIfFailed("MakeFace", self.ShapesOp)
return anObj
## Create a face on the given wires set.
# @param theWires List of closed wires or edges to build the face on.
# @param isPlanarWanted If TRUE, only planar face will be built.
# If impossible, NULL object will be returned.
# @return New GEOM_Object, containing the created face.
#
# @ref tui_creation_face "Example"
def MakeFaceWires(self,theWires, isPlanarWanted):
# Example: see GEOM_TestAll.py
anObj = self.ShapesOp.MakeFaceWires(theWires, isPlanarWanted)
RaiseIfFailed("MakeFaceWires", self.ShapesOp)
return anObj
## Shortcut to MakeFaceWires()
#
# @ref tui_creation_face "Example 1"
# \n @ref swig_MakeFaces "Example 2"
def MakeFaces(self,theWires, isPlanarWanted):
# Example: see GEOM_TestOthers.py
anObj = self.MakeFaceWires(theWires, isPlanarWanted)
return anObj
## Create a shell from the set of faces and shells.
# @param theFacesAndShells List of faces and/or shells.
# @return New GEOM_Object, containing the created shell.
#
# @ref tui_creation_shell "Example"
def MakeShell(self,theFacesAndShells):
# Example: see GEOM_TestAll.py
anObj = self.ShapesOp.MakeShell(theFacesAndShells)
RaiseIfFailed("MakeShell", self.ShapesOp)
return anObj
## Create a solid, bounded by the given shells.
# @param theShells Sequence of bounding shells.
# @return New GEOM_Object, containing the created solid.
#
# @ref tui_creation_solid "Example"
def MakeSolid(self,theShells):
# Example: see GEOM_TestAll.py
anObj = self.ShapesOp.MakeSolidShells(theShells)
RaiseIfFailed("MakeSolidShells", self.ShapesOp)
return anObj
## Create a compound of the given shapes.
# @param theShapes List of shapes to put in compound.
# @return New GEOM_Object, containing the created compound.
#
# @ref tui_creation_compound "Example"
def MakeCompound(self,theShapes):
# Example: see GEOM_TestAll.py
anObj = self.ShapesOp.MakeCompound(theShapes)
RaiseIfFailed("MakeCompound", self.ShapesOp)
return anObj
# end of l3_advanced
## @}
## @addtogroup l2_measure
## @{
## Gives quantity of faces in the given shape.
# @param theShape Shape to count faces of.
# @return Quantity of faces.
#
# @ref swig_NumberOf "Example"
def NumberOfFaces(self, theShape):
# Example: see GEOM_TestOthers.py
nb_faces = self.ShapesOp.NumberOfFaces(theShape)
RaiseIfFailed("NumberOfFaces", self.ShapesOp)
return nb_faces
## Gives quantity of edges in the given shape.
# @param theShape Shape to count edges of.
# @return Quantity of edges.
#
# @ref swig_NumberOf "Example"
def NumberOfEdges(self, theShape):
# Example: see GEOM_TestOthers.py
nb_edges = self.ShapesOp.NumberOfEdges(theShape)
RaiseIfFailed("NumberOfEdges", self.ShapesOp)
return nb_edges
## Gives quantity of subshapes of type theShapeType in the given shape.
# @param theShape Shape to count subshapes of.
# @param theShapeType Type of subshapes to count.
# @return Quantity of subshapes of given type.
#
# @ref swig_NumberOf "Example"
def NumberOfSubShapes(self, theShape, theShapeType):
# Example: see GEOM_TestOthers.py
nb_ss = self.ShapesOp.NumberOfSubShapes(theShape, theShapeType)
RaiseIfFailed("NumberOfSubShapes", self.ShapesOp)
return nb_ss
## Gives quantity of solids in the given shape.
# @param theShape Shape to count solids in.
# @return Quantity of solids.
#
# @ref swig_NumberOf "Example"
def NumberOfSolids(self, theShape):
# Example: see GEOM_TestOthers.py
nb_solids = self.ShapesOp.NumberOfSubShapes(theShape, ShapeType["SOLID"])
RaiseIfFailed("NumberOfSolids", self.ShapesOp)
return nb_solids
# end of l2_measure
## @}
## @addtogroup l3_healing
## @{
## Reverses an orientation the given shape.
# @param theShape Shape to be reversed.
# @return The reversed copy of theShape.
#
# @ref swig_ChangeOrientation "Example"
def ChangeOrientation(self,theShape):
# Example: see GEOM_TestAll.py
anObj = self.ShapesOp.ChangeOrientation(theShape)
RaiseIfFailed("ChangeOrientation", self.ShapesOp)
return anObj
## Shortcut to ChangeOrientation()
#
# @ref swig_OrientationChange "Example"
def OrientationChange(self,theShape):
# Example: see GEOM_TestOthers.py
anObj = self.ChangeOrientation(theShape)
return anObj
# end of l3_healing
## @}
## @addtogroup l4_obtain
## @{
## Retrieve all free faces from the given shape.
# Free face is a face, which is not shared between two shells of the shape.
# @param theShape Shape to find free faces in.
# @return List of IDs of all free faces, contained in theShape.
#
# @ref tui_measurement_tools_page "Example"
def GetFreeFacesIDs(self,theShape):
# Example: see GEOM_TestOthers.py
anIDs = self.ShapesOp.GetFreeFacesIDs(theShape)
RaiseIfFailed("GetFreeFacesIDs", self.ShapesOp)
return anIDs
## Get all sub-shapes of theShape1 of the given type, shared with theShape2.
# @param theShape1 Shape to find sub-shapes in.
# @param theShape2 Shape to find shared sub-shapes with.
# @param theShapeType Type of sub-shapes to be retrieved.
# @return List of sub-shapes of theShape1, shared with theShape2.
#
# @ref swig_GetSharedShapes "Example"
def GetSharedShapes(self,theShape1, theShape2, theShapeType):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetSharedShapes(theShape1, theShape2, theShapeType)
RaiseIfFailed("GetSharedShapes", self.ShapesOp)
return aList
## Find in <VAR>theShape</VAR> all sub-shapes of type <VAR>theShapeType</VAR>,
# situated relatively the specified plane by the certain way,
# defined through <VAR>theState</VAR> parameter.
# @param theShape Shape to find sub-shapes of.
# @param theShapeType Type of sub-shapes to be retrieved.
# @param theAx1 Vector (or line, or linear edge), specifying normal
# direction and location of the plane to find shapes on.
# @param theState The state of the subshapes to find. It can be one of
# ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
# @return List of all found sub-shapes.
#
# @ref swig_GetShapesOnPlane "Example"
def GetShapesOnPlane(self,theShape, theShapeType, theAx1, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnPlane(theShape, theShapeType, theAx1, theState)
RaiseIfFailed("GetShapesOnPlane", self.ShapesOp)
return aList
## Works like the above method, but returns list of sub-shapes indices
#
# @ref swig_GetShapesOnPlaneIDs "Example"
def GetShapesOnPlaneIDs(self,theShape, theShapeType, theAx1, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnPlaneIDs(theShape, theShapeType, theAx1, theState)
RaiseIfFailed("GetShapesOnPlaneIDs", self.ShapesOp)
return aList
## Find in <VAR>theShape</VAR> all sub-shapes of type <VAR>theShapeType</VAR>,
# situated relatively the specified plane by the certain way,
# defined through <VAR>theState</VAR> parameter.
# @param theShape Shape to find sub-shapes of.
# @param theShapeType Type of sub-shapes to be retrieved.
# @param theAx1 Vector (or line, or linear edge), specifying normal
# direction of the plane to find shapes on.
# @param thePnt Point specifying location of the plane to find shapes on.
# @param theState The state of the subshapes to find. It can be one of
# ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
# @return List of all found sub-shapes.
#
# @ref swig_GetShapesOnPlaneWithLocation "Example"
def GetShapesOnPlaneWithLocation(self, theShape, theShapeType, theAx1, thePnt, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnPlaneWithLocation(theShape, theShapeType,
theAx1, thePnt, theState)
RaiseIfFailed("GetShapesOnPlaneWithLocation", self.ShapesOp)
return aList
## Works like the above method, but returns list of sub-shapes indices
#
# @ref swig_GetShapesOnPlaneWithLocationIDs "Example"
def GetShapesOnPlaneWithLocationIDs(self, theShape, theShapeType, theAx1, thePnt, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnPlaneWithLocationIDs(theShape, theShapeType,
theAx1, thePnt, theState)
RaiseIfFailed("GetShapesOnPlaneWithLocationIDs", self.ShapesOp)
return aList
## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
# the specified cylinder by the certain way, defined through \a theState parameter.
# @param theShape Shape to find sub-shapes of.
# @param theShapeType Type of sub-shapes to be retrieved.
# @param theAxis Vector (or line, or linear edge), specifying
# axis of the cylinder to find shapes on.
# @param theRadius Radius of the cylinder to find shapes on.
# @param theState The state of the subshapes to find. It can be one of
# ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
# @return List of all found sub-shapes.
#
# @ref swig_GetShapesOnCylinder "Example"
def GetShapesOnCylinder(self, theShape, theShapeType, theAxis, theRadius, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnCylinder(theShape, theShapeType, theAxis, theRadius, theState)
RaiseIfFailed("GetShapesOnCylinder", self.ShapesOp)
return aList
## Works like the above method, but returns list of sub-shapes indices
#
# @ref swig_GetShapesOnCylinderIDs "Example"
def GetShapesOnCylinderIDs(self, theShape, theShapeType, theAxis, theRadius, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnCylinderIDs(theShape, theShapeType, theAxis, theRadius, theState)
RaiseIfFailed("GetShapesOnCylinderIDs", self.ShapesOp)
return aList
## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
# the specified cylinder by the certain way, defined through \a theState parameter.
# @param theShape Shape to find sub-shapes of.
# @param theShapeType Type of sub-shapes to be retrieved.
# @param theAxis Vector (or line, or linear edge), specifying
# axis of the cylinder to find shapes on.
# @param thePnt Point specifying location of the bottom of the cylinder.
# @param theRadius Radius of the cylinder to find shapes on.
# @param theState The state of the subshapes to find. It can be one of
# ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
# @return List of all found sub-shapes.
#
# @ref swig_GetShapesOnCylinderWithLocation "Example"
def GetShapesOnCylinderWithLocation(self, theShape, theShapeType, theAxis, thePnt, theRadius, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnCylinderWithLocation(theShape, theShapeType, theAxis, thePnt, theRadius, theState)
RaiseIfFailed("GetShapesOnCylinderWithLocation", self.ShapesOp)
return aList
## Works like the above method, but returns list of sub-shapes indices
#
# @ref swig_GetShapesOnCylinderWithLocationIDs "Example"
def GetShapesOnCylinderWithLocationIDs(self, theShape, theShapeType, theAxis, thePnt, theRadius, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnCylinderWithLocationIDs(theShape, theShapeType, theAxis, thePnt, theRadius, theState)
RaiseIfFailed("GetShapesOnCylinderWithLocationIDs", self.ShapesOp)
return aList
## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
# the specified sphere by the certain way, defined through \a theState parameter.
# @param theShape Shape to find sub-shapes of.
# @param theShapeType Type of sub-shapes to be retrieved.
# @param theCenter Point, specifying center of the sphere to find shapes on.
# @param theRadius Radius of the sphere to find shapes on.
# @param theState The state of the subshapes to find. It can be one of
# ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
# @return List of all found sub-shapes.
#
# @ref swig_GetShapesOnSphere "Example"
def GetShapesOnSphere(self,theShape, theShapeType, theCenter, theRadius, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnSphere(theShape, theShapeType, theCenter, theRadius, theState)
RaiseIfFailed("GetShapesOnSphere", self.ShapesOp)
return aList
## Works like the above method, but returns list of sub-shapes indices
#
# @ref swig_GetShapesOnSphereIDs "Example"
def GetShapesOnSphereIDs(self,theShape, theShapeType, theCenter, theRadius, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnSphereIDs(theShape, theShapeType, theCenter, theRadius, theState)
RaiseIfFailed("GetShapesOnSphereIDs", self.ShapesOp)
return aList
## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
# the specified quadrangle by the certain way, defined through \a theState parameter.
# @param theShape Shape to find sub-shapes of.
# @param theShapeType Type of sub-shapes to be retrieved.
# @param theTopLeftPoint Point, specifying top left corner of a quadrangle
# @param theTopRigthPoint Point, specifying top right corner of a quadrangle
# @param theBottomLeftPoint Point, specifying bottom left corner of a quadrangle
# @param theBottomRigthPoint Point, specifying bottom right corner of a quadrangle
# @param theState The state of the subshapes to find. It can be one of
# ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
# @return List of all found sub-shapes.
#
# @ref swig_GetShapesOnQuadrangle "Example"
def GetShapesOnQuadrangle(self, theShape, theShapeType,
theTopLeftPoint, theTopRigthPoint,
theBottomLeftPoint, theBottomRigthPoint, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnQuadrangle(theShape, theShapeType,
theTopLeftPoint, theTopRigthPoint,
theBottomLeftPoint, theBottomRigthPoint, theState)
RaiseIfFailed("GetShapesOnQuadrangle", self.ShapesOp)
return aList
## Works like the above method, but returns list of sub-shapes indices
#
# @ref swig_GetShapesOnQuadrangleIDs "Example"
def GetShapesOnQuadrangleIDs(self, theShape, theShapeType,
theTopLeftPoint, theTopRigthPoint,
theBottomLeftPoint, theBottomRigthPoint, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnQuadrangleIDs(theShape, theShapeType,
theTopLeftPoint, theTopRigthPoint,
theBottomLeftPoint, theBottomRigthPoint, theState)
RaiseIfFailed("GetShapesOnQuadrangleIDs", self.ShapesOp)
return aList
## Find in \a theShape all sub-shapes of type \a theShapeType, situated relatively
# the specified \a theBox by the certain way, defined through \a theState parameter.
# @param theBox Shape for relative comparing.
# @param theShape Shape to find sub-shapes of.
# @param theShapeType Type of sub-shapes to be retrieved.
# @param theState The state of the subshapes to find. It can be one of
# ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
# @return List of all found sub-shapes.
#
# @ref swig_GetShapesOnBox "Example"
def GetShapesOnBox(self, theBox, theShape, theShapeType, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnBox(theBox, theShape, theShapeType, theState)
RaiseIfFailed("GetShapesOnBox", self.ShapesOp)
return aList
## Works like the above method, but returns list of sub-shapes indices
#
# @ref swig_GetShapesOnBoxIDs "Example"
def GetShapesOnBoxIDs(self, theBox, theShape, theShapeType, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnBoxIDs(theBox, theShape, theShapeType, theState)
RaiseIfFailed("GetShapesOnBoxIDs", self.ShapesOp)
return aList
## Find in \a theShape all sub-shapes of type \a theShapeType,
# situated relatively the specified \a theCheckShape by the
# certain way, defined through \a theState parameter.
# @param theCheckShape Shape for relative comparing. It must be a solid.
# @param theShape Shape to find sub-shapes of.
# @param theShapeType Type of sub-shapes to be retrieved.
# @param theState The state of the subshapes to find. It can be one of
# ST_ON, ST_OUT, ST_ONOUT, ST_IN, ST_ONIN.
# @return List of all found sub-shapes.
#
# @ref swig_GetShapesOnShape "Example"
def GetShapesOnShape(self, theCheckShape, theShape, theShapeType, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnShape(theCheckShape, theShape,
theShapeType, theState)
RaiseIfFailed("GetShapesOnShape", self.ShapesOp)
return aList
## Works like the above method, but returns result as compound
#
# @ref swig_GetShapesOnShapeAsCompound "Example"
def GetShapesOnShapeAsCompound(self, theCheckShape, theShape, theShapeType, theState):
# Example: see GEOM_TestOthers.py
anObj = self.ShapesOp.GetShapesOnShapeAsCompound(theCheckShape, theShape,
theShapeType, theState)
RaiseIfFailed("GetShapesOnShapeAsCompound", self.ShapesOp)
return anObj
## Works like the above method, but returns list of sub-shapes indices
#
# @ref swig_GetShapesOnShapeIDs "Example"
def GetShapesOnShapeIDs(self, theCheckShape, theShape, theShapeType, theState):
# Example: see GEOM_TestOthers.py
aList = self.ShapesOp.GetShapesOnShapeIDs(theCheckShape, theShape,
theShapeType, theState)
RaiseIfFailed("GetShapesOnShapeIDs", self.ShapesOp)
return aList
## Get sub-shape(s) of theShapeWhere, which are
# coincident with \a theShapeWhat or could be a part of it.
# @param theShapeWhere Shape to find sub-shapes of.
# @param theShapeWhat Shape, specifying what to find.
# @return Group of all found sub-shapes or a single found sub-shape.
#
# @ref swig_GetInPlace "Example"
def GetInPlace(self,theShapeWhere, theShapeWhat):
# Example: see GEOM_TestOthers.py
anObj = self.ShapesOp.GetInPlace(theShapeWhere, theShapeWhat)
RaiseIfFailed("GetInPlace", self.ShapesOp)
return anObj
## Get sub-shape(s) of \a theShapeWhere, which are
# coincident with \a theShapeWhat or could be a part of it.
#
# Implementation of this method is based on a saved history of an operation,
# produced \a theShapeWhere. The \a theShapeWhat must be among this operation's
# arguments (an argument shape or a sub-shape of an argument shape).
# The operation could be the Partition or one of boolean operations,
# performed on simple shapes (not on compounds).
#
# @param theShapeWhere Shape to find sub-shapes of.
# @param theShapeWhat Shape, specifying what to find (must be in the
# building history of the ShapeWhere).
# @return Group of all found sub-shapes or a single found sub-shape.
#
# @ref swig_GetInPlace "Example"
def GetInPlaceByHistory(self, theShapeWhere, theShapeWhat):
# Example: see GEOM_TestOthers.py
anObj = self.ShapesOp.GetInPlaceByHistory(theShapeWhere, theShapeWhat)
RaiseIfFailed("GetInPlaceByHistory", self.ShapesOp)
return anObj
## Get sub-shape of theShapeWhere, which is
# equal to \a theShapeWhat.
# @param theShapeWhere Shape to find sub-shape of.
# @param theShapeWhat Shape, specifying what to find.
# @return New GEOM_Object for found sub-shape.
#
# @ref swig_GetSame "Example"
def GetSame(self,theShapeWhere, theShapeWhat):
anObj = self.ShapesOp.GetSame(theShapeWhere, theShapeWhat)
RaiseIfFailed("GetSame", self.ShapesOp)
return anObj
# end of l4_obtain
## @}
## @addtogroup l4_access
## @{
## Obtain a composite sub-shape of <VAR>aShape</VAR>, composed from sub-shapes
# of aShape, selected by their unique IDs inside <VAR>aShape</VAR>
#
# @ref swig_all_decompose "Example"
def GetSubShape(self, aShape, ListOfID):
# Example: see GEOM_TestAll.py
anObj = self.AddSubShape(aShape,ListOfID)
return anObj
## Obtain unique ID of sub-shape <VAR>aSubShape</VAR> inside <VAR>aShape</VAR>
#
# @ref swig_all_decompose "Example"
def GetSubShapeID(self, aShape, aSubShape):
# Example: see GEOM_TestAll.py
anID = self.LocalOp.GetSubShapeIndex(aShape, aSubShape)
RaiseIfFailed("GetSubShapeIndex", self.LocalOp)
return anID
# end of l4_access
## @}
## @addtogroup l4_decompose
## @{
## Explode a shape on subshapes of a given type.
# @param aShape Shape to be exploded.
# @param aType Type of sub-shapes to be retrieved.
# @return List of sub-shapes of type theShapeType, contained in theShape.
#
# @ref swig_all_decompose "Example"
def SubShapeAll(self, aShape, aType):
# Example: see GEOM_TestAll.py
ListObj = self.ShapesOp.MakeExplode(aShape,aType,0)
RaiseIfFailed("MakeExplode", self.ShapesOp)
return ListObj
## Explode a shape on subshapes of a given type.
# @param aShape Shape to be exploded.
# @param aType Type of sub-shapes to be retrieved.
# @return List of IDs of sub-shapes.
#
# @ref swig_all_decompose "Example"
def SubShapeAllIDs(self, aShape, aType):
ListObj = self.ShapesOp.SubShapeAllIDs(aShape,aType,0)
RaiseIfFailed("SubShapeAllIDs", self.ShapesOp)
return ListObj
## Explode a shape on subshapes of a given type.
# Sub-shapes will be sorted by coordinates of their gravity centers.
# @param aShape Shape to be exploded.
# @param aType Type of sub-shapes to be retrieved.
# @return List of sub-shapes of type theShapeType, contained in theShape.
#
# @ref swig_SubShapeAllSorted "Example"
def SubShapeAllSorted(self, aShape, aType):
# Example: see GEOM_TestAll.py
ListObj = self.ShapesOp.MakeExplode(aShape,aType,1)
RaiseIfFailed("MakeExplode", self.ShapesOp)
return ListObj
## Explode a shape on subshapes of a given type.
# Sub-shapes will be sorted by coordinates of their gravity centers.
# @param aShape Shape to be exploded.
# @param aType Type of sub-shapes to be retrieved.
# @return List of IDs of sub-shapes.
#
# @ref swig_all_decompose "Example"
def SubShapeAllSortedIDs(self, aShape, aType):
ListIDs = self.ShapesOp.SubShapeAllIDs(aShape,aType,1)
RaiseIfFailed("SubShapeAllIDs", self.ShapesOp)
return ListIDs
## Obtain a compound of sub-shapes of <VAR>aShape</VAR>,
# selected by they indices in list of all sub-shapes of type <VAR>aType</VAR>.
# Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
#
# @ref swig_all_decompose "Example"
def SubShape(self, aShape, aType, ListOfInd):
# Example: see GEOM_TestAll.py
ListOfIDs = []
AllShapeList = self.SubShapeAll(aShape, aType)
for ind in ListOfInd:
ListOfIDs.append(self.GetSubShapeID(aShape, AllShapeList[ind - 1]))
anObj = self.GetSubShape(aShape, ListOfIDs)
return anObj
## Obtain a compound of sub-shapes of <VAR>aShape</VAR>,
# selected by they indices in sorted list of all sub-shapes of type <VAR>aType</VAR>.
# Each index is in range [1, Nb_Sub-Shapes_Of_Given_Type]
#
# @ref swig_all_decompose "Example"
def SubShapeSorted(self,aShape, aType, ListOfInd):
# Example: see GEOM_TestAll.py
ListOfIDs = []
AllShapeList = self.SubShapeAllSorted(aShape, aType)
for ind in ListOfInd:
ListOfIDs.append(self.GetSubShapeID(aShape, AllShapeList[ind - 1]))
anObj = self.GetSubShape(aShape, ListOfIDs)
return anObj
# end of l4_decompose
## @}
## @addtogroup l3_healing
## @{
## Apply a sequence of Shape Healing operators to the given object.
# @param theShape Shape to be processed.
# @param theOperators List of names of operators ("FixShape", "SplitClosedFaces", etc.).
# @param theParameters List of names of parameters
# ("FixShape.Tolerance3d", "SplitClosedFaces.NbSplitPoints", etc.).
# @param theValues List of values of parameters, in the same order
# as parameters are listed in <VAR>theParameters</VAR> list.
# @return New GEOM_Object, containing processed shape.
#
# @ref tui_shape_processing "Example"
def ProcessShape(self, theShape, theOperators, theParameters, theValues):
# Example: see GEOM_TestHealing.py
theValues,Parameters = ParseList(theValues)
anObj = self.HealOp.ProcessShape(theShape, theOperators, theParameters, theValues)
# To avoid script failure in case of good argument shape
if self.HealOp.GetErrorCode() == "ShHealOper_NotError_msg":
return theShape
RaiseIfFailed("ProcessShape", self.HealOp)
for string in (theOperators + theParameters):
Parameters = ":" + Parameters
pass
anObj.SetParameters(Parameters)
return anObj
## Remove faces from the given object (shape).
# @param theObject Shape to be processed.
# @param theFaces Indices of faces to be removed, if EMPTY then the method
# removes ALL faces of the given object.
# @return New GEOM_Object, containing processed shape.
#
# @ref tui_suppress_faces "Example"
def SuppressFaces(self,theObject, theFaces):
# Example: see GEOM_TestHealing.py
anObj = self.HealOp.SuppressFaces(theObject, theFaces)
RaiseIfFailed("SuppressFaces", self.HealOp)
return anObj
## Sewing of some shapes into single shape.
#
# @ref tui_sewing "Example"
def MakeSewing(self, ListShape, theTolerance):
# Example: see GEOM_TestHealing.py
comp = self.MakeCompound(ListShape)
anObj = self.Sew(comp, theTolerance)
return anObj
## Sewing of the given object.
# @param theObject Shape to be processed.
# @param theTolerance Required tolerance value.
# @return New GEOM_Object, containing processed shape.
def Sew(self, theObject, theTolerance):
# Example: see MakeSewing() above
theTolerance,Parameters = ParseParameters(theTolerance)
anObj = self.HealOp.Sew(theObject, theTolerance)
RaiseIfFailed("Sew", self.HealOp)
anObj.SetParameters(Parameters)
return anObj
## Remove internal wires and edges from the given object (face).
# @param theObject Shape to be processed.
# @param theWires Indices of wires to be removed, if EMPTY then the method
# removes ALL internal wires of the given object.
# @return New GEOM_Object, containing processed shape.
#
# @ref tui_suppress_internal_wires "Example"
def SuppressInternalWires(self,theObject, theWires):
# Example: see GEOM_TestHealing.py
anObj = self.HealOp.RemoveIntWires(theObject, theWires)
RaiseIfFailed("RemoveIntWires", self.HealOp)
return anObj
## Remove internal closed contours (holes) from the given object.
# @param theObject Shape to be processed.
# @param theWires Indices of wires to be removed, if EMPTY then the method
# removes ALL internal holes of the given object
# @return New GEOM_Object, containing processed shape.
#
# @ref tui_suppress_holes "Example"
def SuppressHoles(self,theObject, theWires):
# Example: see GEOM_TestHealing.py
anObj = self.HealOp.FillHoles(theObject, theWires)
RaiseIfFailed("FillHoles", self.HealOp)
return anObj
## Close an open wire.
# @param theObject Shape to be processed.
# @param theWires Indexes of edge(s) and wire(s) to be closed within <VAR>theObject</VAR>'s shape,
# if -1, then <VAR>theObject</VAR> itself is a wire.
# @param isCommonVertex If TRUE : closure by creation of a common vertex,
# If FALS : closure by creation of an edge between ends.
# @return New GEOM_Object, containing processed shape.
#
# @ref tui_close_contour "Example"
def CloseContour(self,theObject, theWires, isCommonVertex):
# Example: see GEOM_TestHealing.py
anObj = self.HealOp.CloseContour(theObject, theWires, isCommonVertex)
RaiseIfFailed("CloseContour", self.HealOp)
return anObj
## Addition of a point to a given edge object.
# @param theObject Shape to be processed.
# @param theEdgeIndex Index of edge to be divided within theObject's shape,
# if -1, then theObject itself is the edge.
# @param theValue Value of parameter on edge or length parameter,
# depending on \a isByParameter.
# @param isByParameter If TRUE : \a theValue is treated as a curve parameter [0..1],
# if FALSE : \a theValue is treated as a length parameter [0..1]
# @return New GEOM_Object, containing processed shape.
#
# @ref tui_add_point_on_edge "Example"
def DivideEdge(self,theObject, theEdgeIndex, theValue, isByParameter):
# Example: see GEOM_TestHealing.py
theEdgeIndex,theValue,isByParameter,Parameters = ParseParameters(theEdgeIndex,theValue,isByParameter)
anObj = self.HealOp.DivideEdge(theObject, theEdgeIndex, theValue, isByParameter)
RaiseIfFailed("DivideEdge", self.HealOp)
anObj.SetParameters(Parameters)
return anObj
## Change orientation of the given object. Updates given shape.
# @param theObject Shape to be processed.
#
# @ref swig_todo "Example"
def ChangeOrientationShell(self,theObject):
theObject = self.HealOp.ChangeOrientation(theObject)
RaiseIfFailed("ChangeOrientation", self.HealOp)
pass
## Change orientation of the given object.
# @param theObject Shape to be processed.
# @return New GEOM_Object, containing processed shape.
#
# @ref swig_todo "Example"
def ChangeOrientationShellCopy(self,theObject):
anObj = self.HealOp.ChangeOrientationCopy(theObject)
RaiseIfFailed("ChangeOrientationCopy", self.HealOp)
return anObj
## Get a list of wires (wrapped in GEOM_Object-s),
# that constitute a free boundary of the given shape.
# @param theObject Shape to get free boundary of.
# @return [status, theClosedWires, theOpenWires]
# status: FALSE, if an error(s) occured during the method execution.
# theClosedWires: Closed wires on the free boundary of the given shape.
# theOpenWires: Open wires on the free boundary of the given shape.
#
# @ref tui_measurement_tools_page "Example"
def GetFreeBoundary(self,theObject):
# Example: see GEOM_TestHealing.py
anObj = self.HealOp.GetFreeBoundary(theObject)
RaiseIfFailed("GetFreeBoundary", self.HealOp)
return anObj
## Replace coincident faces in theShape by one face.
# @param theShape Initial shape.
# @param theTolerance Maximum distance between faces, which can be considered as coincident.
# @param doKeepNonSolids If FALSE, only solids will present in the result,
# otherwise all initial shapes.
# @return New GEOM_Object, containing a copy of theShape without coincident faces.
#
# @ref tui_glue_faces "Example"
def MakeGlueFaces(self, theShape, theTolerance, doKeepNonSolids=True):
# Example: see GEOM_Spanner.py
theTolerance,Parameters = ParseParameters(theTolerance)
anObj = self.ShapesOp.MakeGlueFaces(theShape, theTolerance, doKeepNonSolids)
if anObj is None:
raise RuntimeError, "MakeGlueFaces : " + self.ShapesOp.GetErrorCode()
anObj.SetParameters(Parameters)
return anObj
## Find coincident faces in theShape for possible gluing.
# @param theShape Initial shape.
# @param theTolerance Maximum distance between faces,
# which can be considered as coincident.
# @return ListOfGO.
#
# @ref swig_todo "Example"
def GetGlueFaces(self, theShape, theTolerance):
# Example: see GEOM_Spanner.py
anObj = self.ShapesOp.GetGlueFaces(theShape, theTolerance)
RaiseIfFailed("GetGlueFaces", self.ShapesOp)
return anObj
## Replace coincident faces in theShape by one face
# in compliance with given list of faces
# @param theShape Initial shape.
# @param theTolerance Maximum distance between faces,
# which can be considered as coincident.
# @param theFaces List of faces for gluing.
# @param doKeepNonSolids If FALSE, only solids will present in the result,
# otherwise all initial shapes.
# @return New GEOM_Object, containing a copy of theShape
# without some faces.
#
# @ref swig_todo "Example"
def MakeGlueFacesByList(self, theShape, theTolerance, theFaces, doKeepNonSolids=True):
# Example: see GEOM_Spanner.py
anObj = self.ShapesOp.MakeGlueFacesByList(theShape, theTolerance, theFaces, doKeepNonSolids)
if anObj is None:
raise RuntimeError, "MakeGlueFacesByList : " + self.ShapesOp.GetErrorCode()
return anObj
# end of l3_healing
## @}
## @addtogroup l3_boolean Boolean Operations
## @{
# -----------------------------------------------------------------------------
# Boolean (Common, Cut, Fuse, Section)
# -----------------------------------------------------------------------------
## Perform one of boolean operations on two given shapes.
# @param theShape1 First argument for boolean operation.
# @param theShape2 Second argument for boolean operation.
# @param theOperation Indicates the operation to be done:
# 1 - Common, 2 - Cut, 3 - Fuse, 4 - Section.
# @return New GEOM_Object, containing the result shape.
#
# @ref tui_fuse "Example"
def MakeBoolean(self,theShape1, theShape2, theOperation):
# Example: see GEOM_TestAll.py
anObj = self.BoolOp.MakeBoolean(theShape1, theShape2, theOperation)
RaiseIfFailed("MakeBoolean", self.BoolOp)
return anObj
## Shortcut to MakeBoolean(s1, s2, 1)
#
# @ref tui_common "Example 1"
# \n @ref swig_MakeCommon "Example 2"
def MakeCommon(self, s1, s2):
# Example: see GEOM_TestOthers.py
return self.MakeBoolean(s1, s2, 1)
## Shortcut to MakeBoolean(s1, s2, 2)
#
# @ref tui_cut "Example 1"
# \n @ref swig_MakeCommon "Example 2"
def MakeCut(self, s1, s2):
# Example: see GEOM_TestOthers.py
return self.MakeBoolean(s1, s2, 2)
## Shortcut to MakeBoolean(s1, s2, 3)
#
# @ref tui_fuse "Example 1"
# \n @ref swig_MakeCommon "Example 2"
def MakeFuse(self, s1, s2):
# Example: see GEOM_TestOthers.py
return self.MakeBoolean(s1, s2, 3)
## Shortcut to MakeBoolean(s1, s2, 4)
#
# @ref tui_section "Example 1"
# \n @ref swig_MakeCommon "Example 2"
def MakeSection(self, s1, s2):
# Example: see GEOM_TestOthers.py
return self.MakeBoolean(s1, s2, 4)
# end of l3_boolean
## @}
## @addtogroup l3_basic_op
## @{
## Perform partition operation.
# @param ListShapes Shapes to be intersected.
# @param ListTools Shapes to intersect theShapes.
# !!!NOTE: Each compound from ListShapes and ListTools will be exploded
# in order to avoid possible intersection between shapes from
# this compound.
# @param Limit Type of resulting shapes (corresponding to TopAbs_ShapeEnum).
# @param KeepNonlimitShapes: if this parameter == 0, then only shapes of
# target type (equal to Limit) are kept in the result,
# else standalone shapes of lower dimension
# are kept also (if they exist).
#
# After implementation new version of PartitionAlgo (October 2006)
# other parameters are ignored by current functionality. They are kept
# in this function only for support old versions.
# Ignored parameters:
# @param ListKeepInside Shapes, outside which the results will be deleted.
# Each shape from theKeepInside must belong to theShapes also.
# @param ListRemoveInside Shapes, inside which the results will be deleted.
# Each shape from theRemoveInside must belong to theShapes also.
# @param RemoveWebs If TRUE, perform Glue 3D algorithm.
# @param ListMaterials Material indices for each shape. Make sence,
# only if theRemoveWebs is TRUE.
#
# @return New GEOM_Object, containing the result shapes.
#
# @ref tui_partition "Example"
def MakePartition(self, ListShapes, ListTools=[], ListKeepInside=[], ListRemoveInside=[],
Limit=ShapeType["SHAPE"], RemoveWebs=0, ListMaterials=[],
KeepNonlimitShapes=0):
# Example: see GEOM_TestAll.py
anObj = self.BoolOp.MakePartition(ListShapes, ListTools,
ListKeepInside, ListRemoveInside,
Limit, RemoveWebs, ListMaterials,
KeepNonlimitShapes);
RaiseIfFailed("MakePartition", self.BoolOp)
return anObj
## Perform partition operation.
# This method may be useful if it is needed to make a partition for
# compound contains nonintersected shapes. Performance will be better
# since intersection between shapes from compound is not performed.
#
# Description of all parameters as in previous method MakePartition()
#
# !!!NOTE: Passed compounds (via ListShapes or via ListTools)
# have to consist of nonintersecting shapes.
#
# @return New GEOM_Object, containing the result shapes.
#
# @ref swig_todo "Example"
def MakePartitionNonSelfIntersectedShape(self, ListShapes, ListTools=[],
ListKeepInside=[], ListRemoveInside=[],
Limit=ShapeType["SHAPE"], RemoveWebs=0,
ListMaterials=[], KeepNonlimitShapes=0):
anObj = self.BoolOp.MakePartitionNonSelfIntersectedShape(ListShapes, ListTools,
ListKeepInside, ListRemoveInside,
Limit, RemoveWebs, ListMaterials,
KeepNonlimitShapes);
RaiseIfFailed("MakePartitionNonSelfIntersectedShape", self.BoolOp)
return anObj
## Shortcut to MakePartition()
#
# @ref tui_partition "Example 1"
# \n @ref swig_Partition "Example 2"
def Partition(self, ListShapes, ListTools=[], ListKeepInside=[], ListRemoveInside=[],
Limit=ShapeType["SHAPE"], RemoveWebs=0, ListMaterials=[],
KeepNonlimitShapes=0):
# Example: see GEOM_TestOthers.py
anObj = self.MakePartition(ListShapes, ListTools,
ListKeepInside, ListRemoveInside,
Limit, RemoveWebs, ListMaterials,
KeepNonlimitShapes);
return anObj
## Perform partition of the Shape with the Plane
# @param theShape Shape to be intersected.
# @param thePlane Tool shape, to intersect theShape.
# @return New GEOM_Object, containing the result shape.
#
# @ref tui_partition "Example"
def MakeHalfPartition(self,theShape, thePlane):
# Example: see GEOM_TestAll.py
anObj = self.BoolOp.MakeHalfPartition(theShape, thePlane)
RaiseIfFailed("MakeHalfPartition", self.BoolOp)
return anObj
# end of l3_basic_op
## @}
## @addtogroup l3_transform
## @{
## Translate the given object along the vector, specified
# by its end points, creating its copy before the translation.
# @param theObject The object to be translated.
# @param thePoint1 Start point of translation vector.
# @param thePoint2 End point of translation vector.
# @return New GEOM_Object, containing the translated object.
#
# @ref tui_translation "Example 1"
# \n @ref swig_MakeTranslationTwoPoints "Example 2"
def MakeTranslationTwoPoints(self,theObject, thePoint1, thePoint2):
# Example: see GEOM_TestAll.py
anObj = self.TrsfOp.TranslateTwoPointsCopy(theObject, thePoint1, thePoint2)
RaiseIfFailed("TranslateTwoPointsCopy", self.TrsfOp)
return anObj
## Translate the given object along the vector, specified by its components.
# @param theObject The object to be translated.
# @param theDX,theDY,theDZ Components of translation vector.
# @return Translated GEOM_Object.
#
# @ref tui_translation "Example"
def TranslateDXDYDZ(self,theObject, theDX, theDY, theDZ):
# Example: see GEOM_TestAll.py
theDX, theDY, theDZ, Parameters = ParseParameters(theDX, theDY, theDZ)
anObj = self.TrsfOp.TranslateDXDYDZ(theObject, theDX, theDY, theDZ)
anObj.SetParameters(Parameters)
RaiseIfFailed("TranslateDXDYDZ", self.TrsfOp)
return anObj
## Translate the given object along the vector, specified
# by its components, creating its copy before the translation.
# @param theObject The object to be translated.
# @param theDX,theDY,theDZ Components of translation vector.
# @return New GEOM_Object, containing the translated object.
#
# @ref tui_translation "Example"
def MakeTranslation(self,theObject, theDX, theDY, theDZ):
# Example: see GEOM_TestAll.py
theDX, theDY, theDZ, Parameters = ParseParameters(theDX, theDY, theDZ)
anObj = self.TrsfOp.TranslateDXDYDZCopy(theObject, theDX, theDY, theDZ)
anObj.SetParameters(Parameters)
RaiseIfFailed("TranslateDXDYDZ", self.TrsfOp)
return anObj
## Translate the given object along the given vector,
# creating its copy before the translation.
# @param theObject The object to be translated.
# @param theVector The translation vector.
# @return New GEOM_Object, containing the translated object.
#
# @ref tui_translation "Example"
def MakeTranslationVector(self,theObject, theVector):
# Example: see GEOM_TestAll.py
anObj = self.TrsfOp.TranslateVectorCopy(theObject, theVector)
RaiseIfFailed("TranslateVectorCopy", self.TrsfOp)
return anObj
## Translate the given object along the given vector on given distance.
# @param theObject The object to be translated.
# @param theVector The translation vector.
# @param theDistance The translation distance.
# @param theCopy Flag used to translate object itself or create a copy.
# @return Translated GEOM_Object.
#
# @ref tui_translation "Example"
def TranslateVectorDistance(self, theObject, theVector, theDistance, theCopy):
# Example: see GEOM_TestAll.py
theDistance,Parameters = ParseParameters(theDistance)
anObj = self.TrsfOp.TranslateVectorDistance(theObject, theVector, theDistance, theCopy)
RaiseIfFailed("TranslateVectorDistance", self.TrsfOp)
anObj.SetParameters(Parameters)
return anObj
## Translate the given object along the given vector on given distance,
# creating its copy before the translation.
# @param theObject The object to be translated.
# @param theVector The translation vector.
# @param theDistance The translation distance.
# @return New GEOM_Object, containing the translated object.
#
# @ref tui_translation "Example"
def MakeTranslationVectorDistance(self, theObject, theVector, theDistance):
# Example: see GEOM_TestAll.py
theDistance,Parameters = ParseParameters(theDistance)
anObj = self.TrsfOp.TranslateVectorDistance(theObject, theVector, theDistance, 1)
RaiseIfFailed("TranslateVectorDistance", self.TrsfOp)
anObj.SetParameters(Parameters)
return anObj
## Rotate the given object around the given axis on the given angle.
# @param theObject The object to be rotated.
# @param theAxis Rotation axis.
# @param theAngle Rotation angle in radians.
# @return Rotated GEOM_Object.
#
# @ref tui_rotation "Example"
def Rotate(self,theObject, theAxis, theAngle):
# Example: see GEOM_TestAll.py
flag = False
if isinstance(theAngle,str):
flag = True
theAngle, Parameters = ParseParameters(theAngle)
if flag:
theAngle = theAngle*math.pi/180.0
anObj = self.TrsfOp.Rotate(theObject, theAxis, theAngle)
RaiseIfFailed("RotateCopy", self.TrsfOp)
anObj.SetParameters(Parameters)
return anObj
## Rotate the given object around the given axis
# on the given angle, creating its copy before the rotatation.
# @param theObject The object to be rotated.
# @param theAxis Rotation axis.
# @param theAngle Rotation angle in radians.
# @return New GEOM_Object, containing the rotated object.
#
# @ref tui_rotation "Example"
def MakeRotation(self,theObject, theAxis, theAngle):
# Example: see GEOM_TestAll.py
flag = False
if isinstance(theAngle,str):
flag = True
theAngle, Parameters = ParseParameters(theAngle)
if flag:
theAngle = theAngle*math.pi/180.0
anObj = self.TrsfOp.RotateCopy(theObject, theAxis, theAngle)
RaiseIfFailed("RotateCopy", self.TrsfOp)
anObj.SetParameters(Parameters)
return anObj
## Rotate given object around vector perpendicular to plane
# containing three points, creating its copy before the rotatation.
# @param theObject The object to be rotated.
# @param theCentPoint central point - the axis is the vector perpendicular to the plane
# containing the three points.
# @param thePoint1,thePoint2 - in a perpendicular plane of the axis.
# @return New GEOM_Object, containing the rotated object.
#
# @ref tui_rotation "Example"
def MakeRotationThreePoints(self,theObject, theCentPoint, thePoint1, thePoint2):
# Example: see GEOM_TestAll.py
anObj = self.TrsfOp.RotateThreePointsCopy(theObject, theCentPoint, thePoint1, thePoint2)
RaiseIfFailed("RotateThreePointsCopy", self.TrsfOp)
return anObj
## Scale the given object by the factor, creating its copy before the scaling.
# @param theObject The object to be scaled.
# @param thePoint Center point for scaling.
# Passing None for it means scaling relatively the origin of global CS.
# @param theFactor Scaling factor value.
# @return New GEOM_Object, containing the scaled shape.
#
# @ref tui_scale "Example"
def MakeScaleTransform(self, theObject, thePoint, theFactor):
# Example: see GEOM_TestAll.py
theFactor, Parameters = ParseParameters(theFactor)
anObj = self.TrsfOp.ScaleShapeCopy(theObject, thePoint, theFactor)
RaiseIfFailed("ScaleShapeCopy", self.TrsfOp)
anObj.SetParameters(Parameters)
return anObj
## Scale the given object by different factors along coordinate axes,
# creating its copy before the scaling.
# @param theObject The object to be scaled.
# @param thePoint Center point for scaling.
# Passing None for it means scaling relatively the origin of global CS.
# @param theFactorX,theFactorY,theFactorZ Scaling factors along each axis.
# @return New GEOM_Object, containing the scaled shape.
#
# @ref swig_scale "Example"
def MakeScaleAlongAxes(self, theObject, thePoint, theFactorX, theFactorY, theFactorZ):
# Example: see GEOM_TestAll.py
theFactorX, theFactorY, theFactorZ, Parameters = ParseParameters(theFactorX, theFactorY, theFactorZ)
anObj = self.TrsfOp.ScaleShapeAlongAxesCopy(theObject, thePoint,
theFactorX, theFactorY, theFactorZ)
RaiseIfFailed("MakeScaleAlongAxes", self.TrsfOp)
anObj.SetParameters(Parameters)
return anObj
## Create an object, symmetrical
# to the given one relatively the given plane.
# @param theObject The object to be mirrored.
# @param thePlane Plane of symmetry.
# @return New GEOM_Object, containing the mirrored shape.
#
# @ref tui_mirror "Example"
def MakeMirrorByPlane(self,theObject, thePlane):
# Example: see GEOM_TestAll.py
anObj = self.TrsfOp.MirrorPlaneCopy(theObject, thePlane)
RaiseIfFailed("MirrorPlaneCopy", self.TrsfOp)
return anObj
## Create an object, symmetrical
# to the given one relatively the given axis.
# @param theObject The object to be mirrored.
# @param theAxis Axis of symmetry.
# @return New GEOM_Object, containing the mirrored shape.
#
# @ref tui_mirror "Example"
def MakeMirrorByAxis(self,theObject, theAxis):
# Example: see GEOM_TestAll.py
anObj = self.TrsfOp.MirrorAxisCopy(theObject, theAxis)
RaiseIfFailed("MirrorAxisCopy", self.TrsfOp)
return anObj
## Create an object, symmetrical
# to the given one relatively the given point.
# @param theObject The object to be mirrored.
# @param thePoint Point of symmetry.
# @return New GEOM_Object, containing the mirrored shape.
#
# @ref tui_mirror "Example"
def MakeMirrorByPoint(self,theObject, thePoint):
# Example: see GEOM_TestAll.py
anObj = self.TrsfOp.MirrorPointCopy(theObject, thePoint)
RaiseIfFailed("MirrorPointCopy", self.TrsfOp)
return anObj
## Modify the Location of the given object by LCS,
# creating its copy before the setting.
# @param theObject The object to be displaced.
# @param theStartLCS Coordinate system to perform displacement from it.
# If \a theStartLCS is NULL, displacement
# will be performed from global CS.
# If \a theObject itself is used as \a theStartLCS,
# its location will be changed to \a theEndLCS.
# @param theEndLCS Coordinate system to perform displacement to it.
# @return New GEOM_Object, containing the displaced shape.
#
# @ref tui_modify_location "Example"
def MakePosition(self,theObject, theStartLCS, theEndLCS):
# Example: see GEOM_TestAll.py
anObj = self.TrsfOp.PositionShapeCopy(theObject, theStartLCS, theEndLCS)
RaiseIfFailed("PositionShapeCopy", self.TrsfOp)
return anObj
## Modify the Location of the given object by Path,
# @param theObject The object to be displaced.
# @param thePath Wire or Edge along that the object will be translated.
# @param theDistance progress of Path (0 = start location, 1 = end of path location).
# @param theCopy is to create a copy objects if true.
# @param theReverse - 0 for usual direction, 1 to reverse path direction.
# @return New GEOM_Object, containing the displaced shape.
#
# @ref tui_modify_location "Example"
def PositionAlongPath(self,theObject, thePath, theDistance, theCopy, theReverse):
# Example: see GEOM_TestAll.py
anObj = self.TrsfOp.PositionAlongPath(theObject, thePath, theDistance, theCopy, theReverse)
RaiseIfFailed("PositionAlongPath", self.TrsfOp)
return anObj
## Create new object as offset of the given one.
# @param theObject The base object for the offset.
# @param theOffset Offset value.
# @return New GEOM_Object, containing the offset object.
#
# @ref tui_offset "Example"
def MakeOffset(self,theObject, theOffset):
# Example: see GEOM_TestAll.py
theOffset, Parameters = ParseParameters(theOffset)
anObj = self.TrsfOp.OffsetShapeCopy(theObject, theOffset)
RaiseIfFailed("OffsetShapeCopy", self.TrsfOp)
anObj.SetParameters(Parameters)
return anObj
# -----------------------------------------------------------------------------
# Patterns
# -----------------------------------------------------------------------------
## Translate the given object along the given vector a given number times
# @param theObject The object to be translated.
# @param theVector Direction of the translation.
# @param theStep Distance to translate on.
# @param theNbTimes Quantity of translations to be done.
# @return New GEOM_Object, containing compound of all
# the shapes, obtained after each translation.
#
# @ref tui_multi_translation "Example"
def MakeMultiTranslation1D(self,theObject, theVector, theStep, theNbTimes):
# Example: see GEOM_TestAll.py
theStep, theNbTimes, Parameters = ParseParameters(theStep, theNbTimes)
anObj = self.TrsfOp.MultiTranslate1D(theObject, theVector, theStep, theNbTimes)
RaiseIfFailed("MultiTranslate1D", self.TrsfOp)
anObj.SetParameters(Parameters)
return anObj
## Conseqently apply two specified translations to theObject specified number of times.
# @param theObject The object to be translated.
# @param theVector1 Direction of the first translation.
# @param theStep1 Step of the first translation.
# @param theNbTimes1 Quantity of translations to be done along theVector1.
# @param theVector2 Direction of the second translation.
# @param theStep2 Step of the second translation.
# @param theNbTimes2 Quantity of translations to be done along theVector2.
# @return New GEOM_Object, containing compound of all
# the shapes, obtained after each translation.
#
# @ref tui_multi_translation "Example"
def MakeMultiTranslation2D(self,theObject, theVector1, theStep1, theNbTimes1,
theVector2, theStep2, theNbTimes2):
# Example: see GEOM_TestAll.py
theStep1,theNbTimes1,theStep2,theNbTimes2, Parameters = ParseParameters(theStep1,theNbTimes1,theStep2,theNbTimes2)
anObj = self.TrsfOp.MultiTranslate2D(theObject, theVector1, theStep1, theNbTimes1,
theVector2, theStep2, theNbTimes2)
RaiseIfFailed("MultiTranslate2D", self.TrsfOp)
anObj.SetParameters(Parameters)
return anObj
## Rotate the given object around the given axis a given number times.
# Rotation angle will be 2*PI/theNbTimes.
# @param theObject The object to be rotated.
# @param theAxis The rotation axis.
# @param theNbTimes Quantity of rotations to be done.
# @return New GEOM_Object, containing compound of all the
# shapes, obtained after each rotation.
#
# @ref tui_multi_rotation "Example"
def MultiRotate1D(self,theObject, theAxis, theNbTimes):
# Example: see GEOM_TestAll.py
theAxis, theNbTimes, Parameters = ParseParameters(theAxis, theNbTimes)
anObj = self.TrsfOp.MultiRotate1D(theObject, theAxis, theNbTimes)
RaiseIfFailed("MultiRotate1D", self.TrsfOp)
anObj.SetParameters(Parameters)
return anObj
## Rotate the given object around the
# given axis on the given angle a given number
# times and multi-translate each rotation result.
# Translation direction passes through center of gravity
# of rotated shape and its projection on the rotation axis.
# @param theObject The object to be rotated.
# @param theAxis Rotation axis.
# @param theAngle Rotation angle in graduces.
# @param theNbTimes1 Quantity of rotations to be done.
# @param theStep Translation distance.
# @param theNbTimes2 Quantity of translations to be done.
# @return New GEOM_Object, containing compound of all the
# shapes, obtained after each transformation.
#
# @ref tui_multi_rotation "Example"
def MultiRotate2D(self,theObject, theAxis, theAngle, theNbTimes1, theStep, theNbTimes2):
# Example: see GEOM_TestAll.py
theAngle, theNbTimes1, theStep, theNbTimes2, Parameters = ParseParameters(theAngle, theNbTimes1, theStep, theNbTimes2)
anObj = self.TrsfOp.MultiRotate2D(theObject, theAxis, theAngle, theNbTimes1, theStep, theNbTimes2)
RaiseIfFailed("MultiRotate2D", self.TrsfOp)
anObj.SetParameters(Parameters)
return anObj
## The same, as MultiRotate1D(), but axis is given by direction and point
# @ref swig_MakeMultiRotation "Example"
def MakeMultiRotation1D(self,aShape,aDir,aPoint,aNbTimes):
# Example: see GEOM_TestOthers.py
aVec = self.MakeLine(aPoint,aDir)
anObj = self.MultiRotate1D(aShape,aVec,aNbTimes)
return anObj
## The same, as MultiRotate2D(), but axis is given by direction and point
# @ref swig_MakeMultiRotation "Example"
def MakeMultiRotation2D(self,aShape,aDir,aPoint,anAngle,nbtimes1,aStep,nbtimes2):
# Example: see GEOM_TestOthers.py
aVec = self.MakeLine(aPoint,aDir)
anObj = self.MultiRotate2D(aShape,aVec,anAngle,nbtimes1,aStep,nbtimes2)
return anObj
# end of l3_transform
## @}
## @addtogroup l3_local
## @{
## Perform a fillet on all edges of the given shape.
# @param theShape Shape, to perform fillet on.
# @param theR Fillet radius.
# @return New GEOM_Object, containing the result shape.
#
# @ref tui_fillet "Example 1"
# \n @ref swig_MakeFilletAll "Example 2"
def MakeFilletAll(self,theShape, theR):
# Example: see GEOM_TestOthers.py
theR,Parameters = ParseParameters(theR)
anObj = self.LocalOp.MakeFilletAll(theShape, theR)
RaiseIfFailed("MakeFilletAll", self.LocalOp)
anObj.SetParameters(Parameters)
return anObj
## Perform a fillet on the specified edges/faces of the given shape
# @param theShape Shape, to perform fillet on.
# @param theR Fillet radius.
# @param theShapeType Type of shapes in <VAR>theListShapes</VAR>.
# @param theListShapes Global indices of edges/faces to perform fillet on.
# \note Global index of sub-shape can be obtained, using method geompy.GetSubShapeID().
# @return New GEOM_Object, containing the result shape.
#
# @ref tui_fillet "Example"
def MakeFillet(self,theShape, theR, theShapeType, theListShapes):
# Example: see GEOM_TestAll.py
theR,Parameters = ParseParameters(theR)
anObj = None
if theShapeType == ShapeType["EDGE"]:
anObj = self.LocalOp.MakeFilletEdges(theShape, theR, theListShapes)
RaiseIfFailed("MakeFilletEdges", self.LocalOp)
else:
anObj = self.LocalOp.MakeFilletFaces(theShape, theR, theListShapes)
RaiseIfFailed("MakeFilletFaces", self.LocalOp)
anObj.SetParameters(Parameters)
return anObj
## The same that MakeFillet but with two Fillet Radius R1 and R2
def MakeFilletR1R2(self, theShape, theR1, theR2, theShapeType, theListShapes):
theR1,theR2,Parameters = ParseParameters(theR1,theR2)
anObj = None
if theShapeType == ShapeType["EDGE"]:
anObj = self.LocalOp.MakeFilletEdgesR1R2(theShape, theR1, theR2, theListShapes)
RaiseIfFailed("MakeFilletEdgesR1R2", self.LocalOp)
else:
anObj = self.LocalOp.MakeFilletFacesR1R2(theShape, theR1, theR2, theListShapes)
RaiseIfFailed("MakeFilletFacesR1R2", self.LocalOp)
anObj.SetParameters(Parameters)
return anObj
## Perform a fillet on the specified edges of the given shape
# @param theShape - Wire Shape to perform fillet on.
# @param theR - Fillet radius.
# @param theListOfVertexes Global indices of vertexes to perform fillet on.
# \note Global index of sub-shape can be obtained, using method geompy.GetSubShapeID().
# \note The list of vertices could be empty,
# in this case fillet will done done at all vertices in wire
# @return New GEOM_Object, containing the result shape.
#
# @ref tui_fillet2d "Example"
def MakeFillet1D(self,theShape, theR, theListOfVertexes):
# Example: see GEOM_TestAll.py
anObj = self.LocalOp.MakeFillet1D(theShape, theR, theListOfVertexes)
RaiseIfFailed("MakeFillet1D", self.LocalOp)
return anObj
## Perform a fillet on the specified edges/faces of the given shape
# @param theShape - Face Shape to perform fillet on.
# @param theR - Fillet radius.
# @param theListOfVertexes Global indices of vertexes to perform fillet on.
# \note Global index of sub-shape can be obtained, using method geompy.GetSubShapeID().
# @return New GEOM_Object, containing the result shape.
#
# @ref tui_fillet2d "Example"
def MakeFillet2D(self,theShape, theR, theListOfVertexes):
# Example: see GEOM_TestAll.py
anObj = self.LocalOp.MakeFillet2D(theShape, theR, theListOfVertexes)
RaiseIfFailed("MakeFillet2D", self.LocalOp)
return anObj
## Perform a symmetric chamfer on all edges of the given shape.
# @param theShape Shape, to perform chamfer on.
# @param theD Chamfer size along each face.
# @return New GEOM_Object, containing the result shape.
#
# @ref tui_chamfer "Example 1"
# \n @ref swig_MakeChamferAll "Example 2"
def MakeChamferAll(self,theShape, theD):
# Example: see GEOM_TestOthers.py
theD,Parameters = ParseParameters(theD)
anObj = self.LocalOp.MakeChamferAll(theShape, theD)
RaiseIfFailed("MakeChamferAll", self.LocalOp)
anObj.SetParameters(Parameters)
return anObj
## Perform a chamfer on edges, common to the specified faces,
# with distance D1 on the Face1
# @param theShape Shape, to perform chamfer on.
# @param theD1 Chamfer size along \a theFace1.
# @param theD2 Chamfer size along \a theFace2.
# @param theFace1,theFace2 Global indices of two faces of \a theShape.
# \note Global index of sub-shape can be obtained, using method geompy.GetSubShapeID().
# @return New GEOM_Object, containing the result shape.
#
# @ref tui_chamfer "Example"
def MakeChamferEdge(self,theShape, theD1, theD2, theFace1, theFace2):
# Example: see GEOM_TestAll.py
theD1,theD2,Parameters = ParseParameters(theD1,theD2)
anObj = self.LocalOp.MakeChamferEdge(theShape, theD1, theD2, theFace1, theFace2)
RaiseIfFailed("MakeChamferEdge", self.LocalOp)
anObj.SetParameters(Parameters)
return anObj
## The Same that MakeChamferEdge but with params theD is chamfer length and
# theAngle is Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
def MakeChamferEdgeAD(self, theShape, theD, theAngle, theFace1, theFace2):
flag = False
if isinstance(theAngle,str):
flag = True
theD,theAngle,Parameters = ParseParameters(theD,theAngle)
if flag:
theAngle = theAngle*math.pi/180.0
anObj = self.LocalOp.MakeChamferEdgeAD(theShape, theD, theAngle, theFace1, theFace2)
RaiseIfFailed("MakeChamferEdgeAD", self.LocalOp)
anObj.SetParameters(Parameters)
return anObj
## Perform a chamfer on all edges of the specified faces,
# with distance D1 on the first specified face (if several for one edge)
# @param theShape Shape, to perform chamfer on.
# @param theD1 Chamfer size along face from \a theFaces. If both faces,
# connected to the edge, are in \a theFaces, \a theD1
# will be get along face, which is nearer to \a theFaces beginning.
# @param theD2 Chamfer size along another of two faces, connected to the edge.
# @param theFaces Sequence of global indices of faces of \a theShape.
# \note Global index of sub-shape can be obtained, using method geompy.GetSubShapeID().
# @return New GEOM_Object, containing the result shape.
#
# @ref tui_chamfer "Example"
def MakeChamferFaces(self,theShape, theD1, theD2, theFaces):
# Example: see GEOM_TestAll.py
theD1,theD2,Parameters = ParseParameters(theD1,theD2)
anObj = self.LocalOp.MakeChamferFaces(theShape, theD1, theD2, theFaces)
RaiseIfFailed("MakeChamferFaces", self.LocalOp)
anObj.SetParameters(Parameters)
return anObj
## The Same that MakeChamferFaces but with params theD is chamfer lenght and
# theAngle is Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
#
# @ref swig_FilletChamfer "Example"
def MakeChamferFacesAD(self, theShape, theD, theAngle, theFaces):
flag = False
if isinstance(theAngle,str):
flag = True
theD,theAngle,Parameters = ParseParameters(theD,theAngle)
if flag:
theAngle = theAngle*math.pi/180.0
anObj = self.LocalOp.MakeChamferFacesAD(theShape, theD, theAngle, theFaces)
RaiseIfFailed("MakeChamferFacesAD", self.LocalOp)
anObj.SetParameters(Parameters)
return anObj
## Perform a chamfer on edges,
# with distance D1 on the first specified face (if several for one edge)
# @param theShape Shape, to perform chamfer on.
# @param theD1,theD2 Chamfer size
# @param theEdges Sequence of edges of \a theShape.
# @return New GEOM_Object, containing the result shape.
#
# @ref swig_FilletChamfer "Example"
def MakeChamferEdges(self, theShape, theD1, theD2, theEdges):
theD1,theD2,Parameters = ParseParameters(theD1,theD2)
anObj = self.LocalOp.MakeChamferEdges(theShape, theD1, theD2, theEdges)
RaiseIfFailed("MakeChamferEdges", self.LocalOp)
anObj.SetParameters(Parameters)
return anObj
## The Same that MakeChamferEdges but with params theD is chamfer lenght and
# theAngle is Angle of chamfer (angle in radians or a name of variable which defines angle in degrees)
def MakeChamferEdgesAD(self, theShape, theD, theAngle, theEdges):
flag = False
if isinstance(theAngle,str):
flag = True
theD,theAngle,Parameters = ParseParameters(theD,theAngle)
if flag:
theAngle = theAngle*math.pi/180.0
anObj = self.LocalOp.MakeChamferEdgesAD(theShape, theD, theAngle, theEdges)
RaiseIfFailed("MakeChamferEdgesAD", self.LocalOp)
anObj.SetParameters(Parameters)
return anObj
## Shortcut to MakeChamferEdge() and MakeChamferFaces()
#
# @ref swig_MakeChamfer "Example"
def MakeChamfer(self,aShape,d1,d2,aShapeType,ListShape):
# Example: see GEOM_TestOthers.py
anObj = None
if aShapeType == ShapeType["EDGE"]:
anObj = self.MakeChamferEdge(aShape,d1,d2,ListShape[0],ListShape[1])
else:
anObj = self.MakeChamferFaces(aShape,d1,d2,ListShape)
return anObj
# end of l3_local
## @}
## @addtogroup l3_basic_op
## @{
## Perform an Archimde operation on the given shape with given parameters.
# The object presenting the resulting face is returned.
# @param theShape Shape to be put in water.
# @param theWeight Weight og the shape.
# @param theWaterDensity Density of the water.
# @param theMeshDeflection Deflection of the mesh, using to compute the section.
# @return New GEOM_Object, containing a section of \a theShape
# by a plane, corresponding to water level.
#
# @ref tui_archimede "Example"
def Archimede(self,theShape, theWeight, theWaterDensity, theMeshDeflection):
# Example: see GEOM_TestAll.py
theWeight,theWaterDensity,theMeshDeflection,Parameters = ParseParameters(
theWeight,theWaterDensity,theMeshDeflection)
anObj = self.LocalOp.MakeArchimede(theShape, theWeight, theWaterDensity, theMeshDeflection)
RaiseIfFailed("MakeArchimede", self.LocalOp)
anObj.SetParameters(Parameters)
return anObj
# end of l3_basic_op
## @}
## @addtogroup l2_measure
## @{
## Get point coordinates
# @return [x, y, z]
#
# @ref tui_measurement_tools_page "Example"
def PointCoordinates(self,Point):
# Example: see GEOM_TestMeasures.py
aTuple = self.MeasuOp.PointCoordinates(Point)
RaiseIfFailed("PointCoordinates", self.MeasuOp)
return aTuple
## Get summarized length of all wires,
# area of surface and volume of the given shape.
# @param theShape Shape to define properties of.
# @return [theLength, theSurfArea, theVolume]
# theLength: Summarized length of all wires of the given shape.
# theSurfArea: Area of surface of the given shape.
# theVolume: Volume of the given shape.
#
# @ref tui_measurement_tools_page "Example"
def BasicProperties(self,theShape):
# Example: see GEOM_TestMeasures.py
aTuple = self.MeasuOp.GetBasicProperties(theShape)
RaiseIfFailed("GetBasicProperties", self.MeasuOp)
return aTuple
## Get parameters of bounding box of the given shape
# @param theShape Shape to obtain bounding box of.
# @return [Xmin,Xmax, Ymin,Ymax, Zmin,Zmax]
# Xmin,Xmax: Limits of shape along OX axis.
# Ymin,Ymax: Limits of shape along OY axis.
# Zmin,Zmax: Limits of shape along OZ axis.
#
# @ref tui_measurement_tools_page "Example"
def BoundingBox(self,theShape):
# Example: see GEOM_TestMeasures.py
aTuple = self.MeasuOp.GetBoundingBox(theShape)
RaiseIfFailed("GetBoundingBox", self.MeasuOp)
return aTuple
## Get inertia matrix and moments of inertia of theShape.
# @param theShape Shape to calculate inertia of.
# @return [I11,I12,I13, I21,I22,I23, I31,I32,I33, Ix,Iy,Iz]
# I(1-3)(1-3): Components of the inertia matrix of the given shape.
# Ix,Iy,Iz: Moments of inertia of the given shape.
#
# @ref tui_measurement_tools_page "Example"
def Inertia(self,theShape):
# Example: see GEOM_TestMeasures.py
aTuple = self.MeasuOp.GetInertia(theShape)
RaiseIfFailed("GetInertia", self.MeasuOp)
return aTuple
## Get minimal distance between the given shapes.
# @param theShape1,theShape2 Shapes to find minimal distance between.
# @return Value of the minimal distance between the given shapes.
#
# @ref tui_measurement_tools_page "Example"
def MinDistance(self, theShape1, theShape2):
# Example: see GEOM_TestMeasures.py
aTuple = self.MeasuOp.GetMinDistance(theShape1, theShape2)
RaiseIfFailed("GetMinDistance", self.MeasuOp)
return aTuple[0]
## Get minimal distance between the given shapes.
# @param theShape1,theShape2 Shapes to find minimal distance between.
# @return Value of the minimal distance between the given shapes.
#
# @ref swig_all_measure "Example"
def MinDistanceComponents(self, theShape1, theShape2):
# Example: see GEOM_TestMeasures.py
aTuple = self.MeasuOp.GetMinDistance(theShape1, theShape2)
RaiseIfFailed("GetMinDistance", self.MeasuOp)
aRes = [aTuple[0], aTuple[4] - aTuple[1], aTuple[5] - aTuple[2], aTuple[6] - aTuple[3]]
return aRes
## Get angle between the given shapes in degrees.
# @param theShape1,theShape2 Lines or linear edges to find angle between.
# @return Value of the angle between the given shapes in degrees.
#
# @ref tui_measurement_tools_page "Example"
def GetAngle(self, theShape1, theShape2):
# Example: see GEOM_TestMeasures.py
anAngle = self.MeasuOp.GetAngle(theShape1, theShape2)
RaiseIfFailed("GetAngle", self.MeasuOp)
return anAngle
## Get angle between the given shapes in radians.
# @param theShape1,theShape2 Lines or linear edges to find angle between.
# @return Value of the angle between the given shapes in radians.
#
# @ref tui_measurement_tools_page "Example"
def GetAngleRadians(self, theShape1, theShape2):
# Example: see GEOM_TestMeasures.py
anAngle = self.MeasuOp.GetAngle(theShape1, theShape2)*math.pi/180.
RaiseIfFailed("GetAngle", self.MeasuOp)
return anAngle
## @name Curve Curvature Measurement
# Methods for receiving radius of curvature of curves
# in the given point
## @{
## Measure curvature of a curve at a point, set by parameter.
# @ref swig_todo "Example"
def CurveCurvatureByParam(self, theCurve, theParam):
# Example: see GEOM_TestMeasures.py
aCurv = self.MeasuOp.CurveCurvatureByParam(theCurve,theParam)
RaiseIfFailed("CurveCurvatureByParam", self.MeasuOp)
return aCurv
## @details
# @ref swig_todo "Example"
def CurveCurvatureByPoint(self, theCurve, thePoint):
aCurv = self.MeasuOp.CurveCurvatureByPoint(theCurve,thePoint)
RaiseIfFailed("CurveCurvatureByPoint", self.MeasuOp)
return aCurv
## @}
## @name Surface Curvature Measurement
# Methods for receiving max and min radius of curvature of surfaces
# in the given point
## @{
## @details
## @ref swig_todo "Example"
def MaxSurfaceCurvatureByParam(self, theSurf, theUParam, theVParam):
# Example: see GEOM_TestMeasures.py
aSurf = self.MeasuOp.MaxSurfaceCurvatureByParam(theSurf,theUParam,theVParam)
RaiseIfFailed("MaxSurfaceCurvatureByParam", self.MeasuOp)
return aSurf
## @details
## @ref swig_todo "Example"
def MaxSurfaceCurvatureByPoint(self, theSurf, thePoint):
aSurf = self.MeasuOp.MaxSurfaceCurvatureByPoint(theSurf,thePoint)
RaiseIfFailed("MaxSurfaceCurvatureByPoint", self.MeasuOp)
return aSurf
## @details
## @ref swig_todo "Example"
def MinSurfaceCurvatureByParam(self, theSurf, theUParam, theVParam):
aSurf = self.MeasuOp.MinSurfaceCurvatureByParam(theSurf,theUParam,theVParam)
RaiseIfFailed("MinSurfaceCurvatureByParam", self.MeasuOp)
return aSurf
## @details
## @ref swig_todo "Example"
def MinSurfaceCurvatureByPoint(self, theSurf, thePoint):
aSurf = self.MeasuOp.MinSurfaceCurvatureByPoint(theSurf,thePoint)
RaiseIfFailed("MinSurfaceCurvatureByPoint", self.MeasuOp)
return aSurf
## @}
## Get min and max tolerances of sub-shapes of theShape
# @param theShape Shape, to get tolerances of.
# @return [FaceMin,FaceMax, EdgeMin,EdgeMax, VertMin,VertMax]
# FaceMin,FaceMax: Min and max tolerances of the faces.
# EdgeMin,EdgeMax: Min and max tolerances of the edges.
# VertMin,VertMax: Min and max tolerances of the vertices.
#
# @ref tui_measurement_tools_page "Example"
def Tolerance(self,theShape):
# Example: see GEOM_TestMeasures.py
aTuple = self.MeasuOp.GetTolerance(theShape)
RaiseIfFailed("GetTolerance", self.MeasuOp)
return aTuple
## Obtain description of the given shape (number of sub-shapes of each type)
# @param theShape Shape to be described.
# @return Description of the given shape.
#
# @ref tui_measurement_tools_page "Example"
def WhatIs(self,theShape):
# Example: see GEOM_TestMeasures.py
aDescr = self.MeasuOp.WhatIs(theShape)
RaiseIfFailed("WhatIs", self.MeasuOp)
return aDescr
## Get a point, situated at the centre of mass of theShape.
# @param theShape Shape to define centre of mass of.
# @return New GEOM_Object, containing the created point.
#
# @ref tui_measurement_tools_page "Example"
def MakeCDG(self,theShape):
# Example: see GEOM_TestMeasures.py
anObj = self.MeasuOp.GetCentreOfMass(theShape)
RaiseIfFailed("GetCentreOfMass", self.MeasuOp)
return anObj
## Get a vertex subshape by index depended with orientation.
# @param theShape Shape to find subshape.
# @param theIndex Index to find vertex by this index.
# @return New GEOM_Object, containing the created vertex.
#
# @ref tui_measurement_tools_page "Example"
def GetVertexByIndex(self,theShape, theIndex):
# Example: see GEOM_TestMeasures.py
anObj = self.MeasuOp.GetVertexByIndex(theShape, theIndex)
RaiseIfFailed("GetVertexByIndex", self.MeasuOp)
return anObj
## Get the first vertex of wire/edge depended orientation.
# @param theShape Shape to find first vertex.
# @return New GEOM_Object, containing the created vertex.
#
# @ref tui_measurement_tools_page "Example"
def GetFirstVertex(self,theShape):
# Example: see GEOM_TestMeasures.py
anObj = self.GetVertexByIndex(theShape, 0)
RaiseIfFailed("GetFirstVertex", self.MeasuOp)
return anObj
## Get the last vertex of wire/edge depended orientation.
# @param theShape Shape to find last vertex.
# @return New GEOM_Object, containing the created vertex.
#
# @ref tui_measurement_tools_page "Example"
def GetLastVertex(self,theShape):
# Example: see GEOM_TestMeasures.py
nb_vert = self.ShapesOp.NumberOfSubShapes(theShape, ShapeType["VERTEX"])
anObj = self.GetVertexByIndex(theShape, (nb_vert-1))
RaiseIfFailed("GetLastVertex", self.MeasuOp)
return anObj
## Get a normale to the given face. If the point is not given,
# the normale is calculated at the center of mass.
# @param theFace Face to define normale of.
# @param theOptionalPoint Point to compute the normale at.
# @return New GEOM_Object, containing the created vector.
#
# @ref swig_todo "Example"
def GetNormal(self, theFace, theOptionalPoint = None):
# Example: see GEOM_TestMeasures.py
anObj = self.MeasuOp.GetNormal(theFace, theOptionalPoint)
RaiseIfFailed("GetNormal", self.MeasuOp)
return anObj
## Check a topology of the given shape.
# @param theShape Shape to check validity of.
# @param theIsCheckGeom If FALSE, only the shape's topology will be checked,
# if TRUE, the shape's geometry will be checked also.
# @return TRUE, if the shape "seems to be valid".
# If theShape is invalid, prints a description of problem.
#
# @ref tui_measurement_tools_page "Example"
def CheckShape(self,theShape, theIsCheckGeom = 0):
# Example: see GEOM_TestMeasures.py
if theIsCheckGeom:
(IsValid, Status) = self.MeasuOp.CheckShapeWithGeometry(theShape)
RaiseIfFailed("CheckShapeWithGeometry", self.MeasuOp)
else:
(IsValid, Status) = self.MeasuOp.CheckShape(theShape)
RaiseIfFailed("CheckShape", self.MeasuOp)
if IsValid == 0:
print Status
return IsValid
## Get position (LCS) of theShape.
#
# Origin of the LCS is situated at the shape's center of mass.
# Axes of the LCS are obtained from shape's location or,
# if the shape is a planar face, from position of its plane.
#
# @param theShape Shape to calculate position of.
# @return [Ox,Oy,Oz, Zx,Zy,Zz, Xx,Xy,Xz].
# Ox,Oy,Oz: Coordinates of shape's LCS origin.
# Zx,Zy,Zz: Coordinates of shape's LCS normal(main) direction.
# Xx,Xy,Xz: Coordinates of shape's LCS X direction.
#
# @ref swig_todo "Example"
def GetPosition(self,theShape):
# Example: see GEOM_TestMeasures.py
aTuple = self.MeasuOp.GetPosition(theShape)
RaiseIfFailed("GetPosition", self.MeasuOp)
return aTuple
## Get kind of theShape.
#
# @param theShape Shape to get a kind of.
# @return Returns a kind of shape in terms of <VAR>GEOM_IKindOfShape.shape_kind</VAR> enumeration
# and a list of parameters, describing the shape.
# @note Concrete meaning of each value, returned via \a theIntegers
# or \a theDoubles list depends on the kind of the shape.
# The full list of possible outputs is:
#
# - geompy.kind.COMPOUND nb_solids nb_faces nb_edges nb_vertices
# - geompy.kind.COMPSOLID nb_solids nb_faces nb_edges nb_vertices
#
# - geompy.kind.SHELL geompy.info.CLOSED nb_faces nb_edges nb_vertices
# - geompy.kind.SHELL geompy.info.UNCLOSED nb_faces nb_edges nb_vertices
#
# - geompy.kind.WIRE geompy.info.CLOSED nb_edges nb_vertices
# - geompy.kind.WIRE geompy.info.UNCLOSED nb_edges nb_vertices
#
# - geompy.kind.SPHERE xc yc zc R
# - geompy.kind.CYLINDER xb yb zb dx dy dz R H
# - geompy.kind.BOX xc yc zc ax ay az
# - geompy.kind.ROTATED_BOX xc yc zc zx zy zz xx xy xz ax ay az
# - geompy.kind.TORUS xc yc zc dx dy dz R_1 R_2
# - geompy.kind.CONE xb yb zb dx dy dz R_1 R_2 H
# - geompy.kind.POLYHEDRON nb_faces nb_edges nb_vertices
# - geompy.kind.SOLID nb_faces nb_edges nb_vertices
#
# - geompy.kind.SPHERE2D xc yc zc R
# - geompy.kind.CYLINDER2D xb yb zb dx dy dz R H
# - geompy.kind.TORUS2D xc yc zc dx dy dz R_1 R_2
# - geompy.kind.CONE2D xc yc zc dx dy dz R_1 R_2 H
# - geompy.kind.DISK_CIRCLE xc yc zc dx dy dz R
# - geompy.kind.DISK_ELLIPSE xc yc zc dx dy dz R_1 R_2
# - geompy.kind.POLYGON xo yo zo dx dy dz nb_edges nb_vertices
# - geompy.kind.PLANE xo yo zo dx dy dz
# - geompy.kind.PLANAR xo yo zo dx dy dz nb_edges nb_vertices
# - geompy.kind.FACE nb_edges nb_vertices
#
# - geompy.kind.CIRCLE xc yc zc dx dy dz R
# - geompy.kind.ARC_CIRCLE xc yc zc dx dy dz R x1 y1 z1 x2 y2 z2
# - geompy.kind.ELLIPSE xc yc zc dx dy dz R_1 R_2
# - geompy.kind.ARC_ELLIPSE xc yc zc dx dy dz R_1 R_2 x1 y1 z1 x2 y2 z2
# - geompy.kind.LINE xo yo zo dx dy dz
# - geompy.kind.SEGMENT x1 y1 z1 x2 y2 z2
# - geompy.kind.EDGE nb_vertices
#
# - geompy.kind.VERTEX x y z
#
# @ref swig_todo "Example"
def KindOfShape(self,theShape):
# Example: see GEOM_TestMeasures.py
aRoughTuple = self.MeasuOp.KindOfShape(theShape)
RaiseIfFailed("KindOfShape", self.MeasuOp)
aKind = aRoughTuple[0]
anInts = aRoughTuple[1]
aDbls = aRoughTuple[2]
# Now there is no exception from this rule:
aKindTuple = [aKind] + aDbls + anInts
# If they are we will regroup parameters for such kind of shape.
# For example:
#if aKind == kind.SOME_KIND:
# # SOME_KIND int int double int double double
# aKindTuple = [aKind, anInts[0], anInts[1], aDbls[0], anInts[2], aDbls[1], aDbls[2]]
return aKindTuple
# end of l2_measure
## @}
## @addtogroup l2_import_export
## @{
## Import a shape from the BREP or IGES or STEP file
# (depends on given format) with given name.
# @param theFileName The file, containing the shape.
# @param theFormatName Specify format for the file reading.
# Available formats can be obtained with InsertOp.ImportTranslators() method.
# If format 'IGES_SCALE' is used instead 'IGES' length unit will be
# set to 'meter' and result model will be scaled.
# @return New GEOM_Object, containing the imported shape.
#
# @ref swig_Import_Export "Example"
def Import(self,theFileName, theFormatName):
# Example: see GEOM_TestOthers.py
anObj = self.InsertOp.Import(theFileName, theFormatName)
RaiseIfFailed("Import", self.InsertOp)
return anObj
## Shortcut to Import() for BREP format
#
# @ref swig_Import_Export "Example"
def ImportBREP(self,theFileName):
# Example: see GEOM_TestOthers.py
return self.Import(theFileName, "BREP")
## Shortcut to Import() for IGES format
#
# @ref swig_Import_Export "Example"
def ImportIGES(self,theFileName):
# Example: see GEOM_TestOthers.py
return self.Import(theFileName, "IGES")
## Return length unit from given IGES file
#
# @ref swig_Import_Export "Example"
def GetIGESUnit(self,theFileName):
# Example: see GEOM_TestOthers.py
anObj = self.InsertOp.Import(theFileName, "IGES_UNIT")
#RaiseIfFailed("Import", self.InsertOp)
# recieve name using returned vertex
UnitName = "M"
vertices = self.SubShapeAll(anObj,ShapeType["VERTEX"])
if len(vertices)>0:
p = self.PointCoordinates(vertices[0])
if abs(p[0]-0.01) < 1.e-6:
UnitName = "CM"
elif abs(p[0]-0.001) < 1.e-6:
UnitName = "MM"
return UnitName
## Shortcut to Import() for STEP format
#
# @ref swig_Import_Export "Example"
def ImportSTEP(self,theFileName):
# Example: see GEOM_TestOthers.py
return self.Import(theFileName, "STEP")
## Export the given shape into a file with given name.
# @param theObject Shape to be stored in the file.
# @param theFileName Name of the file to store the given shape in.
# @param theFormatName Specify format for the shape storage.
# Available formats can be obtained with InsertOp.ImportTranslators() method.
#
# @ref swig_Import_Export "Example"
def Export(self,theObject, theFileName, theFormatName):
# Example: see GEOM_TestOthers.py
self.InsertOp.Export(theObject, theFileName, theFormatName)
if self.InsertOp.IsDone() == 0:
raise RuntimeError, "Export : " + self.InsertOp.GetErrorCode()
pass
pass
## Shortcut to Export() for BREP format
#
# @ref swig_Import_Export "Example"
def ExportBREP(self,theObject, theFileName):
# Example: see GEOM_TestOthers.py
return self.Export(theObject, theFileName, "BREP")
## Shortcut to Export() for IGES format
#
# @ref swig_Import_Export "Example"
def ExportIGES(self,theObject, theFileName):
# Example: see GEOM_TestOthers.py
return self.Export(theObject, theFileName, "IGES")
## Shortcut to Export() for STEP format
#
# @ref swig_Import_Export "Example"
def ExportSTEP(self,theObject, theFileName):
# Example: see GEOM_TestOthers.py
return self.Export(theObject, theFileName, "STEP")
# end of l2_import_export
## @}
## @addtogroup l3_blocks
## @{
## Create a quadrangle face from four edges. Order of Edges is not
# important. It is not necessary that edges share the same vertex.
# @param E1,E2,E3,E4 Edges for the face bound.
# @return New GEOM_Object, containing the created face.
#
# @ref tui_building_by_blocks_page "Example"
def MakeQuad(self,E1, E2, E3, E4):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.MakeQuad(E1, E2, E3, E4)
RaiseIfFailed("MakeQuad", self.BlocksOp)
return anObj
## Create a quadrangle face on two edges.
# The missing edges will be built by creating the shortest ones.
# @param E1,E2 Two opposite edges for the face.
# @return New GEOM_Object, containing the created face.
#
# @ref tui_building_by_blocks_page "Example"
def MakeQuad2Edges(self,E1, E2):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.MakeQuad2Edges(E1, E2)
RaiseIfFailed("MakeQuad2Edges", self.BlocksOp)
return anObj
## Create a quadrangle face with specified corners.
# The missing edges will be built by creating the shortest ones.
# @param V1,V2,V3,V4 Corner vertices for the face.
# @return New GEOM_Object, containing the created face.
#
# @ref tui_building_by_blocks_page "Example 1"
# \n @ref swig_MakeQuad4Vertices "Example 2"
def MakeQuad4Vertices(self,V1, V2, V3, V4):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.MakeQuad4Vertices(V1, V2, V3, V4)
RaiseIfFailed("MakeQuad4Vertices", self.BlocksOp)
return anObj
## Create a hexahedral solid, bounded by the six given faces. Order of
# faces is not important. It is not necessary that Faces share the same edge.
# @param F1,F2,F3,F4,F5,F6 Faces for the hexahedral solid.
# @return New GEOM_Object, containing the created solid.
#
# @ref tui_building_by_blocks_page "Example 1"
# \n @ref swig_MakeHexa "Example 2"
def MakeHexa(self,F1, F2, F3, F4, F5, F6):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.MakeHexa(F1, F2, F3, F4, F5, F6)
RaiseIfFailed("MakeHexa", self.BlocksOp)
return anObj
## Create a hexahedral solid between two given faces.
# The missing faces will be built by creating the smallest ones.
# @param F1,F2 Two opposite faces for the hexahedral solid.
# @return New GEOM_Object, containing the created solid.
#
# @ref tui_building_by_blocks_page "Example 1"
# \n @ref swig_MakeHexa2Faces "Example 2"
def MakeHexa2Faces(self,F1, F2):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.MakeHexa2Faces(F1, F2)
RaiseIfFailed("MakeHexa2Faces", self.BlocksOp)
return anObj
# end of l3_blocks
## @}
## @addtogroup l3_blocks_op
## @{
## Get a vertex, found in the given shape by its coordinates.
# @param theShape Block or a compound of blocks.
# @param theX,theY,theZ Coordinates of the sought vertex.
# @param theEpsilon Maximum allowed distance between the resulting
# vertex and point with the given coordinates.
# @return New GEOM_Object, containing the found vertex.
#
# @ref swig_GetPoint "Example"
def GetPoint(self,theShape, theX, theY, theZ, theEpsilon):
# Example: see GEOM_TestOthers.py
anObj = self.BlocksOp.GetPoint(theShape, theX, theY, theZ, theEpsilon)
RaiseIfFailed("GetPoint", self.BlocksOp)
return anObj
## Get an edge, found in the given shape by two given vertices.
# @param theShape Block or a compound of blocks.
# @param thePoint1,thePoint2 Points, close to the ends of the desired edge.
# @return New GEOM_Object, containing the found edge.
#
# @ref swig_todo "Example"
def GetEdge(self,theShape, thePoint1, thePoint2):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.GetEdge(theShape, thePoint1, thePoint2)
RaiseIfFailed("GetEdge", self.BlocksOp)
return anObj
## Find an edge of the given shape, which has minimal distance to the given point.
# @param theShape Block or a compound of blocks.
# @param thePoint Point, close to the desired edge.
# @return New GEOM_Object, containing the found edge.
#
# @ref swig_GetEdgeNearPoint "Example"
def GetEdgeNearPoint(self,theShape, thePoint):
# Example: see GEOM_TestOthers.py
anObj = self.BlocksOp.GetEdgeNearPoint(theShape, thePoint)
RaiseIfFailed("GetEdgeNearPoint", self.BlocksOp)
return anObj
## Returns a face, found in the given shape by four given corner vertices.
# @param theShape Block or a compound of blocks.
# @param thePoint1,thePoint2,thePoint3,thePoint4 Points, close to the corners of the desired face.
# @return New GEOM_Object, containing the found face.
#
# @ref swig_todo "Example"
def GetFaceByPoints(self,theShape, thePoint1, thePoint2, thePoint3, thePoint4):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.GetFaceByPoints(theShape, thePoint1, thePoint2, thePoint3, thePoint4)
RaiseIfFailed("GetFaceByPoints", self.BlocksOp)
return anObj
## Get a face of block, found in the given shape by two given edges.
# @param theShape Block or a compound of blocks.
# @param theEdge1,theEdge2 Edges, close to the edges of the desired face.
# @return New GEOM_Object, containing the found face.
#
# @ref swig_todo "Example"
def GetFaceByEdges(self,theShape, theEdge1, theEdge2):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.GetFaceByEdges(theShape, theEdge1, theEdge2)
RaiseIfFailed("GetFaceByEdges", self.BlocksOp)
return anObj
## Find a face, opposite to the given one in the given block.
# @param theBlock Must be a hexahedral solid.
# @param theFace Face of \a theBlock, opposite to the desired face.
# @return New GEOM_Object, containing the found face.
#
# @ref swig_GetOppositeFace "Example"
def GetOppositeFace(self,theBlock, theFace):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.GetOppositeFace(theBlock, theFace)
RaiseIfFailed("GetOppositeFace", self.BlocksOp)
return anObj
## Find a face of the given shape, which has minimal distance to the given point.
# @param theShape Block or a compound of blocks.
# @param thePoint Point, close to the desired face.
# @return New GEOM_Object, containing the found face.
#
# @ref swig_GetFaceNearPoint "Example"
def GetFaceNearPoint(self,theShape, thePoint):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.GetFaceNearPoint(theShape, thePoint)
RaiseIfFailed("GetFaceNearPoint", self.BlocksOp)
return anObj
## Find a face of block, whose outside normale has minimal angle with the given vector.
# @param theBlock Block or a compound of blocks.
# @param theVector Vector, close to the normale of the desired face.
# @return New GEOM_Object, containing the found face.
#
# @ref swig_todo "Example"
def GetFaceByNormale(self, theBlock, theVector):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.GetFaceByNormale(theBlock, theVector)
RaiseIfFailed("GetFaceByNormale", self.BlocksOp)
return anObj
# end of l3_blocks_op
## @}
## @addtogroup l4_blocks_measure
## @{
## Check, if the compound of blocks is given.
# To be considered as a compound of blocks, the
# given shape must satisfy the following conditions:
# - Each element of the compound should be a Block (6 faces and 12 edges).
# - A connection between two Blocks should be an entire quadrangle face or an entire edge.
# - The compound should be connexe.
# - The glue between two quadrangle faces should be applied.
# @param theCompound The compound to check.
# @return TRUE, if the given shape is a compound of blocks.
# If theCompound is not valid, prints all discovered errors.
#
# @ref tui_measurement_tools_page "Example 1"
# \n @ref swig_CheckCompoundOfBlocks "Example 2"
def CheckCompoundOfBlocks(self,theCompound):
# Example: see GEOM_Spanner.py
(IsValid, BCErrors) = self.BlocksOp.CheckCompoundOfBlocks(theCompound)
RaiseIfFailed("CheckCompoundOfBlocks", self.BlocksOp)
if IsValid == 0:
Descr = self.BlocksOp.PrintBCErrors(theCompound, BCErrors)
print Descr
return IsValid
## Remove all seam and degenerated edges from \a theShape.
# Unite faces and edges, sharing one surface. It means that
# this faces must have references to one C++ surface object (handle).
# @param theShape The compound or single solid to remove irregular edges from.
# @param doUnionFaces If True, then unite faces. If False (the default value),
# do not unite faces.
# @return Improved shape.
#
# @ref swig_RemoveExtraEdges "Example"
def RemoveExtraEdges(self, theShape, doUnionFaces=False):
# Example: see GEOM_TestOthers.py
nbFacesOptimum = -1 # -1 means do not unite faces
if doUnionFaces is True: nbFacesOptimum = 0 # 0 means unite faces
anObj = self.BlocksOp.RemoveExtraEdges(theShape, nbFacesOptimum)
RaiseIfFailed("RemoveExtraEdges", self.BlocksOp)
return anObj
## Check, if the given shape is a blocks compound.
# Fix all detected errors.
# \note Single block can be also fixed by this method.
# @param theShape The compound to check and improve.
# @return Improved compound.
#
# @ref swig_CheckAndImprove "Example"
def CheckAndImprove(self,theShape):
# Example: see GEOM_TestOthers.py
anObj = self.BlocksOp.CheckAndImprove(theShape)
RaiseIfFailed("CheckAndImprove", self.BlocksOp)
return anObj
# end of l4_blocks_measure
## @}
## @addtogroup l3_blocks_op
## @{
## Get all the blocks, contained in the given compound.
# @param theCompound The compound to explode.
# @param theMinNbFaces If solid has lower number of faces, it is not a block.
# @param theMaxNbFaces If solid has higher number of faces, it is not a block.
# \note If theMaxNbFaces = 0, the maximum number of faces is not restricted.
# @return List of GEOM_Objects, containing the retrieved blocks.
#
# @ref tui_explode_on_blocks "Example 1"
# \n @ref swig_MakeBlockExplode "Example 2"
def MakeBlockExplode(self,theCompound, theMinNbFaces, theMaxNbFaces):
# Example: see GEOM_TestOthers.py
theMinNbFaces,theMaxNbFaces,Parameters = ParseParameters(theMinNbFaces,theMaxNbFaces)
aList = self.BlocksOp.ExplodeCompoundOfBlocks(theCompound, theMinNbFaces, theMaxNbFaces)
RaiseIfFailed("ExplodeCompoundOfBlocks", self.BlocksOp)
for anObj in aList:
anObj.SetParameters(Parameters)
pass
return aList
## Find block, containing the given point inside its volume or on boundary.
# @param theCompound Compound, to find block in.
# @param thePoint Point, close to the desired block. If the point lays on
# boundary between some blocks, we return block with nearest center.
# @return New GEOM_Object, containing the found block.
#
# @ref swig_todo "Example"
def GetBlockNearPoint(self,theCompound, thePoint):
# Example: see GEOM_Spanner.py
anObj = self.BlocksOp.GetBlockNearPoint(theCompound, thePoint)
RaiseIfFailed("GetBlockNearPoint", self.BlocksOp)
return anObj
## Find block, containing all the elements, passed as the parts, or maximum quantity of them.
# @param theCompound Compound, to find block in.
# @param theParts List of faces and/or edges and/or vertices to be parts of the found block.
# @return New GEOM_Object, containing the found block.
#
# @ref swig_GetBlockByParts "Example"
def GetBlockByParts(self,theCompound, theParts):
# Example: see GEOM_TestOthers.py
anObj = self.BlocksOp.GetBlockByParts(theCompound, theParts)
RaiseIfFailed("GetBlockByParts", self.BlocksOp)
return anObj
## Return all blocks, containing all the elements, passed as the parts.
# @param theCompound Compound, to find blocks in.
# @param theParts List of faces and/or edges and/or vertices to be parts of the found blocks.
# @return List of GEOM_Objects, containing the found blocks.
#
# @ref swig_todo "Example"
def GetBlocksByParts(self,theCompound, theParts):
# Example: see GEOM_Spanner.py
aList = self.BlocksOp.GetBlocksByParts(theCompound, theParts)
RaiseIfFailed("GetBlocksByParts", self.BlocksOp)
return aList
## Multi-transformate block and glue the result.
# Transformation is defined so, as to superpose direction faces.
# @param Block Hexahedral solid to be multi-transformed.
# @param DirFace1 ID of First direction face.
# @param DirFace2 ID of Second direction face.
# @param NbTimes Quantity of transformations to be done.
# \note Unique ID of sub-shape can be obtained, using method GetSubShapeID().
# @return New GEOM_Object, containing the result shape.
#
# @ref tui_multi_transformation "Example"
def MakeMultiTransformation1D(self,Block, DirFace1, DirFace2, NbTimes):
# Example: see GEOM_Spanner.py
DirFace1,DirFace2,NbTimes,Parameters = ParseParameters(DirFace1,DirFace2,NbTimes)
anObj = self.BlocksOp.MakeMultiTransformation1D(Block, DirFace1, DirFace2, NbTimes)
RaiseIfFailed("MakeMultiTransformation1D", self.BlocksOp)
anObj.SetParameters(Parameters)
return anObj
## Multi-transformate block and glue the result.
# @param Block Hexahedral solid to be multi-transformed.
# @param DirFace1U,DirFace2U IDs of Direction faces for the first transformation.
# @param DirFace1V,DirFace2V IDs of Direction faces for the second transformation.
# @param NbTimesU,NbTimesV Quantity of transformations to be done.
# @return New GEOM_Object, containing the result shape.
#
# @ref tui_multi_transformation "Example"
def MakeMultiTransformation2D(self,Block, DirFace1U, DirFace2U, NbTimesU,
DirFace1V, DirFace2V, NbTimesV):
# Example: see GEOM_Spanner.py
DirFace1U,DirFace2U,NbTimesU,DirFace1V,DirFace2V,NbTimesV,Parameters = ParseParameters(
DirFace1U,DirFace2U,NbTimesU,DirFace1V,DirFace2V,NbTimesV)
anObj = self.BlocksOp.MakeMultiTransformation2D(Block, DirFace1U, DirFace2U, NbTimesU,
DirFace1V, DirFace2V, NbTimesV)
RaiseIfFailed("MakeMultiTransformation2D", self.BlocksOp)
anObj.SetParameters(Parameters)
return anObj
## Build all possible propagation groups.
# Propagation group is a set of all edges, opposite to one (main)
# edge of this group directly or through other opposite edges.
# Notion of Opposite Edge make sence only on quadrangle face.
# @param theShape Shape to build propagation groups on.
# @return List of GEOM_Objects, each of them is a propagation group.
#
# @ref swig_Propagate "Example"
def Propagate(self,theShape):
# Example: see GEOM_TestOthers.py
listChains = self.BlocksOp.Propagate(theShape)
RaiseIfFailed("Propagate", self.BlocksOp)
return listChains
# end of l3_blocks_op
## @}
## @addtogroup l3_groups
## @{
## Creates a new group which will store sub shapes of theMainShape
# @param theMainShape is a GEOM object on which the group is selected
# @param theShapeType defines a shape type of the group
# @return a newly created GEOM group
#
# @ref tui_working_with_groups_page "Example 1"
# \n @ref swig_CreateGroup "Example 2"
def CreateGroup(self,theMainShape, theShapeType):
# Example: see GEOM_TestOthers.py
anObj = self.GroupOp.CreateGroup(theMainShape, theShapeType)
RaiseIfFailed("CreateGroup", self.GroupOp)
return anObj
## Adds a sub object with ID theSubShapeId to the group
# @param theGroup is a GEOM group to which the new sub shape is added
# @param theSubShapeID is a sub shape ID in the main object.
# \note Use method GetSubShapeID() to get an unique ID of the sub shape
#
# @ref tui_working_with_groups_page "Example"
def AddObject(self,theGroup, theSubShapeID):
# Example: see GEOM_TestOthers.py
self.GroupOp.AddObject(theGroup, theSubShapeID)
RaiseIfFailed("AddObject", self.GroupOp)
pass
## Removes a sub object with ID \a theSubShapeId from the group
# @param theGroup is a GEOM group from which the new sub shape is removed
# @param theSubShapeID is a sub shape ID in the main object.
# \note Use method GetSubShapeID() to get an unique ID of the sub shape
#
# @ref tui_working_with_groups_page "Example"
def RemoveObject(self,theGroup, theSubShapeID):
# Example: see GEOM_TestOthers.py
self.GroupOp.RemoveObject(theGroup, theSubShapeID)
RaiseIfFailed("RemoveObject", self.GroupOp)
pass
## Adds to the group all the given shapes. No errors, if some shapes are alredy included.
# @param theGroup is a GEOM group to which the new sub shapes are added.
# @param theSubShapes is a list of sub shapes to be added.
#
# @ref tui_working_with_groups_page "Example"
def UnionList (self,theGroup, theSubShapes):
# Example: see GEOM_TestOthers.py
self.GroupOp.UnionList(theGroup, theSubShapes)
RaiseIfFailed("UnionList", self.GroupOp)
pass
## Works like the above method, but argument
# theSubShapes here is a list of sub-shapes indices
#
# @ref swig_UnionIDs "Example"
def UnionIDs(self,theGroup, theSubShapes):
# Example: see GEOM_TestOthers.py
self.GroupOp.UnionIDs(theGroup, theSubShapes)
RaiseIfFailed("UnionIDs", self.GroupOp)
pass
## Removes from the group all the given shapes. No errors, if some shapes are not included.
# @param theGroup is a GEOM group from which the sub-shapes are removed.
# @param theSubShapes is a list of sub-shapes to be removed.
#
# @ref tui_working_with_groups_page "Example"
def DifferenceList (self,theGroup, theSubShapes):
# Example: see GEOM_TestOthers.py
self.GroupOp.DifferenceList(theGroup, theSubShapes)
RaiseIfFailed("DifferenceList", self.GroupOp)
pass
## Works like the above method, but argument
# theSubShapes here is a list of sub-shapes indices
#
# @ref swig_DifferenceIDs "Example"
def DifferenceIDs(self,theGroup, theSubShapes):
# Example: see GEOM_TestOthers.py
self.GroupOp.DifferenceIDs(theGroup, theSubShapes)
RaiseIfFailed("DifferenceIDs", self.GroupOp)
pass
## Returns a list of sub objects ID stored in the group
# @param theGroup is a GEOM group for which a list of IDs is requested
#
# @ref swig_GetObjectIDs "Example"
def GetObjectIDs(self,theGroup):
# Example: see GEOM_TestOthers.py
ListIDs = self.GroupOp.GetObjects(theGroup)
RaiseIfFailed("GetObjects", self.GroupOp)
return ListIDs
## Returns a type of sub objects stored in the group
# @param theGroup is a GEOM group which type is returned.
#
# @ref swig_GetType "Example"
def GetType(self,theGroup):
# Example: see GEOM_TestOthers.py
aType = self.GroupOp.GetType(theGroup)
RaiseIfFailed("GetType", self.GroupOp)
return aType
## Convert a type of geom object from id to string value
# @param theId is a GEOM obect type id.
#
# @ref swig_GetType "Example"
def ShapeIdToType(self, theId):
if theId == 0:
return "COPY"
if theId == 1:
return "IMPORT"
if theId == 2:
return "POINT"
if theId == 3:
return "VECTOR"
if theId == 4:
return "PLANE"
if theId == 5:
return "LINE"
if theId == 6:
return "TORUS"
if theId == 7:
return "BOX"
if theId == 8:
return "CYLINDER"
if theId == 9:
return "CONE"
if theId == 10:
return "SPHERE"
if theId == 11:
return "PRISM"
if theId == 12:
return "REVOLUTION"
if theId == 13:
return "BOOLEAN"
if theId == 14:
return "PARTITION"
if theId == 15:
return "POLYLINE"
if theId == 16:
return "CIRCLE"
if theId == 17:
return "SPLINE"
if theId == 18:
return "ELLIPSE"
if theId == 19:
return "CIRC_ARC"
if theId == 20:
return "FILLET"
if theId == 21:
return "CHAMFER"
if theId == 22:
return "EDGE"
if theId == 23:
return "WIRE"
if theId == 24:
return "FACE"
if theId == 25:
return "SHELL"
if theId == 26:
return "SOLID"
if theId == 27:
return "COMPOUND"
if theId == 28:
return "SUBSHAPE"
if theId == 29:
return "PIPE"
if theId == 30:
return "ARCHIMEDE"
if theId == 31:
return "FILLING"
if theId == 32:
return "EXPLODE"
if theId == 33:
return "GLUED"
if theId == 34:
return "SKETCHER"
if theId == 35:
return "CDG"
if theId == 36:
return "FREE_BOUNDS"
if theId == 37:
return "GROUP"
if theId == 38:
return "BLOCK"
if theId == 39:
return "MARKER"
if theId == 40:
return "THRUSECTIONS"
if theId == 41:
return "COMPOUNDFILTER"
if theId == 42:
return "SHAPES_ON_SHAPE"
if theId == 43:
return "ELLIPSE_ARC"
if theId == 44:
return "3DSKETCHER"
if theId == 45:
return "FILLET_2D"
if theId == 46:
return "FILLET_1D"
return "Shape Id not exist."
## Returns a main shape associated with the group
# @param theGroup is a GEOM group for which a main shape object is requested
# @return a GEOM object which is a main shape for theGroup
#
# @ref swig_GetMainShape "Example"
def GetMainShape(self,theGroup):
# Example: see GEOM_TestOthers.py
anObj = self.GroupOp.GetMainShape(theGroup)
RaiseIfFailed("GetMainShape", self.GroupOp)
return anObj
## Create group of edges of theShape, whose length is in range [min_length, max_length].
# If include_min/max == 0, edges with length == min/max_length will not be included in result.
#
# @ref swig_todo "Example"
def GetEdgesByLength (self, theShape, min_length, max_length, include_min = 1, include_max = 1):
edges = self.SubShapeAll(theShape, ShapeType["EDGE"])
edges_in_range = []
for edge in edges:
Props = self.BasicProperties(edge)
if min_length <= Props[0] and Props[0] <= max_length:
if (not include_min) and (min_length == Props[0]):
skip = 1
else:
if (not include_max) and (Props[0] == max_length):
skip = 1
else:
edges_in_range.append(edge)
if len(edges_in_range) <= 0:
print "No edges found by given criteria"
return 0
group_edges = self.CreateGroup(theShape, ShapeType["EDGE"])
self.UnionList(group_edges, edges_in_range)
return group_edges
## Create group of edges of selected shape, whose length is in range [min_length, max_length].
# If include_min/max == 0, edges with length == min/max_length will not be included in result.
#
# @ref swig_todo "Example"
def SelectEdges (self, min_length, max_length, include_min = 1, include_max = 1):
nb_selected = sg.SelectedCount()
if nb_selected < 1:
print "Select a shape before calling this function, please."
return 0
if nb_selected > 1:
print "Only one shape must be selected"
return 0
id_shape = sg.getSelected(0)
shape = IDToObject( id_shape )
group_edges = self.GetEdgesByLength(shape, min_length, max_length, include_min, include_max)
left_str = " < "
right_str = " < "
if include_min: left_str = " <= "
if include_max: right_str = " <= "
self.addToStudyInFather(shape, group_edges, "Group of edges with " + `min_length`
+ left_str + "length" + right_str + `max_length`)
sg.updateObjBrowser(1)
return group_edges
# end of l3_groups
## @}
## @addtogroup l4_advanced
## @{
## Create a T-shape object with specified caracteristics for the main
# and the incident pipes (radius, width, half-length).
# The extremities of the main pipe are located on junctions points P1 and P2.
# The extremity of the incident pipe is located on junction point P3.
# If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
# the main plane of the T-shape is XOY.
# @param theR1 Internal radius of main pipe
# @param theW1 Width of main pipe
# @param theL1 Half-length of main pipe
# @param theR2 Internal radius of incident pipe (R2 < R1)
# @param theW2 Width of incident pipe (R2+W2 < R1+W1)
# @param theL2 Half-length of incident pipe
# @param theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
# @param theP1 1st junction point of main pipe
# @param theP2 2nd junction point of main pipe
# @param theP3 Junction point of incident pipe
# @return List of GEOM_Objects, containing the created shape and propagation groups.
#
# @ref tui_creation_pipetshape "Example"
def MakePipeTShape(self, theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh=True, theP1=None, theP2=None, theP3=None):
theR1, theW1, theL1, theR2, theW2, theL2, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2)
if (theP1 and theP2 and theP3):
anObj = self.AdvOp.MakePipeTShapeWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh, theP1, theP2, theP3)
else:
anObj = self.AdvOp.MakePipeTShape(theR1, theW1, theL1, theR2, theW2, theL2, theHexMesh)
RaiseIfFailed("MakePipeTShape", self.AdvOp)
if Parameters: anObj[0].SetParameters(Parameters)
return anObj
## Create a T-shape object with chamfer and with specified caracteristics for the main
# and the incident pipes (radius, width, half-length). The chamfer is
# created on the junction of the pipes.
# The extremities of the main pipe are located on junctions points P1 and P2.
# The extremity of the incident pipe is located on junction point P3.
# If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
# the main plane of the T-shape is XOY.
# @param theR1 Internal radius of main pipe
# @param theW1 Width of main pipe
# @param theL1 Half-length of main pipe
# @param theR2 Internal radius of incident pipe (R2 < R1)
# @param theW2 Width of incident pipe (R2+W2 < R1+W1)
# @param theL2 Half-length of incident pipe
# @param theH Height of the chamfer.
# @param theW Width of the chamfer.
# @param theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
# @param theP1 1st junction point of main pipe
# @param theP2 2nd junction point of main pipe
# @param theP3 Junction point of incident pipe
# @return List of GEOM_Objects, containing the created shape and propagation groups.
#
# @ref tui_creation_pipetshape "Example"
def MakePipeTShapeChamfer(self, theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh=True, theP1=None, theP2=None, theP3=None):
theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW)
if (theP1 and theP2 and theP3):
anObj = self.AdvOp.MakePipeTShapeChamferWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh, theP1, theP2, theP3)
else:
anObj = self.AdvOp.MakePipeTShapeChamfer(theR1, theW1, theL1, theR2, theW2, theL2, theH, theW, theHexMesh)
RaiseIfFailed("MakePipeTShapeChamfer", self.AdvOp)
if Parameters: anObj[0].SetParameters(Parameters)
return anObj
## Create a T-shape object with fillet and with specified caracteristics for the main
# and the incident pipes (radius, width, half-length). The fillet is
# created on the junction of the pipes.
# The extremities of the main pipe are located on junctions points P1 and P2.
# The extremity of the incident pipe is located on junction point P3.
# If P1, P2 and P3 are not given, the center of the shape is (0,0,0) and
# the main plane of the T-shape is XOY.
# @param theR1 Internal radius of main pipe
# @param theW1 Width of main pipe
# @param theL1 Half-length of main pipe
# @param theR2 Internal radius of incident pipe (R2 < R1)
# @param theW2 Width of incident pipe (R2+W2 < R1+W1)
# @param theL2 Half-length of incident pipe
# @param theRF Radius of curvature of fillet.
# @param theHexMesh Boolean indicating if shape is prepared for hex mesh (default=True)
# @param theP1 1st junction point of main pipe
# @param theP2 2nd junction point of main pipe
# @param theP3 Junction point of incident pipe
# @return List of GEOM_Objects, containing the created shape and propagation groups.
#
# @ref tui_creation_pipetshape "Example"
def MakePipeTShapeFillet(self, theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh=True, theP1=None, theP2=None, theP3=None):
theR1, theW1, theL1, theR2, theW2, theL2, theRF, Parameters = ParseParameters(theR1, theW1, theL1, theR2, theW2, theL2, theRF)
if (theP1 and theP2 and theP3):
anObj = self.AdvOp.MakePipeTShapeFilletWithPosition(theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh, theP1, theP2, theP3)
else:
anObj = self.AdvOp.MakePipeTShapeFillet(theR1, theW1, theL1, theR2, theW2, theL2, theRF, theHexMesh)
RaiseIfFailed("MakePipeTShapeFillet", self.AdvOp)
if Parameters: anObj[0].SetParameters(Parameters)
return anObj
#@@ insert new functions before this line @@ do not remove this line @@#
# end of l4_advanced
## @}
## Create a copy of the given object
# @ingroup l1_geompy_auxiliary
#
# @ref swig_all_advanced "Example"
def MakeCopy(self,theOriginal):
# Example: see GEOM_TestAll.py
anObj = self.InsertOp.MakeCopy(theOriginal)
RaiseIfFailed("MakeCopy", self.InsertOp)
return anObj
## Add Path to load python scripts from
# @ingroup l1_geompy_auxiliary
def addPath(self,Path):
if (sys.path.count(Path) < 1):
sys.path.append(Path)
pass
pass
## Load marker texture from the file
# @param Path a path to the texture file
# @return unique texture identifier
# @ingroup l1_geompy_auxiliary
def LoadTexture(self, Path):
# Example: see GEOM_TestAll.py
ID = self.InsertOp.LoadTexture(Path)
RaiseIfFailed("LoadTexture", self.InsertOp)
return ID
## Add marker texture. @a Width and @a Height parameters
# specify width and height of the texture in pixels.
# If @a RowData is @c True, @a Texture parameter should represent texture data
# packed into the byte array. If @a RowData is @c False (default), @a Texture
# parameter should be unpacked string, in which '1' symbols represent opaque
# pixels and '0' represent transparent pixels of the texture bitmap.
#
# @param Width texture width in pixels
# @param Height texture height in pixels
# @param Texture texture data
# @param RowData if @c True, @a Texture data are packed in the byte stream
# @ingroup l1_geompy_auxiliary
def AddTexture(self, Width, Height, Texture, RowData=False):
# Example: see GEOM_TestAll.py
if not RowData: Texture = PackData(Texture)
ID = self.InsertOp.AddTexture(Width, Height, Texture)
RaiseIfFailed("AddTexture", self.InsertOp)
return ID
import omniORB
#Register the new proxy for GEOM_Gen
omniORB.registerObjref(GEOM._objref_GEOM_Gen._NP_RepositoryId, geompyDC)