geom/src/GEOMImpl/GEOMImpl_Fillet1d.cxx

918 lines
29 KiB
C++

// Copyright (C) 2007-2015 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : GEOMImpl_Fillet1d.cxx
// Module : GEOMImpl
#include "GEOMImpl_Fillet1d.hxx"
#include <BRep_Tool.hxx>
#include <BRepAdaptor_Curve.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <ElCLib.hxx>
#include <ElSLib.hxx>
#include <gp_Circ.hxx>
#include <Geom2d_Line.hxx>
#include <Geom2dAPI_ProjectPointOnCurve.hxx>
#include <Geom2dAPI_InterCurveCurve.hxx>
#include <GeomAPI_ProjectPointOnCurve.hxx>
#include <GeomProjLib.hxx>
#include <Geom_Circle.hxx>
#include <Precision.hxx>
#include <TColStd_ListIteratorOfListOfReal.hxx>
#include <IntRes2d_IntersectionSegment.hxx>
#include <TopExp.hxx>
/**
* This function returns Standard_True if it is possible to divide edge, i.e.
* if one parameter either start or end one is inside the edge. This function
* is used in the method GEOMImpl_Fillet1d::Result.
*
* \param theEdge the edge
* \param theStart the start parameter
* \param theEnd the end parameter
* \return Standard_True if it is possible to split edge;
* Standard_False otherwise.
*/
static Standard_Boolean IsDivideEdge(const TopoDS_Edge &theEdge,
const Standard_Real theStart,
const Standard_Real theEnd)
{
Standard_Real aFirst;
Standard_Real aLast;
Handle(Geom_Curve) aCurve = BRep_Tool::Curve(theEdge, aFirst, aLast);
gp_Pnt aPStart = aCurve->Value(theStart);
gp_Pnt aPEnd = aCurve->Value(theEnd);
TopoDS_Vertex aVFirst = TopExp::FirstVertex(theEdge);
TopoDS_Vertex aVLast = TopExp::FirstVertex(theEdge);
Standard_Real aTolFirst = BRep_Tool::Tolerance(aVFirst);
Standard_Real aTolLast = BRep_Tool::Tolerance(aVLast);
Standard_Real aTolConf = Precision::Confusion();
gp_Pnt aPFirst = BRep_Tool::Pnt(aVFirst);
gp_Pnt aPLast = BRep_Tool::Pnt(aVLast);
Standard_Real aDistSF = aPStart.Distance(aPFirst);
Standard_Real aDistSL = aPStart.Distance(aPLast);
Standard_Real aDistEF = aPEnd.Distance(aPFirst);
Standard_Real aDistEL = aPEnd.Distance(aPLast);
Standard_Boolean isSplit = Standard_True;
if (aDistSF <= aTolFirst + aTolConf ||
aDistSL <= aTolLast + aTolConf) {
if (aDistEF <= aTolFirst + aTolConf ||
aDistEL <= aTolLast + aTolConf) {
isSplit = Standard_False;
}
}
return isSplit;
}
/**
* class GEOMImpl_Fillet1d
*/
//=======================================================================
//function : Constructor
//purpose :
//=======================================================================
GEOMImpl_Fillet1d::GEOMImpl_Fillet1d(const TopoDS_Edge& theEdge1,
const TopoDS_Edge& theEdge2,
const gp_Pln& thePlane)
: myEdgesExchnged( Standard_False )
{
myPlane = new Geom_Plane(thePlane);
BRepAdaptor_Curve aBAC1(theEdge1);
BRepAdaptor_Curve aBAC2(theEdge2);
if (aBAC1.GetType() < aBAC2.GetType())
{ // first curve must be more complicated
myEdge1 = theEdge2;
myEdge2 = theEdge1;
myEdgesExchnged = Standard_True;
}
else
{
myEdge1 = theEdge1;
myEdge2 = theEdge2;
}
Handle(Geom_Curve) aCurve1 = BRep_Tool::Curve(myEdge1, myStart1, myEnd1);
Handle(Geom_Curve) aCurve2 = BRep_Tool::Curve(myEdge2, myStart2, myEnd2);
myCurve1 = GeomProjLib::Curve2d(aCurve1, myStart1, myEnd1, myPlane);
myCurve2 = GeomProjLib::Curve2d(aCurve2, myStart2, myEnd2, myPlane);
while (myCurve1->IsPeriodic() && myStart1 >= myEnd1)
myEnd1 += myCurve1->Period();
while (myCurve2->IsPeriodic() && myStart2 >= myEnd2)
myEnd2 += myCurve2->Period();
if (aBAC1.GetType() == aBAC2.GetType())
{
if (myEnd2 - myStart2 < myEnd1 - myStart1)
{ // first curve must be parametrically shorter
TopoDS_Edge anEdge = myEdge1;
myEdge1 = myEdge2;
myEdge2 = anEdge;
Handle(Geom2d_Curve) aCurve = myCurve1;
myCurve1 = myCurve2;
myCurve2 = aCurve;
Standard_Real a = myStart1;
myStart1 = myStart2;
myStart2 = a;
a = myEnd1;
myEnd1 = myEnd2;
myEnd2 = a;
myEdgesExchnged = Standard_True;
}
}
}
//=======================================================================
//function : isRadiusIntersected
//purpose : local function
//=======================================================================
static Standard_Boolean isRadiusIntersected(const Handle(Geom2d_Curve)& theCurve,
const gp_Pnt2d theStart,
const gp_Pnt2d theEnd,
const Standard_Boolean theStartConnected)
{
const Standard_Real aTol = Precision::Confusion();
const Standard_Real anAngTol = Precision::Angular();
Geom2dAPI_InterCurveCurve anInter(theCurve, new Geom2d_Line(theStart,
gp_Dir2d(gp_Vec2d(theStart, theEnd))), aTol);
Standard_Integer a;
gp_Pnt2d aPoint;
for(a = anInter.NbPoints(); a > 0; a--)
{
aPoint = anInter.Point(a);
if ( aPoint.Distance(theStart) < aTol && !theStartConnected )
return Standard_True;
if (aPoint.Distance(theEnd) < aTol * 200)
return Standard_True;
if (gp_Vec2d(aPoint, theStart).IsOpposite(gp_Vec2d(aPoint, theEnd), anAngTol))
return Standard_True;
}
Handle(Geom2d_Curve) aCurve;
for(a = anInter.NbSegments(); a > 0; a--)
{
anInter.Segment(a, aCurve);
aPoint = aCurve->Value(aCurve->FirstParameter());
if (aPoint.Distance(theStart) < aTol)
if (!theStartConnected)
return Standard_True;
if (aPoint.Distance(theEnd) < aTol)
return Standard_True;
if (gp_Vec2d(aPoint, theStart).IsOpposite(gp_Vec2d(aPoint, theEnd), anAngTol))
return Standard_True;
aPoint = aCurve->Value(aCurve->LastParameter());
if (aPoint.Distance(theStart) < aTol)
if (!theStartConnected)
return Standard_True;
if (aPoint.Distance(theEnd) < aTol)
return Standard_True;
if (gp_Vec2d(aPoint, theStart).IsOpposite(gp_Vec2d(aPoint, theEnd), anAngTol))
return Standard_True;
}
return Standard_False;
}
//=======================================================================
//function : fillPoint
//purpose :
//=======================================================================
void GEOMImpl_Fillet1d::fillPoint(GEOMImpl_Fillet1dPoint* thePoint)
{
gp_Pnt2d aPoint;
gp_Vec2d aVec;
const Standard_Real aTol = Precision::Confusion();
myCurve1->D1(thePoint->GetParam(), aPoint, aVec);
if (aVec.SquareMagnitude() < aTol)
return;
gp_Vec2d aPerp(((myStartSide)?-1:1) * aVec.Y(), ((myStartSide)?1:-1) * aVec.X());
aPerp.Normalize();
aPerp.Multiply(myRadius);
gp_Pnt2d aCenter = aPoint.Translated(aPerp);
thePoint->SetCenter(aCenter);
// on the intersection point
Standard_Boolean aValid = Standard_True;
Geom2dAPI_ProjectPointOnCurve aProjInt(aPoint, myCurve2);
if (aProjInt.NbPoints() && aPoint.Distance(aProjInt.NearestPoint()) < aTol)
aValid = Standard_False;
else
aValid = !isRadiusIntersected(myCurve2, aPoint, aCenter, Standard_True);
Geom2dAPI_ProjectPointOnCurve aProj(aCenter, myCurve2);
Standard_Integer a, aNB = aProj.NbPoints();
for(a = aNB; a > 0; a--)
{
if (aPoint.Distance(aProj.Point(a)) < aTol)
continue;
Standard_Boolean aValid2 = aValid;
if (aValid2)
aValid2 = !isRadiusIntersected(myCurve1, aCenter, aProj.Point(a), Standard_False);
// checking the right parameter
Standard_Real aParam = aProj.Parameter(a);
while(myCurve2->IsPeriodic() && aParam < myStart2)
aParam += myCurve2->Period();
thePoint->AddValue(aProj.Distance(a) * aProj.Distance(a) - myRadius * myRadius,
(aParam >= myStart2 && aParam <= myEnd2 && aValid2));
if (fabs(fabs(aProj.Distance(a)) - myRadius) < aTol)
thePoint->SetParam2(aParam);
}
}
//=======================================================================
//function : fillDiff
//purpose :
//=======================================================================
void GEOMImpl_Fillet1d::fillDiff(GEOMImpl_Fillet1dPoint* thePoint, Standard_Real theDiffStep, Standard_Boolean theFront)
{
GEOMImpl_Fillet1dPoint* aDiff =
new GEOMImpl_Fillet1dPoint(thePoint->GetParam() + (theFront?(theDiffStep):(-theDiffStep)));
fillPoint(aDiff);
if (!thePoint->ComputeDifference(aDiff))
{
aDiff->SetParam(thePoint->GetParam() + (theFront?(-theDiffStep):(theDiffStep)));
fillPoint(aDiff);
thePoint->ComputeDifference(aDiff);
}
delete aDiff;
}
//=======================================================================
//function : Perform
//purpose :
//=======================================================================
Standard_Boolean GEOMImpl_Fillet1d::Perform(const Standard_Real theRadius)
{
myDegreeOfRecursion = 0;
myResultParams.Clear();
myResultOrientation.Clear();
Standard_Real aNBSteps = 100;
Geom2dAdaptor_Curve aGAC(myCurve1);
switch (aGAC.GetType())
{
case GeomAbs_Line:
aNBSteps = 2;
break;
case GeomAbs_Circle:
aNBSteps = 4;
break;
case GeomAbs_Ellipse:
aNBSteps = 5;
break;
case GeomAbs_BezierCurve:
case GeomAbs_BSplineCurve:
aNBSteps = 2 + aGAC.Degree() * aGAC.NbPoles();
break;
default: // unknown: maximum
aNBSteps = 100;
}
myRadius = theRadius;
// Compute the intervals.
const Standard_Real aTol = Precision::Confusion();
Geom2dAPI_InterCurveCurve anAPIInter(myCurve1, myCurve2, aTol);
const Geom2dInt_GInter &anInter = anAPIInter.Intersector();
Standard_Integer aNb = anInter.NbPoints();
Standard_Integer i;
TColStd_ListOfReal aParams;
TColStd_ListIteratorOfListOfReal anIter;
// Treat intersection points.
for(i = 1; i <= aNb; i++) {
const IntRes2d_IntersectionPoint &aPoint = anInter.Point(i);
Standard_Real aParam = aPoint.ParamOnFirst();
// Adjust parameter on periodic curve.
if (myCurve1->IsPeriodic()) {
aParam = ElCLib::InPeriod
(aParam, myStart1, myStart1 + myCurve1->Period());
}
if (aParam > myStart1 + aTol && aParam < myEnd1 - aTol) {
// Add the point in the list in increasing order.
for(anIter.Initialize(aParams); anIter.More(); anIter.Next()) {
if (anIter.Value() > aParam) {
aParams.InsertBefore(aParam, anIter);
break;
}
}
if (!anIter.More()) {
aParams.Append(aParam);
}
}
}
// Treat intersection segments.
aNb = anInter.NbSegments();
for(i = 1; i <= aNb; i++) {
const IntRes2d_IntersectionSegment &aSegment = anInter.Segment(i);
if (aSegment.HasFirstPoint() && aSegment.HasLastPoint()) {
Standard_Real aParam1 = aSegment.FirstPoint().ParamOnFirst();
Standard_Real aParam2 = aSegment.LastPoint().ParamOnFirst();
// Adjust parameters on periodic curve.
if (myCurve1->IsPeriodic()) {
ElCLib::AdjustPeriodic(myStart1, myStart1 + myCurve1->Period(),
aTol, aParam1, aParam2);
}
if (aParam1 > myStart1 + aTol && aParam1 < myEnd1 - aTol &&
aParam2 > myStart1 + aTol && aParam2 < myEnd1 - aTol) {
// Add the point in the list in increasing order.
const Standard_Real aParam = 0.5*(aParam1 + aParam2);
for(anIter.Initialize(aParams); anIter.More(); anIter.Next()) {
if (anIter.Value() > aParam) {
aParams.InsertBefore(aParam, anIter);
break;
}
}
if (!anIter.More()) {
aParams.Append(aParam);
}
}
}
}
// Add start and end parameters to the list.
aParams.Prepend(myStart1);
aParams.Append(myEnd1);
anIter.Initialize(aParams);
// Perform each interval.
Standard_Real aStart = anIter.Value();
for (anIter.Next(); anIter.More(); anIter.Next()) {
const Standard_Real anEnd = anIter.Value();
// Perform the interval.
performInterval(aStart, anEnd, aNBSteps);
aStart = anEnd;
}
if (myResultParams.Extent())
return Standard_True;
return Standard_False;
}
//=======================================================================
//function : performInterval
//purpose :
//=======================================================================
void GEOMImpl_Fillet1d::performInterval(const Standard_Real theStart,
const Standard_Real theEnd,
const Standard_Integer theNBSteps)
{
Standard_Real aParam, aStep, aDStep;
aStep = (theEnd - theStart) / theNBSteps;
aDStep = aStep/1000.;
Standard_Integer aCycle;
for(aCycle = 2, myStartSide = Standard_False; aCycle; myStartSide = !myStartSide, aCycle--)
{
GEOMImpl_Fillet1dPoint *aLeft = NULL, *aRight = NULL;
for(aParam = theStart + aStep; aParam < theEnd || fabs(theEnd - aParam) < Precision::Confusion(); aParam += aStep)
{
if (!aLeft)
{
aLeft = new GEOMImpl_Fillet1dPoint(aParam - aStep);
fillPoint(aLeft);
fillDiff(aLeft, aDStep, Standard_True);
}
aRight = new GEOMImpl_Fillet1dPoint(aParam);
fillPoint(aRight);
fillDiff(aRight, aDStep, Standard_False);
aLeft->FilterPoints(aRight);
performNewton(aLeft, aRight);
delete aLeft;
aLeft = aRight;
}
delete aLeft;
}
}
//=======================================================================
//function : processPoint
//purpose :
//=======================================================================
Standard_Boolean GEOMImpl_Fillet1d::processPoint(GEOMImpl_Fillet1dPoint* theLeft,
GEOMImpl_Fillet1dPoint* theRight,
Standard_Real theParameter)
{
if (theParameter >= theLeft->GetParam() && theParameter < theRight->GetParam())
{
Standard_Real aDX = theRight->GetParam() - theLeft->GetParam();
if (theParameter - theLeft->GetParam() < aDX / 100.)
{
theParameter = theLeft->GetParam() + aDX / 100.;
}
if (theRight->GetParam() - theParameter < aDX / 100.)
{
theParameter = theRight->GetParam() - aDX / 100.;
}
// Protection on infinite loop.
myDegreeOfRecursion++;
Standard_Real diffx = 0.001 * aDX;
if (myDegreeOfRecursion > 1000)
{
diffx *= 10.0;
if (myDegreeOfRecursion > 10000)
{
diffx *= 10.0;
if (myDegreeOfRecursion > 100000)
{
return Standard_True;
}
}
}
GEOMImpl_Fillet1dPoint* aPoint1 = theLeft->Copy();
GEOMImpl_Fillet1dPoint* aPoint2 = new GEOMImpl_Fillet1dPoint(theParameter);
fillPoint(aPoint2);
fillDiff(aPoint2, diffx, Standard_True);
aPoint1->FilterPoints(aPoint2);
performNewton(aPoint1, aPoint2);
aPoint2->FilterPoints(theRight);
performNewton(aPoint2, theRight);
delete aPoint1;
delete aPoint2;
return Standard_True;
}
return Standard_False;
}
//=======================================================================
//function : performNewton
//purpose :
//=======================================================================
void GEOMImpl_Fillet1d::performNewton(GEOMImpl_Fillet1dPoint* theLeft,
GEOMImpl_Fillet1dPoint* theRight)
{
Standard_Integer a;
// check the left: if this is solution store it and remove it from the list of researching points of theLeft
a = theLeft->HasSolution(myRadius);
if (a)
{
if (theLeft->IsValid(a))
{
myResultParams.Append(theLeft->GetParam());
myResultOrientation.Append(myStartSide);
}
return;
}
Standard_Real aDX = theRight->GetParam() - theLeft->GetParam();
if ( aDX < Precision::Confusion() / 1000000.)
{
a = theRight->HasSolution(myRadius);
if (a)
if (theRight->IsValid(a))
{
myResultParams.Append(theRight->GetParam());
myResultOrientation.Append(myStartSide);
}
return;
}
for(a = 1; a <= theLeft->GetNBValues(); a++)
{
Standard_Integer aNear = theLeft->GetNear(a);
Standard_Real aA = (theRight->GetDiff(aNear) - theLeft->GetDiff(a)) / aDX;
Standard_Real aB = theLeft->GetDiff(a) - aA * theLeft->GetParam();
Standard_Real aC = theLeft->GetValue(a) - theLeft->GetDiff(a) * theLeft->GetParam() +
aA * theLeft->GetParam() * theLeft->GetParam() / 2.0;
Standard_Real aDet = aB * aB - 2.0 * aA * aC;
if ( fabs(aDet) < gp::Resolution() )
continue;
if (fabs(aA) < Precision::Confusion())
{ // linear case
if (fabs(aB) > 10e-20)
{
Standard_Real aX0 = - aC / aB; // use extremum
if (aX0 > theLeft->GetParam() && aX0 < theRight->GetParam())
processPoint(theLeft, theRight, aX0);
}
else
{
processPoint(theLeft, theRight, theLeft->GetParam() + aDX / 2.0); // linear division otherwise
}
}
else
{
if (fabs(aB) > fabs(aDet * 1000000.))
{ // possible floating point operations accuracy errors
processPoint(theLeft, theRight, theLeft->GetParam() + aDX / 2.0); // linear division otherwise
}
else
{
if (aDet > 0)
{ // two solutions
aDet = sqrt(aDet);
Standard_Boolean aRes = processPoint(theLeft, theRight, (- aB + aDet) / aA);
if (!aRes)
aRes = processPoint(theLeft, theRight, (- aB - aDet) / aA);
if (!aRes)
processPoint(theLeft, theRight, theLeft->GetParam() + aDX / 2.0); // linear division otherwise
}
else
{
Standard_Real aX0 = - aB / aA; // use extremum
if (aX0 > theLeft->GetParam() && aX0 < theRight->GetParam())
processPoint(theLeft, theRight, aX0);
else
processPoint(theLeft, theRight, theLeft->GetParam() + aDX / 2.0); // linear division otherwise
}
}
}
}
}
//=======================================================================
//function : Result
//purpose :
//=======================================================================
TopoDS_Edge GEOMImpl_Fillet1d::Result(const gp_Pnt& thePoint,
TopoDS_Edge& theEdge1,
TopoDS_Edge& theEdge2)
{
TopoDS_Edge aResult;
gp_Pnt2d aTargetPoint2d;
Standard_Real aX, aY;
ElSLib::PlaneParameters(myPlane->Pln().Position(), thePoint, aX, aY);
aTargetPoint2d.SetCoord(aX, aY);
// choose the nearest circle
Standard_Real aDistance, aP;
GEOMImpl_Fillet1dPoint *aNearest;
Standard_Integer a;
TColStd_ListIteratorOfListOfReal anIter(myResultParams);
for(aNearest = NULL, a = 1; anIter.More(); anIter.Next(), a++)
{
myStartSide = (myResultOrientation.Value(a)) ? Standard_True : Standard_False;
GEOMImpl_Fillet1dPoint *aPoint = new GEOMImpl_Fillet1dPoint(anIter.Value());
fillPoint(aPoint);
if (!aPoint->HasSolution(myRadius))
continue;
aP = fabs(aPoint->GetCenter().Distance(aTargetPoint2d) - myRadius);
if (!aNearest || aP < aDistance)
{
aNearest = aPoint;
aDistance = aP;
}
else
{
delete aPoint;
}
}
if (!aNearest)
return aResult;
// create circle edge
gp_Pnt aCenter = ElSLib::PlaneValue(aNearest->GetCenter().X(),
aNearest->GetCenter().Y(),
myPlane->Pln().Position());
Handle(Geom_Circle) aCircle =
new Geom_Circle(gp_Ax2(aCenter, myPlane->Pln().Axis().Direction()), myRadius);
gp_Pnt2d aPoint2d1, aPoint2d2;
myCurve1->D0(aNearest->GetParam(), aPoint2d1);
myCurve2->D0(aNearest->GetParam2(), aPoint2d2);
gp_Pnt aPoint1 = ElSLib::PlaneValue(aPoint2d1.X(), aPoint2d1.Y(), myPlane->Pln().Position());
gp_Pnt aPoint2 = ElSLib::PlaneValue(aPoint2d2.X(), aPoint2d2.Y(), myPlane->Pln().Position());
GeomAPI_ProjectPointOnCurve aProj(thePoint, aCircle);
Standard_Real aTarGetParam = aProj.LowerDistanceParameter();
gp_Pnt aPointOnCircle = aProj.NearestPoint();
// Check extrema point manually, because there is a bug in Open CASCADE
// in calculation of nearest point to a circle near the parameter 0.0
gp_Pnt p0 = ElCLib::Value(0.0, aCircle->Circ());
if (p0.Distance(thePoint) < aPointOnCircle.Distance(thePoint))
{
aTarGetParam = 0.0;
aPointOnCircle = p0;
}
aProj.Perform(aPoint1);
Standard_Real aParam1 = aProj.LowerDistanceParameter();
aProj.Perform(aPoint2);
Standard_Real aParam2 = aProj.LowerDistanceParameter();
Standard_Boolean aIsOut = ((aParam1 < aTarGetParam && aParam2 < aTarGetParam) ||
(aParam1 > aTarGetParam && aParam2 > aTarGetParam));
if (aParam1 > aParam2)
aIsOut = !aIsOut;
BRepBuilderAPI_MakeEdge aBuilder(aCircle->Circ(),
aIsOut ? aParam2 : aParam1,
aIsOut? aParam1 : aParam2);
aResult = aBuilder.Edge();
// divide edges
Standard_Real aStart, anEnd;
Handle(Geom_Curve) aCurve = BRep_Tool::Curve(myEdge1, aStart, anEnd);
gp_Vec aDir;
aCurve->D1(aNearest->GetParam(), aPoint1, aDir);
gp_Vec aCircleDir;
aCircle->D1(aParam1, aPoint1, aCircleDir);
if ((aCircleDir.Angle(aDir) > M_PI / 2.0) ^ aIsOut)
aStart = aNearest->GetParam();
else
anEnd = aNearest->GetParam();
if (IsDivideEdge(myEdge1, aStart, anEnd))
{
//Divide edge
BRepBuilderAPI_MakeEdge aDivider1(aCurve, aStart, anEnd);
if (myEdgesExchnged)
theEdge2 = aDivider1.Edge();
else
theEdge1 = aDivider1.Edge();
}
aCurve = BRep_Tool::Curve(myEdge2, aStart, anEnd);
aCurve->D1(aNearest->GetParam2(), aPoint2, aDir);
aCircle->D1(aParam2, aPoint2, aCircleDir);
if ((aCircleDir.Angle(aDir) > M_PI / 2.0) ^ (!aIsOut))
aStart = aNearest->GetParam2();
else
anEnd = aNearest->GetParam2();
if (IsDivideEdge(myEdge2, aStart, anEnd))
{
BRepBuilderAPI_MakeEdge aDivider2(aCurve, aStart, anEnd);
if (myEdgesExchnged)
theEdge1 = aDivider2.Edge();
else
theEdge2 = aDivider2.Edge();
}
delete aNearest;
return aResult;
}
//=======================================================================
//function : AddValue
//purpose :
//=======================================================================
void GEOMImpl_Fillet1dPoint::AddValue(Standard_Real theValue, Standard_Boolean theValid)
{
Standard_Integer a;
for(a = 1; a <= myV.Length(); a++)
{
if (theValue < myV.Value(a))
{
myV.InsertBefore(a, theValue);
myValid.InsertBefore(a, (Standard_Integer)theValid);
return;
}
}
myV.Append(theValue);
myValid.Append((Standard_Integer)theValid);
}
//=======================================================================
//function : ComputeDifference
//purpose :
//=======================================================================
Standard_Boolean GEOMImpl_Fillet1dPoint::ComputeDifference(GEOMImpl_Fillet1dPoint* thePoint)
{
Standard_Integer a;
Standard_Boolean aDiffsSet = (myD.Length() != 0);
Standard_Real aDX = thePoint->GetParam() - myParam, aDY;
if (thePoint->myV.Length() == myV.Length())
{ // absolutely the same points
for(a = 1; a <= myV.Length(); a++)
{
aDY = thePoint->myV.Value(a) - myV.Value(a);
if ( aDiffsSet )
myD.SetValue(a, fabs(aDX) > gp::Resolution() ? (aDY/aDX) : 0);
else
myD.Append( fabs(aDX) > gp::Resolution() ? (aDY/aDX) : 0);
}
return Standard_True;
}
// between the diffeerent points searching for nearest analogs
Standard_Integer b;
for(a = 1; a <= myV.Length(); a++)
{
for(b = 1; b <= thePoint->myV.Length(); b++)
{
if (b == 1 || fabs(thePoint->myV.Value(b) - myV.Value(a)) < fabs(aDY))
aDY = thePoint->myV.Value(b) - myV.Value(a);
}
if (aDiffsSet)
{
if ( fabs(aDX) > gp::Resolution() && fabs(aDY / aDX) < fabs(myD.Value(a)))
myD.SetValue(a, aDY / aDX);
else
myD.SetValue(a, 0);
}
else
{
myD.Append( fabs(aDX) > gp::Resolution() ? aDY/aDX : 0);
}
}
return Standard_False;
}
//=======================================================================
//function : FilterPoints
//purpose :
//=======================================================================
void GEOMImpl_Fillet1dPoint::FilterPoints(GEOMImpl_Fillet1dPoint* thePoint)
{
Standard_Integer a, b;
TColStd_SequenceOfReal aDiffs;
Standard_Real aY, aY2, aDX = thePoint->GetParam() - myParam;
for(a = 1; a <= myV.Length(); a++)
{
// searching for near point from thePoint
Standard_Integer aNear = 0;
Standard_Real aDiff = aDX * 10000.;
aY = myV.Value(a) + myD.Value(a) * aDX;
for(b = 1; b <= thePoint->myV.Length(); b++)
{
// calculate hypothesis value of the Y2 with the constant first and second derivative
aY2 = aY + aDX * (thePoint->myD.Value(b) - myD.Value(a)) / 2.0;
if (aNear == 0 || fabs(aY2 - thePoint->myV.Value(b)) < fabs(aDiff))
{
aNear = b;
aDiff = aY2 - thePoint->myV.Value(b);
}
}//for b...
if (aNear)
{
if (myV.Value(a) * thePoint->myV.Value(aNear) > 0)
{// the same sign at the same sides of the interval
if (myV.Value(a) * myD.Value(a) > 0)
{
if (fabs(myD.Value(a)) > Precision::Confusion())
aNear = 0;
}
else
{
if (fabs(myV.Value(a)) > fabs(thePoint->myV.Value(aNear)))
if (thePoint->myV.Value(aNear) * thePoint->myD.Value(aNear) < 0 &&
fabs(thePoint->myD.Value(aNear)) > Precision::Confusion())
{
aNear = 0;
}
}
}
}
if (aNear)
{
if (myV.Value(a) * thePoint->myV.Value(aNear) > 0)
{
if ((myV.Value(a) + myD.Value(a) * aDX) * myV.Value(a) > Precision::Confusion() &&
(thePoint->myV.Value(aNear) + thePoint->myD.Value(aNear) * aDX) * thePoint->myV.Value(aNear) > Precision::Confusion())
{
aNear = 0;
}
}
}
if (aNear)
{
if ( fabs(aDX) < gp::Resolution() || fabs(aDiff / aDX) > 1.e+7)
{
aNear = 0;
}
}
if (aNear == 0)
{ // there is no near: remove it from the list
myV.Remove(a);
myD.Remove(a);
myValid.Remove(a);
a--;
}
else
{
Standard_Boolean aFound = Standard_False;
for(b = 1; b <= myNear.Length(); b++)
{
if (myNear.Value(b) == aNear)
{
if (fabs(aDiffs.Value(b)) < fabs(aDiff))
{ // return this 'near'
aFound = Standard_True;
myV.Remove(a);
myD.Remove(a);
myValid.Remove(a);
a--;
break;
}
else
{ // remove the old 'near'
myV.Remove(b);
myD.Remove(b);
myValid.Remove(b);
myNear.Remove(b);
aDiffs.Remove(b);
a--;
break;
}
}
}//for b...
if (!aFound)
{
myNear.Append(aNear);
aDiffs.Append(aDiff);
}
}
}//for a...
}
//=======================================================================
//function : Copy
//purpose :
//=======================================================================
GEOMImpl_Fillet1dPoint* GEOMImpl_Fillet1dPoint::Copy()
{
GEOMImpl_Fillet1dPoint* aCopy = new GEOMImpl_Fillet1dPoint(myParam);
Standard_Integer a;
for(a = 1; a <= myV.Length(); a++)
{
aCopy->myV.Append(myV.Value(a));
aCopy->myD.Append(myD.Value(a));
aCopy->myValid.Append(myValid.Value(a));
}
return aCopy;
}
//=======================================================================
//function : HasSolution
//purpose :
//=======================================================================
Standard_Integer GEOMImpl_Fillet1dPoint::HasSolution(const Standard_Real theRadius)
{
Standard_Integer a;
for(a = 1; a <= myV.Length(); a++)
{
if (fabs(sqrt(fabs(fabs(myV.Value(a)) + theRadius * theRadius)) - theRadius) < Precision::Confusion() / 10.)
return a;
}
return 0;
}
//=======================================================================
//function : RemoveSolution
//purpose :
//=======================================================================
void GEOMImpl_Fillet1dPoint::RemoveSolution(Standard_Integer theIndex)
{
myV.Remove(theIndex);
myD.Remove(theIndex);
myValid.Remove(theIndex);
myNear.Remove(theIndex);
}