mirror of
https://git.salome-platform.org/gitpub/modules/geom.git
synced 2025-01-14 02:30:35 +05:00
7961b83044
This reverts commit 3cd92817cb
.
365 lines
13 KiB
C++
365 lines
13 KiB
C++
// Copyright (C) 2007-2014 CEA/DEN, EDF R&D, OPEN CASCADE
|
|
//
|
|
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
|
|
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
|
|
//
|
|
// This library is free software; you can redistribute it and/or
|
|
// modify it under the terms of the GNU Lesser General Public
|
|
// License as published by the Free Software Foundation; either
|
|
// version 2.1 of the License, or (at your option) any later version.
|
|
//
|
|
// This library is distributed in the hope that it will be useful,
|
|
// but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
// Lesser General Public License for more details.
|
|
//
|
|
// You should have received a copy of the GNU Lesser General Public
|
|
// License along with this library; if not, write to the Free Software
|
|
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
//
|
|
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
|
|
//
|
|
|
|
// File : ShapeRec_FeatureDetector.cxx
|
|
// Author : Renaud NEDELEC, Open CASCADE S.A.S.
|
|
|
|
#include "ShapeRec_FeatureDetector.hxx"
|
|
#include <stdio.h>
|
|
#include "utilities.h"
|
|
|
|
// TODO : All the following methods but ComputeContours use the C API of OpenCV while ComputContours
|
|
// uses the C++ API of the library.
|
|
// This should be homogenized and preferably by using the C++ API (which is more recent for all the methods
|
|
|
|
// The code has to be "cleaned up" too
|
|
|
|
/*!
|
|
Constructor
|
|
\param theFilename - image to process
|
|
*/
|
|
ShapeRec_FeatureDetector::ShapeRec_FeatureDetector():
|
|
corners()
|
|
{
|
|
cornerCount = 2000;
|
|
rect=cvRect(0,0,0,0);
|
|
imagePath = ""; //theFilename;
|
|
// Store the dimensions of the picture
|
|
imgHeight = 0;
|
|
imgWidth = 0;
|
|
}
|
|
|
|
/*!
|
|
Sets the path of the image file to be processed
|
|
\param thePath - Location of the image file
|
|
*/
|
|
void ShapeRec_FeatureDetector::SetPath( const std::string& thePath )
|
|
{
|
|
imagePath = thePath;
|
|
if (imagePath != "")
|
|
{
|
|
IplImage* src = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
|
|
imgHeight = src->height;
|
|
imgWidth = src->width;
|
|
cvReleaseImage(&src);
|
|
}
|
|
}
|
|
|
|
/*!
|
|
Computes the corners of the image located at imagePath
|
|
*/
|
|
void ShapeRec_FeatureDetector::ComputeCorners( bool useROI, ShapeRec_Parameters* parameters )
|
|
{
|
|
ShapeRec_CornersParameters* aCornersParameters = dynamic_cast<ShapeRec_CornersParameters*>( parameters );
|
|
if ( !aCornersParameters ) aCornersParameters = new ShapeRec_CornersParameters();
|
|
|
|
// Images to be used for detection
|
|
IplImage *eig_img, *temp_img, *src_img_gray;
|
|
|
|
// Load image
|
|
src_img_gray = cvLoadImage (imagePath.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
|
|
|
|
if ( useROI )
|
|
{
|
|
// If a ROI as been set use it for detection
|
|
cvSetImageROI( src_img_gray, rect );
|
|
}
|
|
|
|
eig_img = cvCreateImage (cvGetSize (src_img_gray), IPL_DEPTH_32F, 1);
|
|
temp_img = cvCreateImage (cvGetSize (src_img_gray), IPL_DEPTH_32F, 1);
|
|
corners = (CvPoint2D32f *) cvAlloc (cornerCount * sizeof (CvPoint2D32f));
|
|
|
|
// image height and width
|
|
imgHeight = src_img_gray->height;
|
|
imgWidth = src_img_gray->width;
|
|
|
|
// Corner detection using cvCornerMinEigenVal
|
|
// (one of the methods available inOpenCV, there is also a cvConerHarris method that can be used by setting a flag in cvGoodFeaturesToTrack)
|
|
cvGoodFeaturesToTrack (src_img_gray, eig_img, temp_img, corners, &cornerCount, aCornersParameters->qualityLevel, aCornersParameters->minDistance);
|
|
cvFindCornerSubPix (src_img_gray, corners, cornerCount, cvSize (aCornersParameters->kernelSize, aCornersParameters->kernelSize), cvSize (-1, -1),
|
|
cvTermCriteria (aCornersParameters->typeCriteria, aCornersParameters->maxIter, aCornersParameters->epsilon));
|
|
|
|
cvReleaseImage (&eig_img);
|
|
cvReleaseImage (&temp_img);
|
|
cvReleaseImage (&src_img_gray);
|
|
|
|
}
|
|
|
|
/*!
|
|
Computes the contours of the image located at imagePath
|
|
*/
|
|
bool ShapeRec_FeatureDetector::ComputeContours( bool useROI, ShapeRec_Parameters* parameters )
|
|
{
|
|
// Initialising images
|
|
cv::Mat src, src_gray;
|
|
cv::Mat detected_edges;
|
|
|
|
// Read image
|
|
src = cv::imread( imagePath.c_str() );
|
|
if( !src.data )
|
|
return false;
|
|
|
|
if ( !useROI ) // CANNY: The problem is that with that filter the detector detects double contours
|
|
{
|
|
// Convert the image to grayscale
|
|
if (src.channels() == 3)
|
|
cv::cvtColor( src, src_gray, CV_BGR2GRAY );
|
|
else if (src.channels() == 1)
|
|
src_gray = src;
|
|
|
|
ShapeRec_CannyParameters* aCannyParameters = dynamic_cast<ShapeRec_CannyParameters*>( parameters );
|
|
if ( !aCannyParameters ) aCannyParameters = new ShapeRec_CannyParameters();
|
|
|
|
// Reduce noise
|
|
blur( src_gray, detected_edges, cv::Size( aCannyParameters->kernelSize, aCannyParameters->kernelSize ) );
|
|
// Canny detector
|
|
Canny( detected_edges, detected_edges, aCannyParameters->lowThreshold, aCannyParameters->lowThreshold * aCannyParameters->ratio,
|
|
aCannyParameters->kernelSize, aCannyParameters->L2gradient );
|
|
}
|
|
else //COLORFILTER
|
|
{
|
|
// Load the input image where we want to detect contours
|
|
IplImage* input_image = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
|
|
|
|
ShapeRec_ColorFilterParameters* aColorFilterParameters = dynamic_cast<ShapeRec_ColorFilterParameters*>( parameters );
|
|
if ( !aColorFilterParameters ) aColorFilterParameters = new ShapeRec_ColorFilterParameters();
|
|
|
|
// Reduce noise
|
|
cvSmooth( input_image, input_image, CV_GAUSSIAN, aColorFilterParameters->smoothSize, aColorFilterParameters->smoothSize );
|
|
|
|
// Crop the image to the selected part only (sample_image)
|
|
cvSetImageROI(input_image, rect);
|
|
IplImage* sample_image = cvCreateImage(cvGetSize(input_image),
|
|
input_image->depth,
|
|
input_image->nChannels);
|
|
cvCopy(input_image, sample_image, NULL);
|
|
cvResetImageROI(input_image);
|
|
|
|
IplImage* sample_hsv = cvCreateImage( cvGetSize(sample_image),8,3 );
|
|
IplImage* sample_h_plane = cvCreateImage( cvGetSize(sample_image), 8, 1 );
|
|
IplImage* sample_s_plane = cvCreateImage( cvGetSize(sample_image), 8, 1 );
|
|
CvHistogram* sample_hist;
|
|
|
|
cvCvtColor(sample_image, sample_hsv, CV_BGR2HSV);
|
|
|
|
cvCvtPixToPlane(sample_hsv, sample_h_plane, sample_s_plane, 0, 0);
|
|
IplImage* sample_planes[] = { sample_h_plane, sample_s_plane };
|
|
|
|
// Create the hue / saturation histogram of the SAMPLE image.
|
|
// This histogramm will be representative of what is the zone
|
|
// we want to find the frontier of. Indeed, the sample image is meant to
|
|
// be representative of this zone
|
|
float hranges[] = { 0, 180 };
|
|
float sranges[] = { 0, 256 };
|
|
float* ranges[] = { hranges, sranges };
|
|
sample_hist = cvCreateHist( 2, aColorFilterParameters->histSize, aColorFilterParameters->histType, ranges );
|
|
|
|
//calculate hue /saturation histogram
|
|
cvCalcHist(sample_planes, sample_hist, 0 ,0);
|
|
|
|
// // TEST print of the histogram for debugging
|
|
// IplImage* hist_image = cvCreateImage(cvSize(320,300),8,3);
|
|
//
|
|
// //draw hist on hist_test image.
|
|
// cvZero(hist_image);
|
|
// float max_value = 0;
|
|
// cvGetMinMaxHistValue(hist, 0 , &max_value, 0, 0);
|
|
// int bin_w = hist_image->width/size_hist;
|
|
// for(int i = 0; i < size_hist; i++ )
|
|
// {
|
|
// //prevent overflow
|
|
// int val = cvRound( cvGetReal1D(hist->bins,i)*hist_image->
|
|
// height/max_value);
|
|
// CvScalar color = CV_RGB(200,0,0);
|
|
// //hsv2rgb(i*180.f/size_hist);
|
|
// cvRectangle( hist_image, cvPoint(i*bin_w,hist_image->height),
|
|
// cvPoint((i+1)*bin_w,hist_image->height - val),
|
|
// color, -1, 8, 0 );
|
|
// }
|
|
//
|
|
//
|
|
// cvNamedWindow("hist", 1); cvShowImage("hist",hist_image);
|
|
|
|
|
|
// Calculate the back projection of hue and saturation planes of the INPUT image
|
|
// by mean of the histogram of the SAMPLE image.
|
|
//
|
|
// The pixels which (h,s) coordinates correspond to high values in the histogram
|
|
// will have high values in the grey image result. It means that a pixel of the INPUT image
|
|
// which is more probably in the zone represented by the SAMPLE image, will be whiter
|
|
// in the back projection.
|
|
IplImage* backproject = cvCreateImage(cvGetSize(input_image), 8, 1);
|
|
IplImage* binary_backproject = cvCreateImage(cvGetSize(input_image), 8, 1);
|
|
IplImage* input_hsv = cvCreateImage(cvGetSize(input_image),8,3);
|
|
IplImage* input_hplane = cvCreateImage(cvGetSize(input_image),8,1);
|
|
IplImage* input_splane = cvCreateImage(cvGetSize(input_image),8,1);
|
|
|
|
// Get hue and saturation planes of the INPUT image
|
|
cvCvtColor(input_image, input_hsv, CV_BGR2HSV);
|
|
cvCvtPixToPlane(input_hsv, input_hplane, input_splane, 0, 0);
|
|
IplImage* input_planes[] = { input_hplane, input_splane };
|
|
|
|
// Compute the back projection
|
|
cvCalcBackProject(input_planes, backproject, sample_hist);
|
|
|
|
// Threshold in order to obtain a binary image
|
|
cvThreshold(backproject, binary_backproject, aColorFilterParameters->threshold, aColorFilterParameters->maxThreshold, CV_THRESH_BINARY);
|
|
cvReleaseImage(&sample_image);
|
|
cvReleaseImage(&sample_hsv);
|
|
cvReleaseImage(&sample_h_plane);
|
|
cvReleaseImage(&sample_s_plane);
|
|
cvReleaseImage(&input_image);
|
|
cvReleaseImage(&input_hsv);
|
|
cvReleaseImage(&input_hplane);
|
|
cvReleaseImage(&input_splane);
|
|
cvReleaseImage(&backproject);
|
|
|
|
detected_edges = cv::Mat(binary_backproject);
|
|
}
|
|
// else if ( detection_method == RIDGE_DETECTOR ) // Method adapted for engineering drawings (e.g. watershed functionnality could be used here cf.OpenCV documentation and samples)
|
|
// {
|
|
// // TODO
|
|
// return false;
|
|
// }
|
|
|
|
// _detectAndRetrieveContours( detected_edges, parameters->findContoursMethod );
|
|
detected_edges = detected_edges > 1;
|
|
findContours( detected_edges, contours, hierarchy, CV_RETR_CCOMP, parameters->findContoursMethod);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
/*!
|
|
Computes the lines in the image located at imagePath
|
|
*/
|
|
bool ShapeRec_FeatureDetector::ComputeLines(){
|
|
MESSAGE("ShapeRec_FeatureDetector::ComputeLines()")
|
|
// Initialising images
|
|
cv::Mat src, src_gray, detected_edges, dst;
|
|
|
|
src=cv::imread(imagePath.c_str(), 0);
|
|
|
|
Canny( src, dst, 50, 200, 3 );
|
|
HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 );
|
|
return true;
|
|
|
|
}
|
|
|
|
/*!
|
|
Stores a region of interest given by user in rect
|
|
\param theRect - Region Of Interest of the image located at imagePath
|
|
*/
|
|
void ShapeRec_FeatureDetector::SetROI( const QRect& theRect )
|
|
{
|
|
if (!theRect.isEmpty()){
|
|
rect = cvRect(theRect.x(),theRect.y(),theRect.width(),theRect.height());
|
|
}
|
|
}
|
|
|
|
/*!
|
|
Crops the image located at imagePath to the region of interest given by the user via SetROI
|
|
and stores the result in /tmp
|
|
\param theRect - Region Of Interest of the image located at imagePath
|
|
*/
|
|
std::string ShapeRec_FeatureDetector::CroppImage()
|
|
{
|
|
IplImage* src = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
|
|
|
|
cvSetImageROI(src, rect);
|
|
IplImage* cropped_image = cvCreateImage(cvGetSize(src),
|
|
src->depth,
|
|
src->nChannels);
|
|
cvCopy(src, cropped_image, NULL);
|
|
cvResetImageROI(src);
|
|
|
|
cvSaveImage ("/tmp/cropped_image.bmp", cropped_image);
|
|
|
|
cvReleaseImage(&src);
|
|
cvReleaseImage(&cropped_image);
|
|
|
|
return "/tmp/cropped_image.bmp";
|
|
}
|
|
|
|
/*!
|
|
\class ShapeRec_CornersParameters
|
|
\brief Parameters for the corners detection
|
|
*/
|
|
ShapeRec_CornersParameters::ShapeRec_CornersParameters()
|
|
{
|
|
qualityLevel = 0.2;
|
|
minDistance = 1;
|
|
typeCriteria = CV_TERMCRIT_ITER | CV_TERMCRIT_EPS;
|
|
maxIter = 20;
|
|
epsilon = 0.03;
|
|
}
|
|
ShapeRec_CornersParameters::~ShapeRec_CornersParameters()
|
|
{
|
|
}
|
|
|
|
/*!
|
|
\class ShapeRec_Parameters
|
|
\brief Parameters for the contour/corners detection
|
|
*/
|
|
ShapeRec_Parameters::ShapeRec_Parameters()
|
|
{
|
|
kernelSize = 3;
|
|
findContoursMethod = CV_CHAIN_APPROX_NONE;
|
|
}
|
|
ShapeRec_Parameters::~ShapeRec_Parameters()
|
|
{
|
|
}
|
|
|
|
/*!
|
|
\class ShapeRec_CannyParameters
|
|
\brief Parameters for the contour detection
|
|
*/
|
|
ShapeRec_CannyParameters::ShapeRec_CannyParameters()
|
|
{
|
|
lowThreshold = 100; // is used for edge linking.
|
|
ratio = 3; // lowThreshold*ratio is used to find initial segments of strong edges
|
|
L2gradient = true; // norm L2 or L1
|
|
}
|
|
|
|
ShapeRec_CannyParameters::~ShapeRec_CannyParameters()
|
|
{
|
|
}
|
|
|
|
/*!
|
|
\class ShapeRec_ColorFilterParameters
|
|
\brief Parameters for the contour detection
|
|
*/
|
|
ShapeRec_ColorFilterParameters::ShapeRec_ColorFilterParameters()
|
|
{
|
|
smoothSize = 3; // The parameter of the smoothing operation, the aperture width. Must be a positive odd number
|
|
histSize = new int[2]; // array of the histogram dimension sizes
|
|
histSize[0] = 30; // hbins
|
|
histSize[1] = 32; // sbins
|
|
histType = CV_HIST_ARRAY; // histogram representation format
|
|
threshold = 128; // threshold value
|
|
maxThreshold = 255; // maximum value to use with the THRESH_BINARY thresholding types
|
|
}
|
|
|
|
ShapeRec_ColorFilterParameters::~ShapeRec_ColorFilterParameters()
|
|
{
|
|
}
|