geom/src/ShapeRecognition/ShapeRec_FeatureDetector.cxx
2014-08-07 13:58:48 +04:00

365 lines
13 KiB
C++

// Copyright (C) 2007-2014 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
// File : ShapeRec_FeatureDetector.cxx
// Author : Renaud NEDELEC, Open CASCADE S.A.S.
#include "ShapeRec_FeatureDetector.hxx"
#include <stdio.h>
#include "utilities.h"
// TODO : All the following methods but ComputeContours use the C API of OpenCV while ComputContours
// uses the C++ API of the library.
// This should be homogenized and preferably by using the C++ API (which is more recent for all the methods
// The code has to be "cleaned up" too
/*!
Constructor
\param theFilename - image to process
*/
ShapeRec_FeatureDetector::ShapeRec_FeatureDetector():
corners()
{
cornerCount = 2000;
rect=cvRect(0,0,0,0);
imagePath = ""; //theFilename;
// Store the dimensions of the picture
imgHeight = 0;
imgWidth = 0;
}
/*!
Sets the path of the image file to be processed
\param thePath - Location of the image file
*/
void ShapeRec_FeatureDetector::SetPath( const std::string& thePath )
{
imagePath = thePath;
if (imagePath != "")
{
IplImage* src = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
imgHeight = src->height;
imgWidth = src->width;
cvReleaseImage(&src);
}
}
/*!
Computes the corners of the image located at imagePath
*/
void ShapeRec_FeatureDetector::ComputeCorners( bool useROI, ShapeRec_Parameters* parameters )
{
ShapeRec_CornersParameters* aCornersParameters = dynamic_cast<ShapeRec_CornersParameters*>( parameters );
if ( !aCornersParameters ) aCornersParameters = new ShapeRec_CornersParameters();
// Images to be used for detection
IplImage *eig_img, *temp_img, *src_img_gray;
// Load image
src_img_gray = cvLoadImage (imagePath.c_str(), CV_LOAD_IMAGE_GRAYSCALE);
if ( useROI )
{
// If a ROI as been set use it for detection
cvSetImageROI( src_img_gray, rect );
}
eig_img = cvCreateImage (cvGetSize (src_img_gray), IPL_DEPTH_32F, 1);
temp_img = cvCreateImage (cvGetSize (src_img_gray), IPL_DEPTH_32F, 1);
corners = (CvPoint2D32f *) cvAlloc (cornerCount * sizeof (CvPoint2D32f));
// image height and width
imgHeight = src_img_gray->height;
imgWidth = src_img_gray->width;
// Corner detection using cvCornerMinEigenVal
// (one of the methods available inOpenCV, there is also a cvConerHarris method that can be used by setting a flag in cvGoodFeaturesToTrack)
cvGoodFeaturesToTrack (src_img_gray, eig_img, temp_img, corners, &cornerCount, aCornersParameters->qualityLevel, aCornersParameters->minDistance);
cvFindCornerSubPix (src_img_gray, corners, cornerCount, cvSize (aCornersParameters->kernelSize, aCornersParameters->kernelSize), cvSize (-1, -1),
cvTermCriteria (aCornersParameters->typeCriteria, aCornersParameters->maxIter, aCornersParameters->epsilon));
cvReleaseImage (&eig_img);
cvReleaseImage (&temp_img);
cvReleaseImage (&src_img_gray);
}
/*!
Computes the contours of the image located at imagePath
*/
bool ShapeRec_FeatureDetector::ComputeContours( bool useROI, ShapeRec_Parameters* parameters )
{
// Initialising images
cv::Mat src, src_gray;
cv::Mat detected_edges;
// Read image
src = cv::imread( imagePath.c_str() );
if( !src.data )
return false;
if ( !useROI ) // CANNY: The problem is that with that filter the detector detects double contours
{
// Convert the image to grayscale
if (src.channels() == 3)
cv::cvtColor( src, src_gray, CV_BGR2GRAY );
else if (src.channels() == 1)
src_gray = src;
ShapeRec_CannyParameters* aCannyParameters = dynamic_cast<ShapeRec_CannyParameters*>( parameters );
if ( !aCannyParameters ) aCannyParameters = new ShapeRec_CannyParameters();
// Reduce noise
blur( src_gray, detected_edges, cv::Size( aCannyParameters->kernelSize, aCannyParameters->kernelSize ) );
// Canny detector
Canny( detected_edges, detected_edges, aCannyParameters->lowThreshold, aCannyParameters->lowThreshold * aCannyParameters->ratio,
aCannyParameters->kernelSize, aCannyParameters->L2gradient );
}
else //COLORFILTER
{
// Load the input image where we want to detect contours
IplImage* input_image = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
ShapeRec_ColorFilterParameters* aColorFilterParameters = dynamic_cast<ShapeRec_ColorFilterParameters*>( parameters );
if ( !aColorFilterParameters ) aColorFilterParameters = new ShapeRec_ColorFilterParameters();
// Reduce noise
cvSmooth( input_image, input_image, CV_GAUSSIAN, aColorFilterParameters->smoothSize, aColorFilterParameters->smoothSize );
// Crop the image to the selected part only (sample_image)
cvSetImageROI(input_image, rect);
IplImage* sample_image = cvCreateImage(cvGetSize(input_image),
input_image->depth,
input_image->nChannels);
cvCopy(input_image, sample_image, NULL);
cvResetImageROI(input_image);
IplImage* sample_hsv = cvCreateImage( cvGetSize(sample_image),8,3 );
IplImage* sample_h_plane = cvCreateImage( cvGetSize(sample_image), 8, 1 );
IplImage* sample_s_plane = cvCreateImage( cvGetSize(sample_image), 8, 1 );
CvHistogram* sample_hist;
cvCvtColor(sample_image, sample_hsv, CV_BGR2HSV);
cvCvtPixToPlane(sample_hsv, sample_h_plane, sample_s_plane, 0, 0);
IplImage* sample_planes[] = { sample_h_plane, sample_s_plane };
// Create the hue / saturation histogram of the SAMPLE image.
// This histogramm will be representative of what is the zone
// we want to find the frontier of. Indeed, the sample image is meant to
// be representative of this zone
float hranges[] = { 0, 180 };
float sranges[] = { 0, 256 };
float* ranges[] = { hranges, sranges };
sample_hist = cvCreateHist( 2, aColorFilterParameters->histSize, aColorFilterParameters->histType, ranges );
//calculate hue /saturation histogram
cvCalcHist(sample_planes, sample_hist, 0 ,0);
// // TEST print of the histogram for debugging
// IplImage* hist_image = cvCreateImage(cvSize(320,300),8,3);
//
// //draw hist on hist_test image.
// cvZero(hist_image);
// float max_value = 0;
// cvGetMinMaxHistValue(hist, 0 , &max_value, 0, 0);
// int bin_w = hist_image->width/size_hist;
// for(int i = 0; i < size_hist; i++ )
// {
// //prevent overflow
// int val = cvRound( cvGetReal1D(hist->bins,i)*hist_image->
// height/max_value);
// CvScalar color = CV_RGB(200,0,0);
// //hsv2rgb(i*180.f/size_hist);
// cvRectangle( hist_image, cvPoint(i*bin_w,hist_image->height),
// cvPoint((i+1)*bin_w,hist_image->height - val),
// color, -1, 8, 0 );
// }
//
//
// cvNamedWindow("hist", 1); cvShowImage("hist",hist_image);
// Calculate the back projection of hue and saturation planes of the INPUT image
// by mean of the histogram of the SAMPLE image.
//
// The pixels which (h,s) coordinates correspond to high values in the histogram
// will have high values in the grey image result. It means that a pixel of the INPUT image
// which is more probably in the zone represented by the SAMPLE image, will be whiter
// in the back projection.
IplImage* backproject = cvCreateImage(cvGetSize(input_image), 8, 1);
IplImage* binary_backproject = cvCreateImage(cvGetSize(input_image), 8, 1);
IplImage* input_hsv = cvCreateImage(cvGetSize(input_image),8,3);
IplImage* input_hplane = cvCreateImage(cvGetSize(input_image),8,1);
IplImage* input_splane = cvCreateImage(cvGetSize(input_image),8,1);
// Get hue and saturation planes of the INPUT image
cvCvtColor(input_image, input_hsv, CV_BGR2HSV);
cvCvtPixToPlane(input_hsv, input_hplane, input_splane, 0, 0);
IplImage* input_planes[] = { input_hplane, input_splane };
// Compute the back projection
cvCalcBackProject(input_planes, backproject, sample_hist);
// Threshold in order to obtain a binary image
cvThreshold(backproject, binary_backproject, aColorFilterParameters->threshold, aColorFilterParameters->maxThreshold, CV_THRESH_BINARY);
cvReleaseImage(&sample_image);
cvReleaseImage(&sample_hsv);
cvReleaseImage(&sample_h_plane);
cvReleaseImage(&sample_s_plane);
cvReleaseImage(&input_image);
cvReleaseImage(&input_hsv);
cvReleaseImage(&input_hplane);
cvReleaseImage(&input_splane);
cvReleaseImage(&backproject);
detected_edges = cv::Mat(binary_backproject);
}
// else if ( detection_method == RIDGE_DETECTOR ) // Method adapted for engineering drawings (e.g. watershed functionnality could be used here cf.OpenCV documentation and samples)
// {
// // TODO
// return false;
// }
// _detectAndRetrieveContours( detected_edges, parameters->findContoursMethod );
detected_edges = detected_edges > 1;
findContours( detected_edges, contours, hierarchy, CV_RETR_CCOMP, parameters->findContoursMethod);
return true;
}
/*!
Computes the lines in the image located at imagePath
*/
bool ShapeRec_FeatureDetector::ComputeLines(){
MESSAGE("ShapeRec_FeatureDetector::ComputeLines()")
// Initialising images
cv::Mat src, src_gray, detected_edges, dst;
src=cv::imread(imagePath.c_str(), 0);
Canny( src, dst, 50, 200, 3 );
HoughLinesP( dst, lines, 1, CV_PI/180, 80, 30, 10 );
return true;
}
/*!
Stores a region of interest given by user in rect
\param theRect - Region Of Interest of the image located at imagePath
*/
void ShapeRec_FeatureDetector::SetROI( const QRect& theRect )
{
if (!theRect.isEmpty()){
rect = cvRect(theRect.x(),theRect.y(),theRect.width(),theRect.height());
}
}
/*!
Crops the image located at imagePath to the region of interest given by the user via SetROI
and stores the result in /tmp
\param theRect - Region Of Interest of the image located at imagePath
*/
std::string ShapeRec_FeatureDetector::CroppImage()
{
IplImage* src = cvLoadImage(imagePath.c_str(),CV_LOAD_IMAGE_COLOR);
cvSetImageROI(src, rect);
IplImage* cropped_image = cvCreateImage(cvGetSize(src),
src->depth,
src->nChannels);
cvCopy(src, cropped_image, NULL);
cvResetImageROI(src);
cvSaveImage ("/tmp/cropped_image.bmp", cropped_image);
cvReleaseImage(&src);
cvReleaseImage(&cropped_image);
return "/tmp/cropped_image.bmp";
}
/*!
\class ShapeRec_CornersParameters
\brief Parameters for the corners detection
*/
ShapeRec_CornersParameters::ShapeRec_CornersParameters()
{
qualityLevel = 0.2;
minDistance = 1;
typeCriteria = CV_TERMCRIT_ITER | CV_TERMCRIT_EPS;
maxIter = 20;
epsilon = 0.03;
}
ShapeRec_CornersParameters::~ShapeRec_CornersParameters()
{
}
/*!
\class ShapeRec_Parameters
\brief Parameters for the contour/corners detection
*/
ShapeRec_Parameters::ShapeRec_Parameters()
{
kernelSize = 3;
findContoursMethod = CV_CHAIN_APPROX_NONE;
}
ShapeRec_Parameters::~ShapeRec_Parameters()
{
}
/*!
\class ShapeRec_CannyParameters
\brief Parameters for the contour detection
*/
ShapeRec_CannyParameters::ShapeRec_CannyParameters()
{
lowThreshold = 100; // is used for edge linking.
ratio = 3; // lowThreshold*ratio is used to find initial segments of strong edges
L2gradient = true; // norm L2 or L1
}
ShapeRec_CannyParameters::~ShapeRec_CannyParameters()
{
}
/*!
\class ShapeRec_ColorFilterParameters
\brief Parameters for the contour detection
*/
ShapeRec_ColorFilterParameters::ShapeRec_ColorFilterParameters()
{
smoothSize = 3; // The parameter of the smoothing operation, the aperture width. Must be a positive odd number
histSize = new int[2]; // array of the histogram dimension sizes
histSize[0] = 30; // hbins
histSize[1] = 32; // sbins
histType = CV_HIST_ARRAY; // histogram representation format
threshold = 128; // threshold value
maxThreshold = 255; // maximum value to use with the THRESH_BINARY thresholding types
}
ShapeRec_ColorFilterParameters::~ShapeRec_ColorFilterParameters()
{
}