mirror of
https://git.salome-platform.org/gitpub/modules/geom.git
synced 2025-01-01 04:10:34 +05:00
203 lines
8.1 KiB
Python
203 lines
8.1 KiB
Python
# Curvature of a Face along given direction
|
|
|
|
import salome
|
|
salome.salome_init_without_session()
|
|
import GEOM
|
|
from salome.geom import geomBuilder
|
|
geompy = geomBuilder.New()
|
|
import math
|
|
import numpy as np
|
|
|
|
def test_acceptance():
|
|
"""
|
|
Acceptance test [tuleap29472]
|
|
"""
|
|
Vector = [0,100,100]
|
|
O = geompy.MakeVertex(0, 0, 0)
|
|
OX = geompy.MakeVectorDXDYDZ(1, 0, 0)
|
|
OY = geompy.MakeVectorDXDYDZ(0, 1, 0)
|
|
OZ = geompy.MakeVectorDXDYDZ(0, 0, 1)
|
|
Cylinder_1 = geompy.MakeCylinderRH(100, 300)
|
|
Translation_1 = geompy.MakeTranslation(Cylinder_1, 0, 0, -150)
|
|
Vertex_1 = geompy.MakeVertex(100, 0, 0)
|
|
Vertex_2 = geompy.MakeVertex(100, -Vector[2], Vector[1])
|
|
Line_1 = geompy.MakeLineTwoPnt(Vertex_1, Vertex_2)
|
|
Plane_1 = geompy.MakePlane(Vertex_1, Line_1, 2000)
|
|
Rotation_1 = geompy.MakeRotation(Translation_1, OZ, 90*math.pi/180.0)# avoid to have degenerated edge across Vertex_1
|
|
|
|
[Face_1,Face_2,Face_3] = geompy.ExtractShapes(Rotation_1, geompy.ShapeType["FACE"], True)
|
|
|
|
curvature_29472 = np.array( geompy.VectorCoordinates( geompy.CurvatureOnFace(Face_2, Vertex_1, geompy.MakeVectorDXDYDZ(*Vector))) ).reshape(1,3)
|
|
expected_curvature = np.array( [-200.0,0.0,0.0] ).reshape(1,3)
|
|
assert( np.isclose( 0.0, np.linalg.norm( curvature_29472 - expected_curvature ) ,rtol=0,atol=1e-5 ) )
|
|
|
|
Intersection_1 = geompy.MakeSection(Face_2, Plane_1, True)
|
|
geompy.addToStudy( O, 'O' )
|
|
geompy.addToStudy( OX, 'OX' )
|
|
geompy.addToStudy( OY, 'OY' )
|
|
geompy.addToStudy( OZ, 'OZ' )
|
|
geompy.addToStudy( Vertex_1, 'Vertex_1' )
|
|
geompy.addToStudy( Cylinder_1, 'Cylinder_1' )
|
|
geompy.addToStudy( Translation_1, 'Translation_1' )
|
|
geompy.addToStudy( Vertex_2, 'Vertex_2' )
|
|
geompy.addToStudy( Line_1, 'Line_1' )
|
|
geompy.addToStudy( Plane_1, 'Plane_1' )
|
|
geompy.addToStudy( Rotation_1, 'Rotation_1' )
|
|
geompy.addToStudyInFather( Rotation_1, Face_1, 'Face_1' )
|
|
geompy.addToStudyInFather( Rotation_1, Face_2, 'Face_2' )
|
|
geompy.addToStudyInFather( Rotation_1, Face_3, 'Face_3' )
|
|
geompy.addToStudy( Intersection_1, 'Intersection_1' )
|
|
angle = math.asin(Vector[2]/math.sqrt(Vector[1]*Vector[1]+Vector[2]*Vector[2]))
|
|
tmp = geompy.MakeTranslation(Intersection_1,*[-elt for elt in geompy.PointCoordinates(Vertex_1)])
|
|
tmp = geompy.MakeRotation(tmp,OX,-angle)
|
|
Intersection_1_OXY = geompy.MakeTranslation(tmp,*geompy.PointCoordinates(Vertex_1))
|
|
geompy.addToStudy( Intersection_1_OXY, 'Intersection_1_OXY' )
|
|
|
|
eps = 0.01
|
|
offset = 0.75
|
|
p0 = np.array( geompy.PointCoordinates( geompy.MakeVertexOnCurve(Intersection_1_OXY,offset-eps) ) ).reshape(1,3)
|
|
p1 = np.array( geompy.PointCoordinates( geompy.MakeVertexOnCurve(Intersection_1_OXY,offset) ) ).reshape(1,3)
|
|
p2 = np.array( geompy.PointCoordinates( geompy.MakeVertexOnCurve(Intersection_1_OXY,offset+eps) ) ).reshape(1,3)
|
|
assert( np.isclose(0.0,np.linalg.norm(p1- np.array(geompy.PointCoordinates(Vertex_1)).reshape(1,3) ),rtol=0,atol=1e-8) )
|
|
p01=(p0+p1)/2
|
|
p12=(p1+p2)/2
|
|
v0 = (p1-p0)/np.linalg.norm(p1-p0)
|
|
v1 = (p2-p1)/np.linalg.norm(p2-p1)
|
|
computedRadius = 1/np.linalg.norm((v1-v0)/np.linalg.norm(p12-p01))
|
|
# manual detection of radius : https://fr.wikipedia.org/wiki/Courbure_d%27un_arc
|
|
circle = geompy.MakeCircle(O,OZ,computedRadius)
|
|
circle = geompy.MakeTranslation(circle,100-computedRadius,0,0)
|
|
geompy.addToStudy(circle, "expectedCircle")
|
|
print("Radius expected is {}".format(computedRadius))
|
|
print("Radius obtain by CurvatureOnFace is {}".format(np.linalg.norm(curvature_29472)))
|
|
|
|
O = geompy.MakeVertex(0, 0, 0, 'O')
|
|
OX = geompy.MakeVectorDXDYDZ(1, 0, 0, 'OX')
|
|
OY = geompy.MakeVectorDXDYDZ(0, 1, 0, 'OY')
|
|
OZ = geompy.MakeVectorDXDYDZ(0, 0, 1, 'OZ')
|
|
|
|
pXYZ = geompy.MakeVertex(105, 105, 105, 'pXYZ')
|
|
pY = geompy.MakeVertex(0, 105, 0, 'pY')
|
|
pZ = geompy.MakeVertex(0, 0, 105, 'pZ')
|
|
|
|
vZ_XY = geompy.MakeVectorDXDYDZ(-1, -1, 1, 'vZ-XY')
|
|
vZ_XY2 = geompy.MakeVectorDXDYDZ(-1, -1, 10, 'vZ-XY')
|
|
vZ_XY3 = geompy.MakeVectorDXDYDZ(-1, -1, 100, 'vZ-XY')
|
|
|
|
R = 100.0
|
|
|
|
# I. Curvature of a Sphere
|
|
Sphere_1 = geompy.MakeSphereR(R, 'Sphere_1')
|
|
[Sph] = geompy.ExtractShapes(Sphere_1, geompy.ShapeType["FACE"], True, "Sph")
|
|
|
|
curvature_1 = geompy.CurvatureOnFace(Sph, pXYZ, OX, 'curvature_sph_pXYZ_OX')
|
|
curvature_2 = geompy.CurvatureOnFace(Sph, pXYZ, vZ_XY, 'curvature_sph_pXYZ_vt')
|
|
curvature_3 = geompy.CurvatureOnFace(Sph, pY, OX, 'curvature_sph_pY_OX')
|
|
|
|
# All sphere curvature radiuces = R
|
|
assert(abs(geompy.BasicProperties(curvature_1)[0] - R) < 1e-07)
|
|
assert(abs(geompy.BasicProperties(curvature_2)[0] - R) < 1e-07)
|
|
assert(abs(geompy.BasicProperties(curvature_3)[0] - R) < 1e-07)
|
|
|
|
# Pole
|
|
isExcept = False
|
|
try:
|
|
geompy.CurvatureOnFace(Sph, pZ, OX)
|
|
except:
|
|
isExcept = True
|
|
assert(isExcept)
|
|
|
|
# Normal direction
|
|
isExcept = False
|
|
try:
|
|
geompy.CurvatureOnFace(Sph, pY, OY)
|
|
except:
|
|
isExcept = True
|
|
assert(isExcept)
|
|
|
|
# II. Curvature of a Cylinder
|
|
Cylinder_1 = geompy.MakeCylinderRH(R, 300, 'Cylinder_1')
|
|
[Face_1,Face_2,Face_3] = geompy.ExtractShapes(Cylinder_1, geompy.ShapeType["FACE"], True, "Face")
|
|
|
|
# Curvature radius of a cylinder along any direction, orthogonal to its Z axis, equal to R
|
|
curvature_4 = geompy.CurvatureOnFace(Face_2, pY, OX, 'curvature_cyl_pY_OX')
|
|
assert(abs(geompy.BasicProperties(curvature_4)[0] - R) < 1e-07)
|
|
|
|
# Curvature radius of a cylinder along its Z direction is infinite
|
|
curvature_zero = geompy.CurvatureOnFace(Face_2, pY, OZ)
|
|
assert(geompy.MeasuOp.GetErrorCode() == "ZERO_CURVATURE")
|
|
assert(not curvature_zero)
|
|
|
|
# Curvature radius of a cylinder along some direction, different from two above
|
|
curvature_5 = geompy.CurvatureOnFace(Face_2, pY, vZ_XY, 'curvature_cyl_pY_vZ_XY')
|
|
curvature_6 = geompy.CurvatureOnFace(Face_2, pY, vZ_XY2, 'curvature_cyl_pY_vZ_XY2')
|
|
curvature_7 = geompy.CurvatureOnFace(Face_2, pY, vZ_XY3, 'curvature_cyl_pY_vZ_XY3')
|
|
|
|
# R < r5 < r6 < r7
|
|
# r5 = 100.01, r6 = 101.0, r7 = 200
|
|
r5 = geompy.BasicProperties(curvature_5)[0]
|
|
r6 = geompy.BasicProperties(curvature_6)[0]
|
|
r7 = geompy.BasicProperties(curvature_7)[0]
|
|
|
|
assert(R + 1e-07 < r5)
|
|
assert(r5 + 1e-07 < r6)
|
|
assert(r6 + 1e-07 < r7)
|
|
|
|
# Projection aborted. Point is out of the face boundaries.
|
|
isExcept = False
|
|
try:
|
|
pXY_Z = geompy.MakeVertex(105, 105, -105, 'pXY_Z')
|
|
geompy.CurvatureOnFace(Face_2, pXY_Z, OX, 'curvature_cyl_pXY_Z')
|
|
except:
|
|
isExcept = True
|
|
assert(isExcept)
|
|
|
|
# Projection aborted (point on axis). Equal distances to many points.
|
|
isExcept = False
|
|
try:
|
|
geompy.CurvatureOnFace(Face_2, O, vZ_XY, 'curvature_cyl_O')
|
|
except:
|
|
isExcept = True
|
|
assert(isExcept)
|
|
|
|
# Curvature radius of a planar face is infinite
|
|
curvature_zero_2 = geompy.CurvatureOnFace(Face_1, pZ, OX)
|
|
assert(geompy.MeasuOp.GetErrorCode() == "ZERO_CURVATURE")
|
|
assert(not curvature_zero_2)
|
|
|
|
# III. Curvature of a "Horse saddle"
|
|
[Edge_1,Edge_2,Edge_3] = geompy.ExtractShapes(Sphere_1, geompy.ShapeType["EDGE"], True)
|
|
geompy.addToStudyInFather( Sphere_1, Edge_1, 'Edge_1' )
|
|
geompy.addToStudyInFather( Sphere_1, Edge_2, 'Edge_2' )
|
|
geompy.addToStudyInFather( Sphere_1, Edge_3, 'Edge_3' )
|
|
|
|
Rotation_1 = geompy.MakeRotation(Edge_3, OX, 90*math.pi/180.0, 'Rotation_1')
|
|
Rotation_2 = geompy.MakeRotation(Rotation_1, OY, 180*math.pi/180.0, 'Rotation_2')
|
|
Translation_1 = geompy.MakeTranslation(Rotation_2, 200, 0, 0, 'Translation_1')
|
|
Translation_2 = geompy.MakeTranslation(Edge_3, 100, 100, 0, 'Translation_2')
|
|
Translation_3 = geompy.MakeTranslation(Translation_2, 0, -200, 0, 'Translation_3')
|
|
Filling_1 = geompy.MakeFilling([Translation_2, Edge_3, Translation_3])
|
|
geompy.addToStudy(Filling_1, 'Filling_1')
|
|
Vertex_2 = geompy.MakeVertex(100, 0, 0, 'Vertex_2')
|
|
|
|
curvature_Y = geompy.CurvatureOnFace(Filling_1, Vertex_2, OY, 'curvature_Y')
|
|
curvature_Z = geompy.CurvatureOnFace(Filling_1, Vertex_2, OZ, 'curvature_Z')
|
|
|
|
cury = np.array( geompy.VectorCoordinates(curvature_Y) ).reshape(1,3)
|
|
curz = np.array( geompy.VectorCoordinates(curvature_Z) ).reshape(1,3)
|
|
cury_expected = np.array( [50,0,0] ).reshape(1,3)
|
|
curz_expected = np.array( [-100,0,0] ).reshape(1,3)
|
|
assert( np.isclose( 0.0, np.linalg.norm( cury - cury_expected ) ,rtol=0,atol=1e-5 ) )
|
|
assert( np.isclose( 0.0, np.linalg.norm( curz - curz_expected ) ,rtol=0,atol=1e-5 ) )
|
|
|
|
# Normal direction
|
|
norm_1 = geompy.GetNormal(Filling_1, Vertex_2, "Normal_1")
|
|
isExcept = False
|
|
try:
|
|
geompy.CurvatureOnFace(Filling_1, Vertex_2, norm_1)
|
|
except:
|
|
isExcept = True
|
|
assert(isExcept)
|
|
|
|
# acceptance case
|
|
test_acceptance() |