geom/src/GEOMImpl/GEOMImpl_I3DPrimOperations.cxx
2013-04-01 12:25:01 +00:00

2482 lines
73 KiB
C++

// Copyright (C) 2007-2013 CEA/DEN, EDF R&D, OPEN CASCADE
//
// Copyright (C) 2003-2007 OPEN CASCADE, EADS/CCR, LIP6, CEA/DEN,
// CEDRAT, EDF R&D, LEG, PRINCIPIA R&D, BUREAU VERITAS
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
#include <Standard_Stream.hxx>
#include <Basics_OCCTVersion.hxx>
#include <GEOMImpl_I3DPrimOperations.hxx>
#include "utilities.h"
#include <OpUtil.hxx>
#include <Utils_ExceptHandlers.hxx>
#include <TFunction_DriverTable.hxx>
#include <TFunction_Driver.hxx>
#include <TFunction_Logbook.hxx>
#include <TDF_Tool.hxx>
#include <GEOM_Function.hxx>
#include <GEOM_PythonDump.hxx>
#include <GEOMImpl_Types.hxx>
#include <GEOMImpl_BoxDriver.hxx>
#include <GEOMImpl_FaceDriver.hxx>
#include <GEOMImpl_DiskDriver.hxx>
#include <GEOMImpl_CylinderDriver.hxx>
#include <GEOMImpl_ConeDriver.hxx>
#include <GEOMImpl_SphereDriver.hxx>
#include <GEOMImpl_TorusDriver.hxx>
#include <GEOMImpl_PrismDriver.hxx>
#include <GEOMImpl_PipeDriver.hxx>
#include <GEOMImpl_PipePathDriver.hxx>
#include <GEOMImpl_RevolutionDriver.hxx>
#include <GEOMImpl_ShapeDriver.hxx>
#include <GEOMImpl_FillingDriver.hxx>
#include <GEOMImpl_ThruSectionsDriver.hxx>
#include <GEOMImpl_OffsetDriver.hxx>
#include <GEOMImpl_IBox.hxx>
#include <GEOMImpl_IFace.hxx>
#include <GEOMImpl_IDisk.hxx>
#include <GEOMImpl_ICylinder.hxx>
#include <GEOMImpl_ICone.hxx>
#include <GEOMImpl_ISphere.hxx>
#include <GEOMImpl_ITorus.hxx>
#include <GEOMImpl_IPrism.hxx>
#include <GEOMImpl_IPipe.hxx>
#include <GEOMImpl_IRevolution.hxx>
#include <GEOMImpl_IFilling.hxx>
#include <GEOMImpl_IThruSections.hxx>
#include <GEOMImpl_IPipeDiffSect.hxx>
#include <GEOMImpl_IPipeShellSect.hxx>
#include <GEOMImpl_IPipeBiNormal.hxx>
#include <GEOMImpl_IOffset.hxx>
#include <GEOMImpl_IPipePath.hxx>
#include <Precision.hxx>
#include <Standard_Failure.hxx>
#include <Standard_ErrorHandler.hxx> // CAREFUL ! position of this file is critic : see Lucien PIGNOLONI / OCC
//=============================================================================
/*!
* constructor:
*/
//=============================================================================
GEOMImpl_I3DPrimOperations::GEOMImpl_I3DPrimOperations (GEOM_Engine* theEngine, int theDocID)
: GEOM_IOperations(theEngine, theDocID)
{
MESSAGE("GEOMImpl_I3DPrimOperations::GEOMImpl_I3DPrimOperations");
}
//=============================================================================
/*!
* destructor
*/
//=============================================================================
GEOMImpl_I3DPrimOperations::~GEOMImpl_I3DPrimOperations()
{
MESSAGE("GEOMImpl_I3DPrimOperations::~GEOMImpl_I3DPrimOperations");
}
//=============================================================================
/*!
* MakeBoxDXDYDZ
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeBoxDXDYDZ (double theDX, double theDY, double theDZ)
{
SetErrorCode(KO);
//Add a new Box object
Handle(GEOM_Object) aBox = GetEngine()->AddObject(GetDocID(), GEOM_BOX);
//Add a new Box function with DX_DY_DZ parameters
Handle(GEOM_Function) aFunction = aBox->AddFunction(GEOMImpl_BoxDriver::GetID(), BOX_DX_DY_DZ);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_BoxDriver::GetID()) return NULL;
GEOMImpl_IBox aBI (aFunction);
aBI.SetDX(theDX);
aBI.SetDY(theDY);
aBI.SetDZ(theDZ);
//Compute the box value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Box driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aBox << " = geompy.MakeBoxDXDYDZ("
<< theDX << ", " << theDY << ", " << theDZ << ")";
SetErrorCode(OK);
return aBox;
}
//=============================================================================
/*!
* MakeBoxTwoPnt
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeBoxTwoPnt (Handle(GEOM_Object) thePnt1,
Handle(GEOM_Object) thePnt2)
{
SetErrorCode(KO);
if (thePnt1.IsNull() || thePnt2.IsNull()) return NULL;
//Add a new Box object
Handle(GEOM_Object) aBox = GetEngine()->AddObject(GetDocID(), GEOM_BOX);
//Add a new Box function for creation a box relatively to two points
Handle(GEOM_Function) aFunction = aBox->AddFunction(GEOMImpl_BoxDriver::GetID(), BOX_TWO_PNT);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_BoxDriver::GetID()) return aBox;
GEOMImpl_IBox aBI (aFunction);
Handle(GEOM_Function) aRefFunction1 = thePnt1->GetLastFunction();
Handle(GEOM_Function) aRefFunction2 = thePnt2->GetLastFunction();
if (aRefFunction1.IsNull() || aRefFunction2.IsNull()) return aBox;
aBI.SetRef1(aRefFunction1);
aBI.SetRef2(aRefFunction2);
//Compute the Box value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Box driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aBox << " = geompy.MakeBoxTwoPnt("
<< thePnt1 << ", " << thePnt2 << ")";
SetErrorCode(OK);
return aBox;
}
//=============================================================================
/*!
* MakeFaceHW
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeFaceHW (double theH, double theW, int theOrientation)
{
SetErrorCode(KO);
if (theH == 0 || theW == 0) return NULL;
//Add a new Face object
Handle(GEOM_Object) aFace = GetEngine()->AddObject(GetDocID(), GEOM_FACE);
//Add a new Box function for creation a box relatively to two points
Handle(GEOM_Function) aFunction = aFace->AddFunction(GEOMImpl_FaceDriver::GetID(), FACE_H_W);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_FaceDriver::GetID()) return aFace;
GEOMImpl_IFace aFI (aFunction);
aFI.SetH(theH);
aFI.SetW(theW);
aFI.SetOrientation(theOrientation);
//Compute the Face
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Face driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aFace << " = geompy.MakeFaceHW("
<< theH << ", " << theW << ", " << theOrientation << ")";
SetErrorCode(OK);
return aFace;
}
//=============================================================================
/*!
* MakeFaceObjHW
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeFaceObjHW (Handle(GEOM_Object) theObj,
double theH, double theW)
{
SetErrorCode(KO);
if (theObj.IsNull()) return NULL;
//Add a new Face object
Handle(GEOM_Object) aFace = GetEngine()->AddObject(GetDocID(), GEOM_FACE);
//Add a new Box function for creation a box relatively to two points
Handle(GEOM_Function) aFunction = aFace->AddFunction(GEOMImpl_FaceDriver::GetID(), FACE_OBJ_H_W);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_FaceDriver::GetID()) return aFace;
GEOMImpl_IFace aFI (aFunction);
Handle(GEOM_Function) aRefFunction1 = theObj->GetLastFunction();
if (aRefFunction1.IsNull())
return aFace;
aFI.SetRef1(aRefFunction1);
aFI.SetH(theH);
aFI.SetW(theW);
//Compute the Face
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Face driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aFace << " = geompy.MakeFaceObjHW("
<< theObj << ", " << theH << ", " << theW << ")";
SetErrorCode(OK);
return aFace;
}
//=============================================================================
/*!
* MakeDiskPntVecR
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeDiskPntVecR
(Handle(GEOM_Object) thePnt, Handle(GEOM_Object) theVec, double theR)
{
SetErrorCode(KO);
if (thePnt.IsNull() || theVec.IsNull()) return NULL;
//Add a new Disk object
Handle(GEOM_Object) aDisk = GetEngine()->AddObject(GetDocID(), GEOM_FACE);
//Add a new Disk function for creation a disk relatively to point and vector
Handle(GEOM_Function) aFunction =
aDisk->AddFunction(GEOMImpl_DiskDriver::GetID(), DISK_PNT_VEC_R);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_DiskDriver::GetID()) return NULL;
GEOMImpl_IDisk aCI (aFunction);
Handle(GEOM_Function) aRefPnt = thePnt->GetLastFunction();
Handle(GEOM_Function) aRefVec = theVec->GetLastFunction();
if (aRefPnt.IsNull() || aRefVec.IsNull()) return NULL;
aCI.SetCenter(aRefPnt);
aCI.SetVector(aRefVec);
aCI.SetRadius(theR);
//Compute the Disk value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Disk driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aDisk << " = geompy.MakeDiskPntVecR("
<< thePnt << ", " << theVec << ", " << theR << ")";
SetErrorCode(OK);
return aDisk;
}
//=============================================================================
/*!
* MakeDiskThreePnt
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeDiskThreePnt (Handle(GEOM_Object) thePnt1,
Handle(GEOM_Object) thePnt2,
Handle(GEOM_Object) thePnt3)
{
SetErrorCode(KO);
if (thePnt1.IsNull() || thePnt2.IsNull() || thePnt3.IsNull()) return NULL;
//Add a new Disk object
Handle(GEOM_Object) aDisk = GetEngine()->AddObject(GetDocID(), GEOM_FACE);
//Add a new Disk function for creation a disk relatively to three points
Handle(GEOM_Function) aFunction =
aDisk->AddFunction(GEOMImpl_DiskDriver::GetID(), DISK_THREE_PNT);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_DiskDriver::GetID()) return NULL;
GEOMImpl_IDisk aCI (aFunction);
Handle(GEOM_Function) aRefPnt1 = thePnt1->GetLastFunction();
Handle(GEOM_Function) aRefPnt2 = thePnt2->GetLastFunction();
Handle(GEOM_Function) aRefPnt3 = thePnt3->GetLastFunction();
if (aRefPnt1.IsNull() || aRefPnt2.IsNull() || aRefPnt3.IsNull()) return NULL;
aCI.SetPoint1(aRefPnt1);
aCI.SetPoint2(aRefPnt2);
aCI.SetPoint3(aRefPnt3);
//Compute the Disk value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Disk driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aDisk << " = geompy.MakeDiskThreePnt("
<< thePnt1 << ", " << thePnt2 << ", " << thePnt3 << ")";
SetErrorCode(OK);
return aDisk;
}
//=============================================================================
/*!
* MakeDiskR
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeDiskR (double theR, int theOrientation)
{
SetErrorCode(KO);
if (theR == 0 ) return NULL;
//Add a new Disk object
Handle(GEOM_Object) aDisk = GetEngine()->AddObject(GetDocID(), GEOM_FACE);
//Add a new Box function for creation a box relatively to two points
Handle(GEOM_Function) aFunction = aDisk->AddFunction(GEOMImpl_DiskDriver::GetID(), DISK_R);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_DiskDriver::GetID()) return aDisk;
GEOMImpl_IDisk aDI (aFunction);
aDI.SetRadius(theR);
aDI.SetOrientation(theOrientation);
//Compute the Disk
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Disk driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aDisk << " = geompy.MakeDiskR("
<< theR << ", " << theOrientation << ")";
SetErrorCode(OK);
return aDisk;
}
//=============================================================================
/*!
* MakeCylinderRH
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeCylinderRH (double theR, double theH)
{
SetErrorCode(KO);
//Add a new Cylinder object
Handle(GEOM_Object) aCylinder = GetEngine()->AddObject(GetDocID(), GEOM_CYLINDER);
//Add a new Cylinder function with R and H parameters
Handle(GEOM_Function) aFunction = aCylinder->AddFunction(GEOMImpl_CylinderDriver::GetID(), CYLINDER_R_H);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_CylinderDriver::GetID()) return NULL;
GEOMImpl_ICylinder aCI (aFunction);
aCI.SetR(theR);
aCI.SetH(theH);
//Compute the Cylinder value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Cylinder driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aCylinder
<< " = geompy.MakeCylinderRH(" << theR << ", " << theH << ")";
SetErrorCode(OK);
return aCylinder;
}
//=============================================================================
/*!
* MakeCylinderPntVecRH
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeCylinderPntVecRH (Handle(GEOM_Object) thePnt,
Handle(GEOM_Object) theVec,
double theR, double theH)
{
SetErrorCode(KO);
if (thePnt.IsNull() || theVec.IsNull()) return NULL;
//Add a new Cylinder object
Handle(GEOM_Object) aCylinder = GetEngine()->AddObject(GetDocID(), GEOM_CYLINDER);
//Add a new Cylinder function for creation a cylinder relatively to point and vector
Handle(GEOM_Function) aFunction =
aCylinder->AddFunction(GEOMImpl_CylinderDriver::GetID(), CYLINDER_PNT_VEC_R_H);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_CylinderDriver::GetID()) return NULL;
GEOMImpl_ICylinder aCI (aFunction);
Handle(GEOM_Function) aRefPnt = thePnt->GetLastFunction();
Handle(GEOM_Function) aRefVec = theVec->GetLastFunction();
if (aRefPnt.IsNull() || aRefVec.IsNull()) return NULL;
aCI.SetPoint(aRefPnt);
aCI.SetVector(aRefVec);
aCI.SetR(theR);
aCI.SetH(theH);
//Compute the Cylinder value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Cylinder driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aCylinder << " = geompy.MakeCylinder("
<< thePnt << ", " << theVec << ", " << theR << ", " << theH << ")";
SetErrorCode(OK);
return aCylinder;
}
//=============================================================================
/*!
* MakeConeR1R2H
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeConeR1R2H (double theR1, double theR2,
double theH)
{
SetErrorCode(KO);
//Add a new Cone object
Handle(GEOM_Object) aCone = GetEngine()->AddObject(GetDocID(), GEOM_CONE);
//Add a new Cone function with R and H parameters
Handle(GEOM_Function) aFunction =
aCone->AddFunction(GEOMImpl_ConeDriver::GetID(), CONE_R1_R2_H);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_ConeDriver::GetID()) return NULL;
GEOMImpl_ICone aCI (aFunction);
aCI.SetR1(theR1);
aCI.SetR2(theR2);
aCI.SetH(theH);
//Compute the Cone value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Cone driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aCone << " = geompy.MakeConeR1R2H("
<< theR1 << ", " << theR2 << ", " << theH << ")";
SetErrorCode(OK);
return aCone;
}
//=============================================================================
/*!
* MakeConePntVecR1R2H
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeConePntVecR1R2H (Handle(GEOM_Object) thePnt,
Handle(GEOM_Object) theVec,
double theR1, double theR2,
double theH)
{
SetErrorCode(KO);
if (thePnt.IsNull() || theVec.IsNull()) return NULL;
//Add a new Cone object
Handle(GEOM_Object) aCone = GetEngine()->AddObject(GetDocID(), GEOM_CONE);
//Add a new Cone function for creation a cone relatively to point and vector
Handle(GEOM_Function) aFunction =
aCone->AddFunction(GEOMImpl_ConeDriver::GetID(), CONE_PNT_VEC_R1_R2_H);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_ConeDriver::GetID()) return NULL;
GEOMImpl_ICone aCI (aFunction);
Handle(GEOM_Function) aRefPnt = thePnt->GetLastFunction();
Handle(GEOM_Function) aRefVec = theVec->GetLastFunction();
if (aRefPnt.IsNull() || aRefVec.IsNull()) return NULL;
aCI.SetPoint(aRefPnt);
aCI.SetVector(aRefVec);
aCI.SetR1(theR1);
aCI.SetR2(theR2);
aCI.SetH(theH);
//Compute the Cone value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Cone driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aCone << " = geompy.MakeCone(" << thePnt
<< ", " << theVec << ", " << theR1 << ", " << theR2 << ", " << theH << ")";
SetErrorCode(OK);
return aCone;
}
//=============================================================================
/*!
* MakeSphereR
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeSphereR (double theR)
{
SetErrorCode(KO);
//Add a new Sphere object
Handle(GEOM_Object) aSphere = GetEngine()->AddObject(GetDocID(), GEOM_SPHERE);
//Add a new Sphere function with R parameter
Handle(GEOM_Function) aFunction = aSphere->AddFunction(GEOMImpl_SphereDriver::GetID(), SPHERE_R);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_SphereDriver::GetID()) return NULL;
GEOMImpl_ISphere aCI (aFunction);
aCI.SetR(theR);
//Compute the Sphere value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Sphere driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aSphere << " = geompy.MakeSphereR(" << theR << ")";
SetErrorCode(OK);
return aSphere;
}
//=============================================================================
/*!
* MakeSpherePntR
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeSpherePntR (Handle(GEOM_Object) thePnt,
double theR)
{
SetErrorCode(KO);
if (thePnt.IsNull()) return NULL;
//Add a new Point object
Handle(GEOM_Object) aSphere = GetEngine()->AddObject(GetDocID(), GEOM_SPHERE);
//Add a new Sphere function for creation a sphere relatively to point
Handle(GEOM_Function) aFunction = aSphere->AddFunction(GEOMImpl_SphereDriver::GetID(), SPHERE_PNT_R);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_SphereDriver::GetID()) return NULL;
GEOMImpl_ISphere aCI (aFunction);
Handle(GEOM_Function) aRefPnt = thePnt->GetLastFunction();
if (aRefPnt.IsNull()) return NULL;
aCI.SetPoint(aRefPnt);
aCI.SetR(theR);
//Compute the Sphere value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Sphere driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aSphere
<< " = geompy.MakeSpherePntR(" << thePnt << ", " << theR << ")";
SetErrorCode(OK);
return aSphere;
}
//=============================================================================
/*!
* MakeTorusRR
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeTorusRR
(double theRMajor, double theRMinor)
{
SetErrorCode(KO);
//Add a new Torus object
Handle(GEOM_Object) anEll = GetEngine()->AddObject(GetDocID(), GEOM_TORUS);
//Add a new Torus function
Handle(GEOM_Function) aFunction =
anEll->AddFunction(GEOMImpl_TorusDriver::GetID(), TORUS_RR);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_TorusDriver::GetID()) return NULL;
GEOMImpl_ITorus aCI (aFunction);
aCI.SetRMajor(theRMajor);
aCI.SetRMinor(theRMinor);
//Compute the Torus value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Torus driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << anEll << " = geompy.MakeTorusRR("
<< theRMajor << ", " << theRMinor << ")";
SetErrorCode(OK);
return anEll;
}
//=============================================================================
/*!
* MakeTorusPntVecRR
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeTorusPntVecRR
(Handle(GEOM_Object) thePnt, Handle(GEOM_Object) theVec,
double theRMajor, double theRMinor)
{
SetErrorCode(KO);
if (thePnt.IsNull() || theVec.IsNull()) return NULL;
//Add a new Torus object
Handle(GEOM_Object) anEll = GetEngine()->AddObject(GetDocID(), GEOM_TORUS);
//Add a new Torus function
Handle(GEOM_Function) aFunction =
anEll->AddFunction(GEOMImpl_TorusDriver::GetID(), TORUS_PNT_VEC_RR);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_TorusDriver::GetID()) return NULL;
GEOMImpl_ITorus aCI (aFunction);
Handle(GEOM_Function) aRefPnt = thePnt->GetLastFunction();
Handle(GEOM_Function) aRefVec = theVec->GetLastFunction();
if (aRefPnt.IsNull() || aRefVec.IsNull()) return NULL;
aCI.SetCenter(aRefPnt);
aCI.SetVector(aRefVec);
aCI.SetRMajor(theRMajor);
aCI.SetRMinor(theRMinor);
//Compute the Torus value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Torus driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << anEll << " = geompy.MakeTorus(" << thePnt
<< ", " << theVec << ", " << theRMajor << ", " << theRMinor << ")";
SetErrorCode(OK);
return anEll;
}
//=============================================================================
/*!
* MakePrismVecH
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakePrismVecH (Handle(GEOM_Object) theBase,
Handle(GEOM_Object) theVec,
double theH, double theScaleFactor)
{
SetErrorCode(KO);
if (theBase.IsNull() || theVec.IsNull()) return NULL;
//Add a new Prism object
Handle(GEOM_Object) aPrism = GetEngine()->AddObject(GetDocID(), GEOM_PRISM);
//Add a new Prism function for creation a Prism relatively to vector
Handle(GEOM_Function) aFunction =
aPrism->AddFunction(GEOMImpl_PrismDriver::GetID(), PRISM_BASE_VEC_H);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PrismDriver::GetID()) return NULL;
GEOMImpl_IPrism aCI (aFunction);
Handle(GEOM_Function) aRefBase = theBase->GetLastFunction();
Handle(GEOM_Function) aRefVec = theVec->GetLastFunction();
if (aRefBase.IsNull() || aRefVec.IsNull()) return NULL;
aCI.SetBase(aRefBase);
aCI.SetVector(aRefVec);
aCI.SetH(theH);
aCI.SetScale(theScaleFactor);
//Compute the Prism value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
//SetErrorCode("Prism driver failed");
SetErrorCode("Extrusion can not be created, check input data");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << aPrism << " = geompy.MakePrismVecH(" << theBase << ", " << theVec << ", " << theH;
if (theScaleFactor > Precision::Confusion())
pd << ", " << theScaleFactor << ")";
else
pd << ")";
SetErrorCode(OK);
return aPrism;
}
//=============================================================================
/*!
* MakePrismVecH2Ways
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakePrismVecH2Ways (Handle(GEOM_Object) theBase,
Handle(GEOM_Object) theVec,
double theH)
{
SetErrorCode(KO);
if (theBase.IsNull() || theVec.IsNull()) return NULL;
//Add a new Prism object
Handle(GEOM_Object) aPrism = GetEngine()->AddObject(GetDocID(), GEOM_PRISM);
//Add a new Prism function for creation a Prism relatively to vector
Handle(GEOM_Function) aFunction =
aPrism->AddFunction(GEOMImpl_PrismDriver::GetID(), PRISM_BASE_VEC_H_2WAYS);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PrismDriver::GetID()) return NULL;
GEOMImpl_IPrism aCI (aFunction);
Handle(GEOM_Function) aRefBase = theBase->GetLastFunction();
Handle(GEOM_Function) aRefVec = theVec->GetLastFunction();
if (aRefBase.IsNull() || aRefVec.IsNull()) return NULL;
aCI.SetBase(aRefBase);
aCI.SetVector(aRefVec);
aCI.SetH(theH);
//Compute the Prism value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
//SetErrorCode("Prism driver failed");
SetErrorCode("Extrusion can not be created, check input data");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aPrism << " = geompy.MakePrismVecH2Ways("
<< theBase << ", " << theVec << ", " << theH << ")";
SetErrorCode(OK);
return aPrism;
}
//=============================================================================
/*!
* MakePrismTwoPnt
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakePrismTwoPnt
(Handle(GEOM_Object) theBase,
Handle(GEOM_Object) thePoint1, Handle(GEOM_Object) thePoint2,
double theScaleFactor)
{
SetErrorCode(KO);
if (theBase.IsNull() || thePoint1.IsNull() || thePoint2.IsNull()) return NULL;
//Add a new Prism object
Handle(GEOM_Object) aPrism = GetEngine()->AddObject(GetDocID(), GEOM_PRISM);
//Add a new Prism function for creation a Prism relatively to two points
Handle(GEOM_Function) aFunction =
aPrism->AddFunction(GEOMImpl_PrismDriver::GetID(), PRISM_BASE_TWO_PNT);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PrismDriver::GetID()) return NULL;
GEOMImpl_IPrism aCI (aFunction);
Handle(GEOM_Function) aRefBase = theBase->GetLastFunction();
Handle(GEOM_Function) aRefPnt1 = thePoint1->GetLastFunction();
Handle(GEOM_Function) aRefPnt2 = thePoint2->GetLastFunction();
if (aRefBase.IsNull() || aRefPnt1.IsNull() || aRefPnt2.IsNull()) return NULL;
aCI.SetBase(aRefBase);
aCI.SetFirstPoint(aRefPnt1);
aCI.SetLastPoint(aRefPnt2);
aCI.SetScale(theScaleFactor);
//Compute the Prism value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
//SetErrorCode("Prism driver failed");
SetErrorCode("Extrusion can not be created, check input data");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << aPrism << " = geompy.MakePrism(" << theBase << ", " << thePoint1 << ", " << thePoint2;
if (theScaleFactor > Precision::Confusion())
pd << ", " << theScaleFactor << ")";
else
pd << ")";
SetErrorCode(OK);
return aPrism;
}
//=============================================================================
/*!
* MakePrismTwoPnt2Ways
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakePrismTwoPnt2Ways
(Handle(GEOM_Object) theBase,
Handle(GEOM_Object) thePoint1, Handle(GEOM_Object) thePoint2)
{
SetErrorCode(KO);
if (theBase.IsNull() || thePoint1.IsNull() || thePoint2.IsNull()) return NULL;
//Add a new Prism object
Handle(GEOM_Object) aPrism = GetEngine()->AddObject(GetDocID(), GEOM_PRISM);
//Add a new Prism function for creation a Prism relatively to two points
Handle(GEOM_Function) aFunction =
aPrism->AddFunction(GEOMImpl_PrismDriver::GetID(), PRISM_BASE_TWO_PNT_2WAYS);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PrismDriver::GetID()) return NULL;
GEOMImpl_IPrism aCI (aFunction);
Handle(GEOM_Function) aRefBase = theBase->GetLastFunction();
Handle(GEOM_Function) aRefPnt1 = thePoint1->GetLastFunction();
Handle(GEOM_Function) aRefPnt2 = thePoint2->GetLastFunction();
if (aRefBase.IsNull() || aRefPnt1.IsNull() || aRefPnt2.IsNull()) return NULL;
aCI.SetBase(aRefBase);
aCI.SetFirstPoint(aRefPnt1);
aCI.SetLastPoint(aRefPnt2);
//Compute the Prism value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
//SetErrorCode("Prism driver failed");
SetErrorCode("Extrusion can not be created, check input data");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aPrism << " = geompy.MakePrism2Ways("
<< theBase << ", " << thePoint1 << ", " << thePoint2 << ")";
SetErrorCode(OK);
return aPrism;
}
//=============================================================================
/*!
* MakePrismDXDYDZ
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakePrismDXDYDZ
(Handle(GEOM_Object) theBase, double theDX, double theDY, double theDZ,
double theScaleFactor)
{
SetErrorCode(KO);
if (theBase.IsNull()) return NULL;
//Add a new Prism object
Handle(GEOM_Object) aPrism = GetEngine()->AddObject(GetDocID(), GEOM_PRISM);
//Add a new Prism function for creation a Prism by DXDYDZ
Handle(GEOM_Function) aFunction =
aPrism->AddFunction(GEOMImpl_PrismDriver::GetID(), PRISM_BASE_DXDYDZ);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PrismDriver::GetID()) return NULL;
GEOMImpl_IPrism aCI (aFunction);
Handle(GEOM_Function) aRefBase = theBase->GetLastFunction();
if (aRefBase.IsNull()) return NULL;
aCI.SetBase(aRefBase);
aCI.SetDX(theDX);
aCI.SetDY(theDY);
aCI.SetDZ(theDZ);
aCI.SetScale(theScaleFactor);
//Compute the Prism value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Extrusion can not be created, check input data");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << aPrism << " = geompy.MakePrismDXDYDZ("
<< theBase << ", " << theDX << ", " << theDY << ", " << theDZ;
if (theScaleFactor > Precision::Confusion())
pd << ", " << theScaleFactor << ")";
else
pd << ")";
SetErrorCode(OK);
return aPrism;
}
//=============================================================================
/*!
* MakePrismDXDYDZ_2WAYS
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakePrismDXDYDZ2Ways
(Handle(GEOM_Object) theBase, double theDX, double theDY, double theDZ)
{
SetErrorCode(KO);
if (theBase.IsNull()) return NULL;
//Add a new Prism object
Handle(GEOM_Object) aPrism = GetEngine()->AddObject(GetDocID(), GEOM_PRISM);
//Add a new Prism function for creation a Prism by DXDYDZ
Handle(GEOM_Function) aFunction =
aPrism->AddFunction(GEOMImpl_PrismDriver::GetID(), PRISM_BASE_DXDYDZ_2WAYS);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PrismDriver::GetID()) return NULL;
GEOMImpl_IPrism aCI (aFunction);
Handle(GEOM_Function) aRefBase = theBase->GetLastFunction();
if (aRefBase.IsNull()) return NULL;
aCI.SetBase(aRefBase);
aCI.SetDX(theDX);
aCI.SetDY(theDY);
aCI.SetDZ(theDZ);
//Compute the Prism value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Extrusion can not be created, check input data");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aPrism << " = geompy.MakePrismDXDYDZ2Ways("
<< theBase << ", " << theDX << ", " << theDY << ", " << theDZ << ")";
SetErrorCode(OK);
return aPrism;
}
//=============================================================================
/*!
* MakeDraftPrism
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeDraftPrism
(Handle(GEOM_Object) theInitShape ,Handle(GEOM_Object) theBase, double theHeight, double theAngle, bool theFuse)
{
SetErrorCode(KO);
if (theBase.IsNull() || theInitShape.IsNull()) return NULL;
Handle(GEOM_Object) aPrism = NULL;
if ( theFuse )
{
//Add a new Extruded Boss object
aPrism = GetEngine()->AddObject(GetDocID(), GEOM_EXTRUDED_BOSS);
}
else
{
//Add a new Extruded Cut object
aPrism = GetEngine()->AddObject(GetDocID(), GEOM_EXTRUDED_CUT);
}
//Add a new Prism function for the creation of a Draft Prism feature
Handle(GEOM_Function) aFunction =
aPrism->AddFunction(GEOMImpl_PrismDriver::GetID(), DRAFT_PRISM_FEATURE);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PrismDriver::GetID()) return NULL;
GEOMImpl_IPrism aCI (aFunction);
Handle(GEOM_Function) aRefInit = theInitShape->GetLastFunction();
Handle(GEOM_Function) aRefBase = theBase->GetLastFunction();
if (aRefBase.IsNull() || aRefInit.IsNull()) return NULL;
// Set parameters
aCI.SetBase(aRefBase);
aCI.SetInitShape(aRefInit);
aCI.SetH(theHeight);
aCI.SetDraftAngle(theAngle);
if ( theFuse )
aCI.SetFuseFlag(1);
else
aCI.SetFuseFlag(0);
//Compute the Draft Prism Feature value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Extrusion can not be created, check input data");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
if(theFuse)
{
GEOM::TPythonDump(aFunction) << aPrism << " = geompy.MakeExtrudedBoss("
<< theInitShape << ", " << theBase << ", " << theHeight << ", " << theAngle << ")";
}
else
{
GEOM::TPythonDump(aFunction) << aPrism << " = geompy.MakeExtrudedCut("
<< theInitShape << ", " << theBase << ", " << theHeight << ", " << theAngle << ")";
}
SetErrorCode(OK);
return aPrism;
}
//=============================================================================
/*!
* MakePipe
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakePipe (Handle(GEOM_Object) theBase,
Handle(GEOM_Object) thePath)
{
SetErrorCode(KO);
if (theBase.IsNull() || thePath.IsNull()) return NULL;
//Add a new Pipe object
Handle(GEOM_Object) aPipe = GetEngine()->AddObject(GetDocID(), GEOM_PIPE);
//Add a new Pipe function
Handle(GEOM_Function) aFunction =
aPipe->AddFunction(GEOMImpl_PipeDriver::GetID(), PIPE_BASE_PATH);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PipeDriver::GetID()) return NULL;
GEOMImpl_IPipe aCI (aFunction);
Handle(GEOM_Function) aRefBase = theBase->GetLastFunction();
Handle(GEOM_Function) aRefPath = thePath->GetLastFunction();
if (aRefBase.IsNull() || aRefPath.IsNull()) return NULL;
aCI.SetBase(aRefBase);
aCI.SetPath(aRefPath);
//Compute the Pipe value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Pipe driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aPipe << " = geompy.MakePipe("
<< theBase << ", " << thePath << ")";
SetErrorCode(OK);
return aPipe;
}
//=============================================================================
/*!
* MakeRevolutionAxisAngle
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeRevolutionAxisAngle (Handle(GEOM_Object) theBase,
Handle(GEOM_Object) theAxis,
double theAngle)
{
SetErrorCode(KO);
if (theBase.IsNull() || theAxis.IsNull()) return NULL;
//Add a new Revolution object
Handle(GEOM_Object) aRevolution = GetEngine()->AddObject(GetDocID(), GEOM_REVOLUTION);
//Add a new Revolution function for creation a revolution relatively to axis
Handle(GEOM_Function) aFunction =
aRevolution->AddFunction(GEOMImpl_RevolutionDriver::GetID(), REVOLUTION_BASE_AXIS_ANGLE);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_RevolutionDriver::GetID()) return NULL;
GEOMImpl_IRevolution aCI (aFunction);
Handle(GEOM_Function) aRefBase = theBase->GetLastFunction();
Handle(GEOM_Function) aRefAxis = theAxis->GetLastFunction();
if (aRefBase.IsNull() || aRefAxis.IsNull()) return NULL;
aCI.SetBase(aRefBase);
aCI.SetAxis(aRefAxis);
aCI.SetAngle(theAngle);
//Compute the Revolution value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Revolution driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aRevolution << " = geompy.MakeRevolution("
<< theBase << ", " << theAxis << ", " << theAngle * 180.0 / M_PI << "*math.pi/180.0)";
SetErrorCode(OK);
return aRevolution;
}
//=============================================================================
/*!
* MakeRevolutionAxisAngle2Ways
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeRevolutionAxisAngle2Ways
(Handle(GEOM_Object) theBase, Handle(GEOM_Object) theAxis, double theAngle)
{
SetErrorCode(KO);
if (theBase.IsNull() || theAxis.IsNull()) return NULL;
//Add a new Revolution object
Handle(GEOM_Object) aRevolution = GetEngine()->AddObject(GetDocID(), GEOM_REVOLUTION);
//Add a new Revolution function for creation a revolution relatively to axis
Handle(GEOM_Function) aFunction =
aRevolution->AddFunction(GEOMImpl_RevolutionDriver::GetID(), REVOLUTION_BASE_AXIS_ANGLE_2WAYS);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_RevolutionDriver::GetID()) return NULL;
GEOMImpl_IRevolution aCI (aFunction);
Handle(GEOM_Function) aRefBase = theBase->GetLastFunction();
Handle(GEOM_Function) aRefAxis = theAxis->GetLastFunction();
if (aRefBase.IsNull() || aRefAxis.IsNull()) return NULL;
aCI.SetBase(aRefBase);
aCI.SetAxis(aRefAxis);
aCI.SetAngle(theAngle);
//Compute the Revolution value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Revolution driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aRevolution << " = geompy.MakeRevolution2Ways("
<< theBase << ", " << theAxis << ", " << theAngle * 180.0 / M_PI << "*math.pi/180.0)";
SetErrorCode(OK);
return aRevolution;
}
//=============================================================================
/*!
* MakeFilling
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeFilling
(Handle(GEOM_Object) theShape, int theMinDeg, int theMaxDeg,
double theTol2D, double theTol3D, int theNbIter,
int theMethod, bool isApprox)
{
SetErrorCode(KO);
if (theShape.IsNull()) return NULL;
//Add a new Filling object
Handle(GEOM_Object) aFilling = GetEngine()->AddObject(GetDocID(), GEOM_FILLING);
//Add a new Filling function for creation a filling from a compound
Handle(GEOM_Function) aFunction = aFilling->AddFunction(GEOMImpl_FillingDriver::GetID(), BASIC_FILLING);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_FillingDriver::GetID()) return NULL;
GEOMImpl_IFilling aFI (aFunction);
Handle(GEOM_Function) aRefShape = theShape->GetLastFunction();
if (aRefShape.IsNull()) return NULL;
aFI.SetShape(aRefShape);
aFI.SetMinDeg(theMinDeg);
aFI.SetMaxDeg(theMaxDeg);
aFI.SetTol2D(theTol2D);
aFI.SetTol3D(theTol3D);
aFI.SetNbIter(theNbIter);
aFI.SetApprox(isApprox);
aFI.SetMethod(theMethod);
//Compute the Solid value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Filling driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
if (strcmp(aFail->GetMessageString(), "Geom_BSplineSurface") == 0)
SetErrorCode("B-Spline surface construction failed");
else
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump pd (aFunction);
pd << aFilling << " = geompy.MakeFilling(" << theShape ;
if ( theMinDeg != 2 ) pd << ", theMinDeg=" << theMinDeg ;
if ( theMaxDeg != 5 ) pd << ", theMaxDeg=" << theMaxDeg ;
if ( fabs(theTol2D-0.0001) > Precision::Confusion() )
pd << ", theTol2D=" << theTol2D ;
if ( fabs(theTol3D-0.0001) > Precision::Confusion() )
pd << ", theTol3D=" << theTol3D ;
if ( theNbIter != 0 ) pd << ", theNbIter=" << theNbIter ;
if ( theMethod==1 ) pd << ", theMethod=GEOM.FOM_UseOri";
else if( theMethod==2 ) pd << ", theMethod=GEOM.FOM_AutoCorrect";
if(isApprox) pd << ", isApprox=" << isApprox ;
pd << ")";
SetErrorCode(OK);
return aFilling;
}
//=============================================================================
/*!
* MakeThruSections
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeThruSections(
const Handle(TColStd_HSequenceOfTransient)& theSeqSections,
bool theModeSolid,
double thePreci,
bool theRuled)
{
Handle(GEOM_Object) anObj;
SetErrorCode(KO);
if(theSeqSections.IsNull())
return anObj;
Standard_Integer nbObj = theSeqSections->Length();
if (!nbObj)
return anObj;
//Add a new ThruSections object
Handle(GEOM_Object) aThruSect = GetEngine()->AddObject(GetDocID(), GEOM_THRUSECTIONS);
//Add a new ThruSections function
int aTypeFunc = (theRuled ? THRUSECTIONS_RULED : THRUSECTIONS_SMOOTHED);
Handle(GEOM_Function) aFunction =
aThruSect->AddFunction(GEOMImpl_ThruSectionsDriver::GetID(), aTypeFunc);
if (aFunction.IsNull()) return anObj;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_ThruSectionsDriver::GetID()) return NULL;
GEOMImpl_IThruSections aCI (aFunction);
Handle(TColStd_HSequenceOfTransient) aSeqSections = new TColStd_HSequenceOfTransient;
Standard_Integer i =1;
for( ; i <= nbObj; i++) {
Handle(Standard_Transient) anItem = theSeqSections->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) aSectObj = Handle(GEOM_Object)::DownCast(anItem);
if(!aSectObj.IsNull())
{
Handle(GEOM_Function) aRefSect = aSectObj->GetLastFunction();
if(!aRefSect.IsNull())
aSeqSections->Append(aRefSect);
}
}
if(!aSeqSections->Length())
return anObj;
aCI.SetSections(aSeqSections);
aCI.SetSolidMode(theModeSolid);
aCI.SetPrecision(thePreci);
//Compute the ThruSections value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("ThruSections driver failed");
return anObj;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return anObj;
}
//Make a Python command
GEOM::TPythonDump pyDump(aFunction);
pyDump << aThruSect << " = geompy.MakeThruSections([";
for(i =1 ; i <= nbObj; i++) {
Handle(Standard_Transient) anItem = theSeqSections->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) aSectObj = Handle(GEOM_Object)::DownCast(anItem);
if(!aSectObj.IsNull()) {
pyDump<< aSectObj;
if(i < nbObj)
pyDump<<", ";
}
}
pyDump<< "],"<<theModeSolid << "," << thePreci <<","<< theRuled <<")";
SetErrorCode(OK);
return aThruSect;
}
//=============================================================================
/*!
* MakePipeWithDifferentSections
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakePipeWithDifferentSections(
const Handle(TColStd_HSequenceOfTransient)& theBases,
const Handle(TColStd_HSequenceOfTransient)& theLocations,
const Handle(GEOM_Object)& thePath,
bool theWithContact,
bool theWithCorrections)
{
Handle(GEOM_Object) anObj;
SetErrorCode(KO);
if(theBases.IsNull())
return anObj;
Standard_Integer nbBases = theBases->Length();
if (!nbBases)
return anObj;
Standard_Integer nbLocs = (theLocations.IsNull() ? 0 :theLocations->Length());
//Add a new Pipe object
Handle(GEOM_Object) aPipeDS = GetEngine()->AddObject(GetDocID(), GEOM_PIPE);
//Add a new Pipe function
Handle(GEOM_Function) aFunction =
aPipeDS->AddFunction(GEOMImpl_PipeDriver::GetID(), PIPE_DIFFERENT_SECTIONS);
if (aFunction.IsNull()) return anObj;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PipeDriver::GetID()) return anObj;
GEOMImpl_IPipeDiffSect aCI (aFunction);
Handle(GEOM_Function) aRefPath = thePath->GetLastFunction();
if(aRefPath.IsNull())
return anObj;
Handle(TColStd_HSequenceOfTransient) aSeqBases = new TColStd_HSequenceOfTransient;
Handle(TColStd_HSequenceOfTransient) aSeqLocs = new TColStd_HSequenceOfTransient;
Standard_Integer i =1;
for( ; i <= nbBases; i++) {
Handle(Standard_Transient) anItem = theBases->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) aBase = Handle(GEOM_Object)::DownCast(anItem);
if(aBase.IsNull())
continue;
Handle(GEOM_Function) aRefBase = aBase->GetLastFunction();
if(aRefBase.IsNull())
continue;
if(nbLocs)
{
Handle(Standard_Transient) anItemLoc = theLocations->Value(i);
if(anItemLoc.IsNull())
continue;
Handle(GEOM_Object) aLoc = Handle(GEOM_Object)::DownCast(anItemLoc);
if(aLoc.IsNull())
continue;
Handle(GEOM_Function) aRefLoc = aLoc->GetLastFunction();
if(aRefLoc.IsNull())
continue;
aSeqLocs->Append(aRefLoc);
}
aSeqBases->Append(aRefBase);
}
if(!aSeqBases->Length())
return anObj;
aCI.SetBases(aSeqBases);
aCI.SetLocations(aSeqLocs);
aCI.SetPath(aRefPath);
aCI.SetWithContactMode(theWithContact);
aCI.SetWithCorrectionMode(theWithCorrections);
//Compute the Pipe value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Pipe with defferent section driver failed");
return anObj;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return anObj;
}
//Make a Python command
GEOM::TPythonDump pyDump(aFunction);
pyDump << aPipeDS << " = geompy.MakePipeWithDifferentSections([";
for(i =1 ; i <= nbBases; i++) {
Handle(Standard_Transient) anItem = theBases->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) anObj = Handle(GEOM_Object)::DownCast(anItem);
if(!anObj.IsNull()) {
pyDump<< anObj;
if(i < nbBases)
pyDump<<", ";
}
}
pyDump<< "], [";
for(i =1 ; i <= nbLocs; i++) {
Handle(Standard_Transient) anItem = theLocations->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) anObj = Handle(GEOM_Object)::DownCast(anItem);
if(!anObj.IsNull()) {
pyDump<< anObj;
if(i < nbLocs)
pyDump<<", ";
}
}
pyDump<< "], "<<thePath<<","<<theWithContact << "," << theWithCorrections<<")";
SetErrorCode(OK);
return aPipeDS;
}
//=============================================================================
/*!
* MakePipeWithShellSections
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakePipeWithShellSections(
const Handle(TColStd_HSequenceOfTransient)& theBases,
const Handle(TColStd_HSequenceOfTransient)& theSubBases,
const Handle(TColStd_HSequenceOfTransient)& theLocations,
const Handle(GEOM_Object)& thePath,
bool theWithContact,
bool theWithCorrections)
{
Handle(GEOM_Object) anObj;
SetErrorCode(KO);
if(theBases.IsNull())
return anObj;
Standard_Integer nbBases = theBases->Length();
if (!nbBases)
return anObj;
Standard_Integer nbSubBases = (theSubBases.IsNull() ? 0 :theSubBases->Length());
Standard_Integer nbLocs = (theLocations.IsNull() ? 0 :theLocations->Length());
//Add a new Pipe object
Handle(GEOM_Object) aPipeDS = GetEngine()->AddObject(GetDocID(), GEOM_PIPE);
//Add a new Pipe function
Handle(GEOM_Function) aFunction =
aPipeDS->AddFunction(GEOMImpl_PipeDriver::GetID(), PIPE_SHELL_SECTIONS);
if (aFunction.IsNull()) return anObj;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PipeDriver::GetID()) return anObj;
//GEOMImpl_IPipeDiffSect aCI (aFunction);
GEOMImpl_IPipeShellSect aCI (aFunction);
Handle(GEOM_Function) aRefPath = thePath->GetLastFunction();
if(aRefPath.IsNull())
return anObj;
Handle(TColStd_HSequenceOfTransient) aSeqBases = new TColStd_HSequenceOfTransient;
Handle(TColStd_HSequenceOfTransient) aSeqSubBases = new TColStd_HSequenceOfTransient;
Handle(TColStd_HSequenceOfTransient) aSeqLocs = new TColStd_HSequenceOfTransient;
Standard_Integer i =1;
for( ; i <= nbBases; i++) {
Handle(Standard_Transient) anItem = theBases->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) aBase = Handle(GEOM_Object)::DownCast(anItem);
if(aBase.IsNull())
continue;
Handle(GEOM_Function) aRefBase = aBase->GetLastFunction();
if(aRefBase.IsNull())
continue;
if( nbSubBases >= nbBases ) {
Handle(Standard_Transient) aSubItem = theSubBases->Value(i);
if(aSubItem.IsNull())
continue;
Handle(GEOM_Object) aSubBase = Handle(GEOM_Object)::DownCast(aSubItem);
if(aSubBase.IsNull())
continue;
Handle(GEOM_Function) aRefSubBase = aSubBase->GetLastFunction();
if(aRefSubBase.IsNull())
continue;
aSeqSubBases->Append(aRefSubBase);
}
if(nbLocs) {
Handle(Standard_Transient) anItemLoc = theLocations->Value(i);
if(anItemLoc.IsNull())
continue;
Handle(GEOM_Object) aLoc = Handle(GEOM_Object)::DownCast(anItemLoc);
if(aLoc.IsNull())
continue;
Handle(GEOM_Function) aRefLoc = aLoc->GetLastFunction();
if(aRefLoc.IsNull())
continue;
aSeqLocs->Append(aRefLoc);
}
aSeqBases->Append(aRefBase);
}
if(!aSeqBases->Length())
return anObj;
aCI.SetBases(aSeqBases);
aCI.SetSubBases(aSeqSubBases);
aCI.SetLocations(aSeqLocs);
aCI.SetPath(aRefPath);
aCI.SetWithContactMode(theWithContact);
aCI.SetWithCorrectionMode(theWithCorrections);
//Compute the Pipe value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Pipe with shell sections driver failed");
return anObj;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return anObj;
}
//Make a Python command
GEOM::TPythonDump pyDump(aFunction);
pyDump << aPipeDS << " = geompy.MakePipeWithShellSections([";
for(i =1 ; i <= nbBases; i++) {
Handle(Standard_Transient) anItem = theBases->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) anObj = Handle(GEOM_Object)::DownCast(anItem);
if(!anObj.IsNull()) {
pyDump<< anObj;
if(i < nbBases)
pyDump<<", ";
}
}
pyDump<< "], [";
for(i =1 ; i <= nbSubBases; i++) {
Handle(Standard_Transient) anItem = theSubBases->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) anObj = Handle(GEOM_Object)::DownCast(anItem);
if(!anObj.IsNull()) {
pyDump<< anObj;
if(i < nbBases)
pyDump<<", ";
}
}
pyDump<< "], [";
for(i =1 ; i <= nbLocs; i++) {
Handle(Standard_Transient) anItem = theLocations->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) anObj = Handle(GEOM_Object)::DownCast(anItem);
if(!anObj.IsNull()) {
pyDump<< anObj;
if(i < nbLocs)
pyDump<<", ";
}
}
pyDump<< "], "<<thePath<<","<<theWithContact << "," << theWithCorrections<<")";
SetErrorCode(OK);
return aPipeDS;
}
//=============================================================================
/*!
* MakePipeShellsWithoutPath
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakePipeShellsWithoutPath(
const Handle(TColStd_HSequenceOfTransient)& theBases,
const Handle(TColStd_HSequenceOfTransient)& theLocations)
{
Handle(GEOM_Object) anObj;
SetErrorCode(KO);
if(theBases.IsNull())
return anObj;
Standard_Integer nbBases = theBases->Length();
if (!nbBases)
return anObj;
Standard_Integer nbLocs = (theLocations.IsNull() ? 0 :theLocations->Length());
//Add a new Pipe object
Handle(GEOM_Object) aPipeDS = GetEngine()->AddObject(GetDocID(), GEOM_PIPE);
//Add a new Pipe function
Handle(GEOM_Function) aFunction =
aPipeDS->AddFunction(GEOMImpl_PipeDriver::GetID(), PIPE_SHELLS_WITHOUT_PATH);
if (aFunction.IsNull()) return anObj;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PipeDriver::GetID()) return anObj;
GEOMImpl_IPipeShellSect aCI (aFunction);
Handle(TColStd_HSequenceOfTransient) aSeqBases = new TColStd_HSequenceOfTransient;
Handle(TColStd_HSequenceOfTransient) aSeqLocs = new TColStd_HSequenceOfTransient;
Standard_Integer i =1;
for( ; i <= nbBases; i++) {
Handle(Standard_Transient) anItem = theBases->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) aBase = Handle(GEOM_Object)::DownCast(anItem);
if(aBase.IsNull())
continue;
Handle(GEOM_Function) aRefBase = aBase->GetLastFunction();
if(aRefBase.IsNull())
continue;
if(nbLocs) {
Handle(Standard_Transient) anItemLoc = theLocations->Value(i);
if(anItemLoc.IsNull())
continue;
Handle(GEOM_Object) aLoc = Handle(GEOM_Object)::DownCast(anItemLoc);
if(aLoc.IsNull())
continue;
Handle(GEOM_Function) aRefLoc = aLoc->GetLastFunction();
if(aRefLoc.IsNull())
continue;
aSeqLocs->Append(aRefLoc);
}
aSeqBases->Append(aRefBase);
}
if(!aSeqBases->Length())
return anObj;
aCI.SetBases(aSeqBases);
aCI.SetLocations(aSeqLocs);
//Compute the Pipe value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Pipe with shell sections without path driver failed");
return anObj;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return anObj;
}
//Make a Python command
GEOM::TPythonDump pyDump(aFunction);
pyDump << aPipeDS << " = geompy.MakePipeShellsWithoutPath([";
for(i =1 ; i <= nbBases; i++) {
Handle(Standard_Transient) anItem = theBases->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) anObj = Handle(GEOM_Object)::DownCast(anItem);
if(!anObj.IsNull()) {
pyDump<< anObj;
if(i < nbBases)
pyDump<<", ";
}
}
pyDump<< "], [";
for(i =1 ; i <= nbLocs; i++) {
Handle(Standard_Transient) anItem = theLocations->Value(i);
if(anItem.IsNull())
continue;
Handle(GEOM_Object) anObj = Handle(GEOM_Object)::DownCast(anItem);
if(!anObj.IsNull()) {
pyDump<< anObj;
if(i < nbLocs)
pyDump<<", ";
}
}
pyDump<< "])";
SetErrorCode(OK);
return aPipeDS;
}
//=============================================================================
/*!
* MakePipeBiNormalAlongVector
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakePipeBiNormalAlongVector (Handle(GEOM_Object) theBase,
Handle(GEOM_Object) thePath,
Handle(GEOM_Object) theVec)
{
SetErrorCode(KO);
if (theBase.IsNull() || thePath.IsNull() || theVec.IsNull()) return NULL;
//Add a new Pipe object
Handle(GEOM_Object) aPipe = GetEngine()->AddObject(GetDocID(), GEOM_PIPE);
//Add a new Pipe function
Handle(GEOM_Function) aFunction =
aPipe->AddFunction(GEOMImpl_PipeDriver::GetID(), PIPE_BI_NORMAL_ALONG_VECTOR);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PipeDriver::GetID()) return NULL;
GEOMImpl_IPipeBiNormal aCI (aFunction);
Handle(GEOM_Function) aRefBase = theBase->GetLastFunction();
Handle(GEOM_Function) aRefPath = thePath->GetLastFunction();
Handle(GEOM_Function) aRefVec = theVec->GetLastFunction();
if (aRefBase.IsNull() || aRefPath.IsNull() || aRefVec.IsNull()) return NULL;
aCI.SetBase(aRefBase);
aCI.SetPath(aRefPath);
aCI.SetVector(aRefVec);
//Compute the Pipe value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Pipe driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
GEOM::TPythonDump(aFunction) << aPipe << " = geompy.MakePipeBiNormalAlongVector("
<< theBase << ", " << thePath << ", " << theVec << ")";
SetErrorCode(OK);
return aPipe;
}
//=============================================================================
/*!
* MakeThickening
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::MakeThickening(Handle(GEOM_Object) theObject,
double theOffset,
bool copy = true)
{
SetErrorCode(KO);
if (theObject.IsNull()) return NULL;
Handle(GEOM_Function) anOriginal = theObject->GetLastFunction();
if (anOriginal.IsNull()) return NULL; //There is no function which creates an object to be offset
//Add a new Offset function
Handle(GEOM_Function) aFunction;
Handle(GEOM_Object) aCopy;
if (copy)
{
//Add a new Copy object
aCopy = GetEngine()->AddObject(GetDocID(), theObject->GetType());
aFunction = aCopy->AddFunction(GEOMImpl_OffsetDriver::GetID(), OFFSET_THICKENING_COPY);
}
else
aFunction = theObject->AddFunction(GEOMImpl_OffsetDriver::GetID(), OFFSET_THICKENING);
if (aFunction.IsNull()) return NULL;
//Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_OffsetDriver::GetID()) return NULL;
GEOMImpl_IOffset aTI (aFunction);
aTI.SetShape(anOriginal);
aTI.SetValue(theOffset);
//Compute the offset
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("Offset driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode(aFail->GetMessageString());
return NULL;
}
//Make a Python command
if(copy)
{
GEOM::TPythonDump(aFunction) << aCopy << " = geompy.MakeThickSolid("
<< theObject << ", " << theOffset << ")";
SetErrorCode(OK);
return aCopy;
}
else
{
GEOM::TPythonDump(aFunction) << "geompy.Thicken("
<< theObject << ", " << theOffset << ")";
SetErrorCode(OK);
return theObject;
}
}
//=============================================================================
/*!
* RestorePath
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::RestorePath (Handle(GEOM_Object) theShape,
Handle(GEOM_Object) theBase1,
Handle(GEOM_Object) theBase2)
{
SetErrorCode(KO);
if (theShape.IsNull() || theBase1.IsNull() || theBase2.IsNull()) return NULL;
// Add a new Path object
Handle(GEOM_Object) aPath = GetEngine()->AddObject(GetDocID(), GEOM_PIPE_PATH);
// Add a new Path function
Handle(GEOM_Function) aFunction =
aPath->AddFunction(GEOMImpl_PipePathDriver::GetID(), PIPE_PATH_TWO_BASES);
if (aFunction.IsNull()) return NULL;
// Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PipePathDriver::GetID()) return NULL;
GEOMImpl_IPipePath aCI (aFunction);
Handle(GEOM_Function) aRefShape = theShape->GetLastFunction();
Handle(GEOM_Function) aRefBase1 = theBase1->GetLastFunction();
Handle(GEOM_Function) aRefBase2 = theBase2->GetLastFunction();
if (aRefShape.IsNull() || aRefBase1.IsNull() || aRefBase2.IsNull()) return NULL;
aCI.SetShape(aRefShape);
aCI.SetBase1(aRefBase1);
aCI.SetBase2(aRefBase2);
// Compute the Path value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("PipePath driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode("RestorePath: inappropriate arguments given");
return NULL;
}
// Make a Python command
GEOM::TPythonDump(aFunction) << aPath << " = geompy.RestorePath("
<< theShape << ", " << theBase1 << ", " << theBase2 << ")";
SetErrorCode(OK);
return aPath;
}
//=============================================================================
/*!
* RestorePath
*/
//=============================================================================
Handle(GEOM_Object) GEOMImpl_I3DPrimOperations::RestorePath
(Handle(GEOM_Object) theShape,
const Handle(TColStd_HSequenceOfTransient)& theBase1,
const Handle(TColStd_HSequenceOfTransient)& theBase2)
{
SetErrorCode(KO);
if (theShape.IsNull() || theBase1.IsNull() || theBase2.IsNull()) return NULL;
Standard_Integer nbBases1 = theBase1->Length();
Standard_Integer nbBases2 = theBase2->Length();
if (!nbBases1 || !nbBases2)
return NULL;
// Add a new Path object
Handle(GEOM_Object) aPath = GetEngine()->AddObject(GetDocID(), GEOM_PIPE_PATH);
// Add a new Path function
Handle(GEOM_Function) aFunction =
aPath->AddFunction(GEOMImpl_PipePathDriver::GetID(), PIPE_PATH_TWO_SEQS);
if (aFunction.IsNull()) return NULL;
// Check if the function is set correctly
if (aFunction->GetDriverGUID() != GEOMImpl_PipePathDriver::GetID()) return NULL;
GEOMImpl_IPipePath aCI (aFunction);
Handle(GEOM_Function) aRefShape = theShape->GetLastFunction();
if (aRefShape.IsNull()) return NULL;
Handle(TColStd_HSequenceOfTransient) aSeqBases1 = new TColStd_HSequenceOfTransient;
Handle(TColStd_HSequenceOfTransient) aSeqBases2 = new TColStd_HSequenceOfTransient;
Standard_Integer i;
for (i = 1; i <= nbBases1; i++) {
Handle(Standard_Transient) anItem = theBase1->Value(i);
if (!anItem.IsNull()) {
Handle(GEOM_Object) aBase = Handle(GEOM_Object)::DownCast(anItem);
if (!aBase.IsNull()) {
Handle(GEOM_Function) aRefBase = aBase->GetLastFunction();
if (!aRefBase.IsNull())
aSeqBases1->Append(aRefBase);
}
}
}
for (i = 1; i <= nbBases2; i++) {
Handle(Standard_Transient) anItem = theBase2->Value(i);
if (!anItem.IsNull()) {
Handle(GEOM_Object) aBase = Handle(GEOM_Object)::DownCast(anItem);
if (!aBase.IsNull()) {
Handle(GEOM_Function) aRefBase = aBase->GetLastFunction();
if (!aRefBase.IsNull())
aSeqBases2->Append(aRefBase);
}
}
}
if (!aSeqBases1->Length() || !aSeqBases2->Length()) return NULL;
aCI.SetShape(aRefShape);
aCI.SetBaseSeq1(aSeqBases1);
aCI.SetBaseSeq2(aSeqBases2);
// Compute the Path value
try {
#if OCC_VERSION_LARGE > 0x06010000
OCC_CATCH_SIGNALS;
#endif
if (!GetSolver()->ComputeFunction(aFunction)) {
SetErrorCode("PipePath driver failed");
return NULL;
}
}
catch (Standard_Failure) {
Handle(Standard_Failure) aFail = Standard_Failure::Caught();
SetErrorCode("RestorePath: inappropriate arguments given");
return NULL;
}
// Make a Python command
GEOM::TPythonDump pyDump (aFunction);
pyDump << aPath << " = geompy.RestorePathEdges(" << theShape << ", [";
for (i = 1; i <= nbBases1; i++) {
Handle(GEOM_Object) anObj = Handle(GEOM_Object)::DownCast(theBase1->Value(i));
if (!anObj.IsNull()) {
pyDump << anObj;
if (i < nbBases1)
pyDump << ", ";
}
}
pyDump<< "], [";
for (i = 1; i <= nbBases2; i++) {
Handle(GEOM_Object) anObj = Handle(GEOM_Object)::DownCast(theBase2->Value(i));
if (!anObj.IsNull()) {
pyDump << anObj;
if (i < nbBases2)
pyDump << ", ";
}
}
pyDump << "])";
SetErrorCode(OK);
return aPath;
}