geom/src/CurveCreator/CurveCreator_Utils.cxx
abk c3778fc96e Methods 'CurveCreator_Utils::constructShape' and
'Sketcher_Utils::MakeInterpolation' were changed to interpolate each spline
section by the cubic B-spline passing through the control points that the
tangent vector in each control point P is calculated by the following way:
- if point P is preceded by a control point A and is followed by a control point
  B then the tangent vector is equal to (P - A) / |P - A| + (B - P) / |B - P|;
- if point P is preceded by a control point A but is not followed by any control
  point then the tangent vector is equal to P - A;
- if point P is followed by a control point B but is not preceded by any control
  point then the tangent vector is equal to B - P.
2015-06-24 21:22:41 +03:00

1069 lines
34 KiB
C++

// Copyright (C) 2013-2015 CEA/DEN, EDF R&D, OPEN CASCADE
//
// This library is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 2.1 of the License, or (at your option) any later version.
//
// This library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
// Lesser General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License along with this library; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
//
// See http://www.salome-platform.org/ or email : webmaster.salome@opencascade.com
//
#include "CurveCreator_Utils.hxx"
#include "CurveCreator.hxx"
#include "CurveCreator_Curve.hxx"
#include "CurveCreator_UtilsICurve.hxx"
#include <Basics_OCCTVersion.hxx>
#include <GEOMUtils.hxx>
#include <gp_Pln.hxx>
#include <TopoDS.hxx>
#include <TopoDS_Vertex.hxx>
#include <TopoDS_Wire.hxx>
#include <TopoDS_Edge.hxx>
#include <TopoDS_Compound.hxx>
#include <AIS_ListOfInteractive.hxx>
#include <AIS_ListIteratorOfListOfInteractive.hxx>
#include <AIS_Shape.hxx>
#include <AIS_Line.hxx>
#include <AIS_Trihedron.hxx>
#include <AIS_LocalContext.hxx>
#include <Geom_Point.hxx>
#include <Geom_BSplineCurve.hxx>
#include <Geom_Line.hxx>
#include <Geom_Curve.hxx>
#include <Geom_TrimmedCurve.hxx>
#include <TopExp.hxx>
#include <TopExp_Explorer.hxx>
#include <TopTools_ListIteratorOfListOfShape.hxx>
#include <GeomAPI_ProjectPointOnCurve.hxx>
#include <SelectMgr_EntityOwner.hxx>
#include <SelectMgr_Selection.hxx>
#include <Select3D_SensitivePoint.hxx>
#include <BRep_Tool.hxx>
#include <BRep_Builder.hxx>
#include <BRepBuilderAPI_MakeVertex.hxx>
#include <BRepBuilderAPI_MakeEdge.hxx>
#include <BRepBuilderAPI_MakeWire.hxx>
#include <BRepTools_WireExplorer.hxx>
#include <TColgp_HArray1OfPnt.hxx>
#include <TColStd_HArray1OfBoolean.hxx>
#include <TColStd_Array1OfReal.hxx>
#include <TColgp_Array1OfVec.hxx>
#include <GeomAPI_Interpolate.hxx>
#include <ProjLib.hxx>
#include <ElSLib.hxx>
#include <math.h>
#include "CurveCreator_ICurve.hxx"
const double LOCAL_SELECTION_TOLERANCE = 0.0001;
const int SCENE_PIXEL_PROJECTION_TOLERANCE = 10;
const int SCENE_PIXEL_POINT_TOLERANCE = 5;
#define PLN_FREE 0
#define PLN_ORIGIN 1
#define PLN_OX 2
#define PLN_FIXED 3
/**
* This static function returns the curve of original type from the edge.
*
* \param theEdge the edge
* \return the curve of original type. Can be null handle.
*/
static Handle(Geom_Curve) GetCurve(const TopoDS_Edge &theEdge)
{
Handle(Geom_Curve) aResult;
if (theEdge.IsNull()) {
return aResult;
}
Standard_Real aF;
Standard_Real aL;
aResult = BRep_Tool::Curve(theEdge, aF, aL);
if (aResult.IsNull()) {
return aResult;
}
// Get the curve of original type
Handle(Standard_Type) aType = aResult->DynamicType();
while (aType == STANDARD_TYPE(Geom_TrimmedCurve)) {
Handle(Geom_TrimmedCurve) aTrCurve =
Handle(Geom_TrimmedCurve)::DownCast(aResult);
aResult = aTrCurve->BasisCurve();
aType = aResult->DynamicType();
}
return aResult;
}
//=======================================================================
// function : ConvertClickToPoint()
// purpose : Returns the point clicked in 3D view
//=======================================================================
void CurveCreator_Utils::ConvertPointToClick( const gp_Pnt& thePoint,
Handle(V3d_View) theView,
int& x, int& y )
{
theView->Convert(thePoint.X(), thePoint.Y(), thePoint.Z(), x, y );
}
//=======================================================================
// function : ConvertClickToPoint()
// purpose : Returns the point clicked in 3D view
//=======================================================================
gp_Pnt CurveCreator_Utils::ConvertClickToPoint( int x, int y, Handle(V3d_View) aView )
{
// the 3D point, that is a projection of the pixels to the XYZ view plane
//return GEOMUtils::ConvertClickToPoint( x, y, aView );
// we need the projection to the XOY plane
// 1. find a point in the plane of the eye and the normal to the plane
Standard_Real X, Y, Z;
Quantity_Parameter Vx, Vy, Vz;
aView->ConvertWithProj( x, y, X, Y, Z, Vx, Vy, Vz );
// 2. build a ray from the point by the normal to the XOY plane and intersect it
// The ray equation is the following : p(x,y,z) = p0(x,y,z) + t*V(x,y,z)
// X,Y,Z - defines p0(x,y,z), Vx,Vy,Vz - defines V(x,y,z)
// p(x,y,z) - is a searched point, t - should to be calculated by the condition of XOY plane
// The system of equations is the following:
// p(x) = p0(x)+t*V(x)
// p(y) = p0(y)+t*V(y)
// p(z) = p0(z)+t*V(z)
// p(z) = 0
Standard_Real aXp, aYp, aZp;
//It is not possible to use Precision::Confusion(), because it is e-0.8, but V is sometimes e-6
Standard_Real aPrec = LOCAL_SELECTION_TOLERANCE;
if ( fabs( Vz ) > aPrec ) {
Standard_Real aT = -Z/Vz;
aXp = X + aT*Vx;
aYp = Y + aT*Vy;
aZp = Z + aT*Vz;
}
else { // Vz = 0 - the eyed plane is orthogonal to Z plane - XOZ, or YOZ
aXp = aYp = aZp = 0;
if ( fabs( Vy ) < aPrec ) // Vy = 0 - the YOZ plane
aYp = Y;
else if ( fabs( Vx ) < aPrec ) // Vx = 0 - the XOZ plane
aXp = X;
}
/*std::cout << "ConvertClickToPoint: " << std::endl
<< "XYZ1 = (" << X << ", " << Y << ", " << Z << "); " << std::endl
<< "Vxyz = (" << Vx << ", " << Vy << ", " << Vz << "); " << std::endl
<< "Resp = (" << aXp << ", " << aYp << ", " << aZp << "); " << std::endl;*/
gp_Pnt ResultPoint( aXp, aYp, aZp );
return ResultPoint;
}
//=======================================================================
// function : constructBSpline
// purpose :
// The algorithm builds the cubic B-spline passing through the points that the
// tangent vector in each given point P is calculated by the following way:
// if point P is preceded by a point A and is followed by a point B then
// the tangent vector is equal to (P - A) / |P - A| + (B - P) / |B - P|;
// if point P is preceded by a point A but is not followed by any point then
// the tangent vector is equal to P - A;
// if point P is followed by a point B but is not preceded by any point then
// the tangent vector is equal to B - P.
//=======================================================================
static bool constructBSpline(
const Handle(TColgp_HArray1OfPnt)& thePoints,
const Standard_Boolean theIsClosed,
Handle(Geom_BSplineCurve)& theBSpline)
{
const int aPointCount = thePoints->Length();
if (aPointCount <= 1)
{
return false;
}
// Calculate the tangents.
TColgp_Array1OfVec aTangents(1, aPointCount);
Handle(TColStd_HArray1OfBoolean) aTangentFlags =
new TColStd_HArray1OfBoolean(1, aPointCount);
GeomAPI_Interpolate aInterpolator(thePoints, theIsClosed, 0);
if (aPointCount == 2)
{
aTangentFlags->SetValue(1, Standard_False);
aTangentFlags->SetValue(2, Standard_False);
}
else
{
for (Standard_Integer aPN = 1; aPN <= aPointCount; ++aPN)
{
gp_Vec aTangent;
if (aPN != 1 || theIsClosed)
{
const Standard_Integer aPN1 = (aPN != 1) ? (aPN - 1) : aPointCount;
aTangent = gp_Vec(thePoints->Value(aPN1),
thePoints->Value(aPN)).Normalized();
}
if (aPN < aPointCount || theIsClosed)
{
const Standard_Integer aPN2 = (aPN != aPointCount) ? (aPN + 1) : 1;
const gp_Vec aTangent2 = aTangent +
gp_Vec(thePoints->Value(aPN), thePoints->Value(aPN2)).Normalized();
if (aTangent2.SquareMagnitude() >= Precision::SquareConfusion())
{
aTangent = aTangent2.Normalized();
}
else
{
aTangent = -aTangent;
}
}
aTangents.SetValue(aPN, aTangent);
aTangentFlags->SetValue(aPN, Standard_True);
}
}
// Interpolate.
aInterpolator.Load(aTangents, aTangentFlags, Standard_False);
aInterpolator.Perform();
const bool aResult = (aInterpolator.IsDone() == Standard_True);
if (aResult)
{
theBSpline = aInterpolator.Curve();
}
return aResult;
}
//=======================================================================
// function : constructShape
// purpose :
//=======================================================================
void CurveCreator_Utils::constructShape(
const CurveCreator_ICurve* theCurve, TopoDS_Shape& theShape)
{
BRep_Builder aBuilder;
TopoDS_Compound aShape;
aBuilder.MakeCompound(aShape);
const int aSectionCount = theCurve->getNbSections();
for (int aSectionI = 0; aSectionI < aSectionCount; ++aSectionI)
{
const int aTmpPointCount = theCurve->getNbPoints(aSectionI);
if (aTmpPointCount == 0)
{
continue;
}
// Get the different points.
std::vector<gp_Pnt> aTmpPoints;
gp_Pnt aFirstPoint;
CurveCreator_UtilsICurve::getPoint(theCurve, aSectionI, 0, aFirstPoint);
gp_Pnt aPoint = aFirstPoint;
aTmpPoints.push_back(aPoint);
for (int aPI = 1; aPI < aTmpPointCount; ++aPI)
{
gp_Pnt aPoint2;
CurveCreator_UtilsICurve::getPoint(theCurve, aSectionI, aPI, aPoint2);
if (!isEqualPoints(aPoint, aPoint2))
{
aPoint = aPoint2;
aTmpPoints.push_back(aPoint);
}
}
const bool isClosed = theCurve->isClosed(aSectionI);
int aPointCount = aTmpPoints.size();
if (isClosed)
{
while (aPointCount > 1 &&
isEqualPoints(aFirstPoint, aTmpPoints[aPointCount - 1]))
{
--aPointCount;
}
}
// Add the vertices to the shape.
Handle(TColgp_HArray1OfPnt) aPoints =
new TColgp_HArray1OfPnt(1, aPointCount);
for (Standard_Integer aPI = 0; aPI < aPointCount; ++aPI)
{
aPoints->SetValue(aPI + 1, aTmpPoints[aPI]);
aBuilder.Add(aShape, BRepBuilderAPI_MakeVertex(aTmpPoints[aPI]));
}
if (aPointCount == 1)
{
continue;
}
// Add the edges to the shape.
const bool isPolyline =
(theCurve->getSectionType(aSectionI) == CurveCreator::Polyline);
if (isPolyline)
{
for (Standard_Integer aPN = 1; aPN < aPointCount; ++aPN)
{
aBuilder.Add(aShape, BRepBuilderAPI_MakeEdge(
BRepBuilderAPI_MakeVertex(aPoints->Value(aPN)),
BRepBuilderAPI_MakeVertex(aPoints->Value(aPN + 1))));
}
if (isClosed)
{
aBuilder.Add(aShape, BRepBuilderAPI_MakeEdge(
BRepBuilderAPI_MakeVertex(aPoints->Value(aPointCount)),
BRepBuilderAPI_MakeVertex(aPoints->Value(1))));
}
}
else
{
Handle(Geom_BSplineCurve) aBSpline;
if (constructBSpline(aPoints, isClosed, aBSpline))
{
aBuilder.Add(aShape,
BRepBuilderAPI_MakeWire(BRepBuilderAPI_MakeEdge(aBSpline)));
}
}
}
theShape = aShape;
}
/**
* This is an intermediate structure for curve construction.
*/
struct Section3D
{
Section3D() : myIsClosed(false), myIsBSpline(false)
{ }
bool myIsClosed;
bool myIsBSpline;
Handle(TColgp_HArray1OfPnt) myPoints;
};
//=======================================================================
// function : constructCurve
// purpose :
//=======================================================================
bool CurveCreator_Utils::constructCurve
(const TopoDS_Shape theShape,
CurveCreator_Curve *theCurve,
gp_Ax3 &theLocalCS)
{
if (theShape.IsNull()) {
return false;
}
// Collect wires or vertices from shape.
TopTools_ListOfShape aWOrV;
TopAbs_ShapeEnum aType = theShape.ShapeType();
if (aType == TopAbs_WIRE || aType == TopAbs_VERTEX) {
aWOrV.Append(theShape);
} else if (aType == TopAbs_COMPOUND) {
TopoDS_Iterator aShIter(theShape);
for (; aShIter.More(); aShIter.Next()) {
const TopoDS_Shape &aSubShape = aShIter.Value();
aType = aSubShape.ShapeType();
if (aType == TopAbs_WIRE || aType == TopAbs_VERTEX) {
aWOrV.Append(aSubShape);
} else {
// Only subshapes of types wire or vertex are supported.
return false;
}
}
} else {
// Only wire (vertex) or compound of wires (vertices) are supported.
return false;
}
// Treat each wire or vertex. Get points, compute the working plane.
gp_Pln aPlane;
Standard_Integer aPlaneStatus = PLN_FREE;
TopTools_ListIteratorOfListOfShape anIter(aWOrV);
std::list<Section3D> aListSec;
for (; anIter.More(); anIter.Next()) {
Section3D aSec3D;
aSec3D.myPoints = CurveCreator_Utils::getPoints
(anIter.Value(), aSec3D.myIsClosed, aSec3D.myIsBSpline);
if (aSec3D.myPoints.IsNull()) {
return false;
}
aListSec.push_back(aSec3D);
if (aPlaneStatus != PLN_FIXED) {
// Compute plane
CurveCreator_Utils::FindPlane(aSec3D.myPoints, aPlane, aPlaneStatus);
}
}
// Check if it is possible to change a computed coordinate system by
// XOY, XOZ or YOZ or parallel to them.
gp_Pnt aO(0., 0., 0.);
gp_Dir aNDir(0., 0., 1.);
gp_Dir aXDir(1., 0., 0.);
gp_Ax3 anAxis;
Standard_Real aTolAng = Precision::Confusion(); // Angular() is too small.
switch (aPlaneStatus) {
case PLN_ORIGIN:
{
// Change the location.
aO.SetZ(aPlane.Location().Z());
anAxis.SetLocation(aO);
aPlane.SetPosition(anAxis);
}
break;
case PLN_OX:
{
// Fixed origin + OX axis
const gp_Dir &aPlnX = aPlane.Position().XDirection();
if (Abs(aPlnX.Z()) <= aTolAng) {
// Make a coordinate system parallel to XOY.
aO.SetZ(aPlane.Location().Z());
anAxis.SetLocation(aO);
aPlane.SetPosition(anAxis);
} else if (Abs(aPlnX.Y()) <= aTolAng) {
// Make a coordinate system parallel to XOZ.
aO.SetY(aPlane.Location().Y());
aNDir.SetCoord(0., 1., 0.);
aXDir.SetCoord(0., 0., 1.);
anAxis = gp_Ax3(aO, aNDir, aXDir);
aPlane.SetPosition(anAxis);
} else if (Abs(aPlnX.X()) <= aTolAng) {
// Make a coordinate system parallel to YOZ.
aO.SetX(aPlane.Location().X());
aNDir.SetCoord(1., 0., 0.);
aXDir.SetCoord(0., 1., 0.);
anAxis = gp_Ax3(aO, aNDir, aXDir);
aPlane.SetPosition(anAxis);
}
}
break;
case PLN_FIXED:
{
const gp_Dir &aPlnN = aPlane.Position().Direction();
gp_Dir aYDir(0., 1., 0.);
if (aPlnN.IsParallel(aNDir, aTolAng)) {
// Make a coordinate system parallel to XOY.
aO.SetZ(aPlane.Location().Z());
anAxis.SetLocation(aO);
aPlane.SetPosition(anAxis);
} else if (aPlnN.IsParallel(aYDir, aTolAng)) {
// Make a coordinate system parallel to XOZ.
aO.SetY(aPlane.Location().Y());
aNDir.SetCoord(0., 1., 0.);
aXDir.SetCoord(0., 0., 1.);
anAxis = gp_Ax3(aO, aNDir, aXDir);
aPlane.SetPosition(anAxis);
} else if (aPlnN.IsParallel(aXDir, aTolAng)) {
// Make a coordinate system parallel to YOZ.
aO.SetX(aPlane.Location().X());
aNDir.SetCoord(1., 0., 0.);
aXDir.SetCoord(0., 1., 0.);
anAxis = gp_Ax3(aO, aNDir, aXDir);
aPlane.SetPosition(anAxis);
}
}
break;
case PLN_FREE:
default:
// Use XOY plane.
aPlane.SetPosition(anAxis);
break;
}
// Compute 2d points.
std::list<Section3D>::const_iterator aSecIt = aListSec.begin();
Standard_Real aTolConf2 =
Precision::Confusion()*Precision::Confusion();
Standard_Real aX;
Standard_Real aY;
for (; aSecIt != aListSec.end(); ++aSecIt) {
Standard_Integer i;
CurveCreator::Coordinates aCoords;
for (i = aSecIt->myPoints->Lower(); i <= aSecIt->myPoints->Upper(); ++i) {
const gp_Pnt &aPnt = aSecIt->myPoints->Value(i);
if (aPlane.SquareDistance(aPnt) > aTolConf2) {
// The point doesn't lie on the plane.
return false;
}
ElSLib::Parameters(aPlane, aPnt, aX, aY);
aCoords.push_back(aX);
aCoords.push_back(aY);
}
// Add a new section to the curve.
const std::string aSecName =
CurveCreator_UtilsICurve::getUniqSectionName(theCurve);
const CurveCreator::SectionType aSecType = aSecIt->myIsBSpline ?
CurveCreator::Spline : CurveCreator::Polyline;
theCurve->addSectionInternal(aSecName, aSecType,
aSecIt->myIsClosed, aCoords);
}
// Set the local coordinate system.
theLocalCS = aPlane.Position();
return true;
}
class CompareSectionToPoint
{
public:
CompareSectionToPoint( const int theISection = -1, const int theIPoint = -1 )
: mySectionId( theISection ), myPointId( theIPoint ) {};
~CompareSectionToPoint() {}
bool operator < ( const CompareSectionToPoint& theOther ) const
{
bool isLess = mySectionId < theOther.mySectionId;
if ( !isLess && mySectionId == theOther.mySectionId )
isLess = myPointId < theOther.myPointId;
return isLess;
}
private:
int mySectionId;
int myPointId;
};
void CurveCreator_Utils::getSelectedPoints( Handle(AIS_InteractiveContext) theContext,
const CurveCreator_ICurve* theCurve,
CurveCreator_ICurve::SectionToPointList& thePoints )
{
thePoints.clear();
std::list<float> aSelectedPoints;
gp_Pnt aPnt;
std::map<CompareSectionToPoint, int> aPointsMap;
CurveCreator_ICurve::SectionToPointList aPoints;
for ( theContext->InitSelected(); theContext->MoreSelected(); theContext->NextSelected() ) {
TopoDS_Vertex aVertex;
TopoDS_Shape aShape = theContext->SelectedShape();
if ( !aShape.IsNull() && aShape.ShapeType() == TopAbs_VERTEX )
aVertex = TopoDS::Vertex( theContext->SelectedShape() );
if ( aVertex.IsNull() )
continue;
aPnt = BRep_Tool::Pnt( aVertex );
CurveCreator_UtilsICurve::findSectionsToPoints( theCurve, aPnt.X(), aPnt.Y(), aPoints );
CurveCreator_ICurve::SectionToPointList::const_iterator anIt = aPoints.begin(),
aLast = aPoints.end();
CompareSectionToPoint aPoint;
for ( ; anIt != aLast; anIt++ ) {
aPoint = CompareSectionToPoint( (*anIt).first, (*anIt).second );
if ( aPointsMap.find( aPoint ) != aPointsMap.end() )
continue;
aPointsMap[aPoint] = 0;
thePoints.push_back( *anIt );
}
}
}
void CurveCreator_Utils::setSelectedPoints( Handle(AIS_InteractiveContext) theContext,
const CurveCreator_ICurve* theCurve,
const CurveCreator_ICurve::SectionToPointList& thePoints )
{
if ( !theCurve )
return;
Handle(AIS_InteractiveObject) anAIS = theCurve->getAISObject();
if ( anAIS.IsNull() )
return;
Handle(AIS_Shape) anAISShape = Handle(AIS_Shape)::DownCast( anAIS );
if ( anAISShape.IsNull() )
return;
//ASL: we convert list of point indices to list of points coordinates
int aSize = thePoints.size();
std::vector<gp_Pnt> aPntsToSelect( aSize );
CurveCreator_ICurve::SectionToPointList::const_iterator
aPIt = thePoints.begin(), aPLast = thePoints.end();
CurveCreator_ICurve::SectionToPoint aSToPoint;
for( int i=0; aPIt != aPLast; aPIt++, i++ )
{
gp_Pnt aPntToSelect;
CurveCreator_UtilsICurve::getPoint( theCurve, aPIt->first, aPIt->second, aPntToSelect );
aPntsToSelect[i] = aPntToSelect;
}
theContext->ClearSelected( Standard_False );
//ASL: we switch off automatic highlight to improve performance of selection
theContext->SetAutomaticHilight( Standard_False );
Handle_SelectMgr_Selection aSelection = anAISShape->Selection( AIS_Shape::SelectionMode( TopAbs_VERTEX ) );
for( aSelection->Init(); aSelection->More(); aSelection->Next() )
{
#if OCC_VERSION_LARGE > 0x06080100
const Handle(SelectMgr_SensitiveEntity) aHSenEntity = aSelection->Sensitive();
if( aHSenEntity.IsNull() )
continue;
Handle_SelectBasics_SensitiveEntity aSenEntity = aHSenEntity->BaseSensitive();
#else
Handle_SelectBasics_SensitiveEntity aSenEntity = aSelection->Sensitive();
#endif
Handle_Select3D_SensitivePoint aSenPnt = Handle_Select3D_SensitivePoint::DownCast( aSenEntity );
gp_Pnt anOwnerPnt = aSenPnt->Point();
Handle_SelectMgr_EntityOwner anOwner = Handle_SelectMgr_EntityOwner::DownCast( aSenPnt->OwnerId() );
CurveCreator_ICurve::SectionToPointList::const_iterator anIt = thePoints.begin(),
aLast = thePoints.end();
bool isFound = false;
for( int i=0; i<aSize; i++ )
{
bool isIntersect = fabs( aPntsToSelect[i].X() - anOwnerPnt.X() ) < LOCAL_SELECTION_TOLERANCE &&
fabs( aPntsToSelect[i].Y() - anOwnerPnt.Y() ) < LOCAL_SELECTION_TOLERANCE;
if( isIntersect )
{
theContext->AddOrRemoveSelected( anOwner, Standard_False );
break;
}
}
}
//ASL: we switch on again automatic highlight (otherwise selection will not be shown)
// and call HilightPicked to draw selected owners
theContext->SetAutomaticHilight( Standard_True );
theContext->LocalContext()->HilightPicked( Standard_True );
}
//=======================================================================
// function : setLocalPointContext
// purpose : Open/close the viewer local context
//=======================================================================
void CurveCreator_Utils::setLocalPointContext( const CurveCreator_ICurve* theCurve,
Handle(AIS_InteractiveContext) theContext,
const bool theOpen )
{
if ( !theContext )
return;
if ( theOpen ) {
// Open local context if there is no one
if ( !theContext->HasOpenedContext() ) {
theContext->ClearCurrents( false );
theContext->OpenLocalContext( false/*use displayed objects*/, true/*allow shape decomposition*/ );
}
// load the curve AIS object to the local context with the point selection
Handle(AIS_InteractiveObject) anAIS = theCurve->getAISObject();
if ( !anAIS.IsNull() )
{
if ( anAIS->IsKind( STANDARD_TYPE( AIS_Shape ) ) )
{
theContext->Load( anAIS, -1/*selection mode*/, true/*allow decomposition*/ );
theContext->Activate( anAIS, AIS_Shape::SelectionMode( (TopAbs_ShapeEnum)TopAbs_VERTEX ) );
}
}
}
else {
if ( theContext->HasOpenedContext() )
theContext->CloseAllContexts();
}
}
bool CurveCreator_Utils::pointOnObject( Handle(V3d_View) theView,
Handle(AIS_InteractiveObject) theObject,
const int theX, const int theY,
gp_Pnt& thePoint,
gp_Pnt& thePoint1, gp_Pnt& thePoint2 )
{
bool isFullFound = false;
if ( theObject.IsNull() || theView.IsNull() )
return isFullFound;
Handle(AIS_Shape) aShape = Handle(AIS_Shape)::DownCast( theObject );
if ( aShape.IsNull() )
return isFullFound;
const TopoDS_Compound& aCompound = TopoDS::Compound( aShape->Shape() );
if ( aCompound.IsNull() )
return isFullFound;
gp_Pnt aCurPoint, aCurPoint1, aCurPoint2;
gp_Pnt aFoundPoint, aFoundPnt1, aFoundPnt2;
Standard_Real aParameter;
bool isFound = false;
int aDelta, aMinDelta = 2*SCENE_PIXEL_PROJECTION_TOLERANCE*SCENE_PIXEL_PROJECTION_TOLERANCE;
TopExp_Explorer anExp( aCompound, TopAbs_EDGE );
for ( ; anExp.More(); anExp.Next())
{
const TopoDS_Edge& anEdge = TopoDS::Edge(anExp.Current());
if ( anEdge.IsNull() )
continue;
Standard_Real aFirst, aLast;
Handle(Geom_Curve) aCurve = BRep_Tool::Curve( anEdge, aFirst, aLast );
if ( aCurve->IsKind( STANDARD_TYPE(Geom_BSplineCurve) ) ) {
Handle(Geom_BSplineCurve) aBSplineCurve =
Handle(Geom_BSplineCurve)::DownCast( aCurve );
if ( !aBSplineCurve.IsNull() ) {
isFound = hasProjectPointOnCurve( theView, theX, theY, aBSplineCurve,
aParameter, aDelta );
if ( isFound ) {
aCurPoint = aBSplineCurve->Value( aParameter );
Standard_Integer anI1, anI2;
aBSplineCurve->LocateU( aParameter, LOCAL_SELECTION_TOLERANCE, anI1, anI2 );
aCurPoint1 = aBSplineCurve->Value( aBSplineCurve->Knot( anI1 ) );
aCurPoint2 = aBSplineCurve->Value( aBSplineCurve->Knot( anI2 ) );
}
}
}
else { // a curve built on a polyline edge
Handle(Geom_Line) aGLine = Handle(Geom_Line)::DownCast( aCurve );
if ( aGLine.IsNull() )
continue;
isFound = hasProjectPointOnCurve( theView, theX, theY, aGLine, aParameter,
aDelta );
if ( isFound ) {
aCurPoint = aGLine->Value( aParameter );
TopoDS_Vertex V1, V2;
TopExp::Vertices( anEdge, V1, V2, Standard_True );
if ( V1.IsNull() || V2.IsNull() )
continue;
aCurPoint1 = BRep_Tool::Pnt(V1);
aCurPoint2 = BRep_Tool::Pnt(V2);
// check that the projected point is on the bounded curve
gp_Vec aVec1( aCurPoint1, aCurPoint );
gp_Vec aVec2( aCurPoint2, aCurPoint );
isFound = fabs( aVec1.Angle( aVec2 ) - M_PI ) < LOCAL_SELECTION_TOLERANCE;
}
}
if ( isFound && aMinDelta >= aDelta ) {
aMinDelta = aDelta;
isFullFound = true;
aFoundPnt1 = aCurPoint1;
aFoundPnt2 = aCurPoint2;
aFoundPoint = aCurPoint;
}
}
if ( isFullFound ) {
int aX, anY, aX1, anY1, aX2, anY2;
int aDelta;
CurveCreator_Utils::ConvertPointToClick( aFoundPoint, theView, aX, anY );
CurveCreator_Utils::ConvertPointToClick( aFoundPnt1, theView, aX1, anY1 );
CurveCreator_Utils::ConvertPointToClick( aFoundPnt2, theView, aX2, anY2 );
isFullFound = !isEqualPixels( aX, anY, aX1, anY1, SCENE_PIXEL_POINT_TOLERANCE, aDelta ) &&
!isEqualPixels( aX, anY, aX2, anY2, SCENE_PIXEL_POINT_TOLERANCE, aDelta );
if ( isFullFound ) {
thePoint = aFoundPoint;
thePoint1 = aFoundPnt1;
thePoint2 = aFoundPnt2;
}
}
return isFullFound;
}
bool CurveCreator_Utils::hasProjectPointOnCurve( Handle(V3d_View) theView,
const int theX, const int theY,
const Handle(Geom_Curve)& theCurve,
Standard_Real& theParameter,
int& theDelta )
{
bool isFound = false;
if ( theView.IsNull() )
return isFound;
gp_Pnt aPoint = CurveCreator_Utils::ConvertClickToPoint( theX, theY, theView );
GeomAPI_ProjectPointOnCurve aProj( aPoint, theCurve );
Standard_Integer aNbPoint = aProj.NbPoints();
if (aNbPoint > 0) {
for (Standard_Integer j = 1; j <= aNbPoint && !isFound; j++) {
gp_Pnt aNewPoint = aProj.Point( j );
theParameter = aProj.Parameter( j );
int aX, anY;
CurveCreator_Utils::ConvertPointToClick( aNewPoint, theView, aX, anY );
isFound = isEqualPixels( aX, anY, theX, theY, SCENE_PIXEL_PROJECTION_TOLERANCE, theDelta );
}
}
return isFound;
}
bool CurveCreator_Utils::isEqualPixels( const int theX, const int theY, const int theOtherX,
const int theOtherY, const double theTolerance, int& theDelta )
{
int aXDelta = abs( theX - theOtherX );
int anYDelta = abs( theY - theOtherY );
theDelta = aXDelta*aXDelta + anYDelta*anYDelta;
return aXDelta < theTolerance && anYDelta < theTolerance;
}
bool CurveCreator_Utils::isEqualPoints( const gp_Pnt& thePoint, const gp_Pnt& theOtherPoint )
{
return theOtherPoint.IsEqual( thePoint, LOCAL_SELECTION_TOLERANCE );
}
//=======================================================================
// function : getPoints
// purpose :
//=======================================================================
Handle(TColgp_HArray1OfPnt) CurveCreator_Utils::getPoints
(const TopoDS_Shape &theShape,
bool &IsClosed,
bool &IsBSpline)
{
Handle(TColgp_HArray1OfPnt) aResult;
IsClosed = false;
IsBSpline = false;
if (theShape.IsNull()) {
return aResult;
}
const TopAbs_ShapeEnum aShType = theShape.ShapeType();
if (aShType == TopAbs_VERTEX) {
// There is a single point.
gp_Pnt aPnt = BRep_Tool::Pnt(TopoDS::Vertex(theShape));
aResult = new TColgp_HArray1OfPnt(1, 1, aPnt);
return aResult;
} else if (aShType != TopAbs_WIRE) {
// The shape is neither a vertex nor a wire.
return aResult;
}
// Treat wire.
BRepTools_WireExplorer anExp(TopoDS::Wire(theShape));
if (!anExp.More()) {
// Empty wires are not allowed.
return aResult;
}
// Treat the first edge.
TopoDS_Edge anEdge = anExp.Current();
Handle(Geom_Curve) aCurve = GetCurve(anEdge);
if (aCurve.IsNull()) {
return aResult;
}
// Check the curve type.
Handle(Standard_Type) aType = aCurve->DynamicType();
if (aType == STANDARD_TYPE(Geom_BSplineCurve)) {
IsBSpline = true;
} else if (aType != STANDARD_TYPE(Geom_Line)) {
// The curve is neither a line or a BSpline. It is not valid.
return aResult;
}
// Go to the next edge.
TopoDS_Vertex aFirstVtx = anExp.CurrentVertex();
anExp.Next();
if (IsBSpline)
{
// There should be a single BSpline curve in the wire.
if (anExp.More()) {
return aResult;
}
// Construct a section from poles of BSpline.
Handle(Geom_BSplineCurve) aBSplCurve =
Handle(Geom_BSplineCurve)::DownCast(aCurve);
// Check if the edge is valid. It should not be based on trimmed curve.
gp_Pnt aCP[2] = { aBSplCurve->StartPoint(), aBSplCurve->EndPoint() };
TopoDS_Vertex aV[2];
Standard_Integer i;
TopExp::Vertices(anEdge, aV[0], aV[1]);
for (i = 0; i < 2; i++) {
gp_Pnt aPnt = BRep_Tool::Pnt(aV[i]);
Standard_Real aTol = BRep_Tool::Tolerance(aV[i]);
if (!aPnt.IsEqual(aCP[i], aTol)) {
return aResult;
}
}
IsClosed = aV[0].IsSame(aV[1]) ? true : false;
Standard_Integer aNbPoints = aBSplCurve->NbKnots();
TColStd_Array1OfReal aKnots(1, aNbPoints);
aBSplCurve->Knots(aKnots);
// Don't consider the last point as it coincides with the first
if (IsClosed)
--aNbPoints;
aResult = new TColgp_HArray1OfPnt(1, aNbPoints);
for (i = 1; i <= aNbPoints; ++i)
aResult->SetValue(i, aBSplCurve->Value( aKnots.Value(i) ));
}
else
{
// This is a polyline.
TopTools_ListOfShape aVertices;
Standard_Integer aNbVtx = 1;
aVertices.Append(aFirstVtx);
for (; anExp.More(); anExp.Next(), ++aNbVtx) {
anEdge = anExp.Current();
aCurve = GetCurve(anEdge);
if (aCurve.IsNull()) {
return aResult;
}
aType = aCurve->DynamicType();
if (aType != STANDARD_TYPE(Geom_Line)) {
// The curve is not a line. It is not valid.
return aResult;
}
// Add the current vertex to the list.
aVertices.Append(anExp.CurrentVertex());
}
// Check if the section is closed.
TopoDS_Vertex aLastVtx = TopExp::LastVertex(anEdge, Standard_True);
IsClosed = aFirstVtx.IsSame(aLastVtx) ? true : false;
// Store a last vertex
if (!IsClosed)
{
aVertices.Append(aLastVtx);
aNbVtx++;
}
// Fill the array of points.
aResult = new TColgp_HArray1OfPnt(1, aNbVtx);
Standard_Integer i;
TopTools_ListIteratorOfListOfShape aVtxIter(aVertices);
for (i = 1; aVtxIter.More(); aVtxIter.Next(), ++i) {
gp_Pnt aPnt = BRep_Tool::Pnt(TopoDS::Vertex(aVtxIter.Value()));
aResult->SetValue(i, aPnt);
}
}
return aResult;
}
//=======================================================================
// function : FindPlane
// purpose :
//=======================================================================
void CurveCreator_Utils::FindPlane
(const Handle_TColgp_HArray1OfPnt &thePoints,
gp_Pln &thePlane,
Standard_Integer &thePlnStatus)
{
if (thePoints.IsNull() || thePlnStatus == PLN_FIXED) {
// The plane can't be defined or is fixed. Nothing to change.
return;
}
Standard_Integer i;
const Standard_Real aTolConf = Precision::Confusion();
for (i = thePoints->Lower(); i <= thePoints->Upper(); ++i) {
const gp_Pnt &aPnt = thePoints->Value(i);
switch (thePlnStatus) {
case PLN_FREE:
// Fix the origin.
thePlane.SetLocation(aPnt);
thePlnStatus = PLN_ORIGIN;
break;
case PLN_ORIGIN:
{
// Fix origin + OX axis
const gp_Pnt &aPlnLoc = thePlane.Location();
if (!aPnt.IsEqual(aPlnLoc, aTolConf)) {
// Set the X axis.
gp_Dir aXDir(aPnt.XYZ().Subtracted(aPlnLoc.XYZ()));
gp_Ax3 aXNorm(aPlnLoc, aXDir);
gp_Ax3 aNewPlnPos(aPlnLoc, aXNorm.XDirection(), aXNorm.Direction());
thePlane.SetPosition(aNewPlnPos);
thePlnStatus = PLN_OX;
}
}
break;
case PLN_OX:
{
// Fix OY axis
gp_Lin aXLin(thePlane.XAxis());
Standard_Real aSqrDist = aXLin.SquareDistance(aPnt);
if (aSqrDist > aTolConf*aTolConf) {
// Compute main axis.
const gp_Pnt &aPlnLoc = thePlane.Location();
gp_Dir aDir(aPnt.XYZ().Subtracted(aPlnLoc.XYZ()));
gp_Ax3 aXNorm(aPlnLoc, aXLin.Direction(), aDir);
gp_Ax3 aNewPlnPos(aPlnLoc, aXNorm.YDirection(),
aXNorm.Direction());
thePlane.SetPosition(aNewPlnPos);
thePlnStatus = PLN_FIXED;
return;
}
}
break;
default:
return;
}
}
}