mirror of
https://git.salome-platform.org/gitpub/modules/geom.git
synced 2024-12-27 09:50:34 +05:00
ec3ebbe891
Make KindOfShape() work correctly in cases, when substrate surface is cone and contour-wire is arbitrary (tested with a wire, composed of lines and 2-order curves).
138 lines
7.2 KiB
Python
138 lines
7.2 KiB
Python
# Sample: KindOfShape method for faces, which are results of partitioning of a conical surface with a prism with complex base.
|
|
# Faces of the prism are not perpendicular to cone axis, therefore contour-wires of resulting cone fragments are composed of lines and 2-order curves.
|
|
|
|
import sys
|
|
import salome
|
|
|
|
salome.salome_init()
|
|
import salome_notebook
|
|
notebook = salome_notebook.NoteBook()
|
|
|
|
###
|
|
### GEOM component
|
|
###
|
|
|
|
import GEOM
|
|
from salome.geom import geomBuilder
|
|
import math
|
|
import SALOMEDS
|
|
|
|
|
|
def approximatelyEqual(a, b, epsilon = 1e-5):
|
|
return abs(a - b) <= ((abs(b) if (abs(a) < abs(b)) else abs(a)) * epsilon)
|
|
|
|
|
|
def assertShapeKindEquals(iShapeInfo, iKind):
|
|
assert (len(iShapeInfo) > 0), "Yielded data array is empty."
|
|
assert (iShapeInfo[0] == iKind), f"Expected shape kind is {iKind}, but yielded kind is {iShapeInfo[0]}."
|
|
|
|
|
|
def assertConePropsEqual(iShapeName, iShapeInfo, iExpectedShapeInfo):
|
|
assertShapeKindEquals(iShapeInfo, geompy.kind.CONE2D)
|
|
assert (len(iShapeInfo) == len(iExpectedShapeInfo)), f"{iShapeName}: Yielded data array is of unexpected length."
|
|
for idx in range(1, len(iShapeInfo)):
|
|
assert (approximatelyEqual(iShapeInfo[idx], iExpectedShapeInfo[idx])), f"{iShapeName}: Yielded data array element is not equal to the expected value."
|
|
|
|
|
|
def assertConeInfoEquals(iFace, iExpectedShapeInfo, iAddRestoredConeToStudy = False):
|
|
ShapeInfo = geompy.KindOfShape(iFace)
|
|
print("ShapeInfo of " + iFace.GetName() + " = ", end = "")
|
|
print(ShapeInfo, ', ')
|
|
assertConePropsEqual(iFace.GetName(), ShapeInfo, iExpectedShapeInfo)
|
|
|
|
if (iAddRestoredConeToStudy):
|
|
BottomLidCenter = geompy.MakeVertex(ShapeInfo[1], ShapeInfo[2], ShapeInfo[3])
|
|
AxisAuxPnt = geompy.MakeVertex(ShapeInfo[1] + ShapeInfo[4], ShapeInfo[2] + ShapeInfo[5], ShapeInfo[3] + ShapeInfo[6])
|
|
Axis = geompy.MakeVector(BottomLidCenter, AxisAuxPnt)
|
|
R1 = ShapeInfo[7] # Bottom lid radius.
|
|
R2 = ShapeInfo[8] # Top lid radius.
|
|
H = ShapeInfo[9]
|
|
RestoredCone = geompy.MakeCone(BottomLidCenter, Axis, R1, R2, H)
|
|
geompy.addToStudy(RestoredCone, iFace.GetName() + '__RestoredCone')
|
|
|
|
|
|
# iExpectedConeFragmentShapeInfos is a dictionary of [IndexOfFace, ExpectedShapeInfoOfFace]. IndexOfFace is zero-based index, not one-based one as in Shaper GUI!
|
|
def partitionConeAndAssertShapeInfosEqual(iCone, iPartitioningShape, iExpectedConeFragmentShapeInfos, iAddResultsToStudy):
|
|
PartitionedCone = geompy.MakePartition([iCone], [iPartitioningShape], [], [], geompy.ShapeType["FACE"], 0, [], 0)
|
|
if (iAddResultsToStudy):
|
|
geompy.addToStudy(PartitionedCone, "Partitioned" + iCone.GetName())
|
|
|
|
ConeFragments = geompy.ExtractShapes(PartitionedCone, geompy.ShapeType["FACE"], True)
|
|
ConeFragmentsIdxs = iExpectedConeFragmentShapeInfos.keys()
|
|
for ConeFragmentIdx in ConeFragmentsIdxs:
|
|
assert (ConeFragmentIdx < len(ConeFragments)), f"Num of faces, {iCone.GetName()} is partitioned into, <= {ConeFragmentIdx} (zero-based index)."
|
|
ConeFragment = ConeFragments[ConeFragmentIdx]
|
|
ConeFragmentName = f"Partitioned{iCone.GetName()}_Face_{ConeFragmentIdx+1}" # Add index to a name as Shaper GUI does.
|
|
|
|
if (iAddResultsToStudy):
|
|
geompy.addToStudyInFather(PartitionedCone, ConeFragment, ConeFragmentName)
|
|
else:
|
|
ConeFragment.SetName(ConeFragmentName)
|
|
|
|
assertConeInfoEquals(ConeFragment, iExpectedConeFragmentShapeInfos[ConeFragmentIdx], iAddResultsToStudy)
|
|
|
|
|
|
geompy = geomBuilder.New()
|
|
|
|
OriginalConeBaseCenter = geompy.MakeVertex(100, 130, -60)
|
|
OriginalConeAxisAuxPnt = geompy.MakeVertex(100, 230, 40)
|
|
OriginalConeAxis = geompy.MakeVector(OriginalConeBaseCenter, OriginalConeAxisAuxPnt)
|
|
OriginalCone = geompy.MakeCone(OriginalConeBaseCenter, OriginalConeAxis, 100, 50, 300)
|
|
PrismSubstrateCenter = geompy.MakeVertex(100, 1000, 50)
|
|
PrismDirAuxPnt = geompy.MakeVertex(100, 950, 50)
|
|
PrismDir = geompy.MakeVector(PrismSubstrateCenter, PrismDirAuxPnt)
|
|
PrismSubstrate = geompy.MakeDiskPntVecR(PrismSubstrateCenter, PrismDir, 100)
|
|
sk = geompy.Sketcher2D()
|
|
sk.addPoint(0.395986, 43.346713)
|
|
sk.addSegmentAbsolute(66.321537, 41.733575)
|
|
sk.addSegmentAbsolute(80.619408, -2.852314)
|
|
sk.addSegmentAbsolute(67.641539, -38.565150)
|
|
sk.addSegmentAbsolute(22.193602, -56.632163)
|
|
sk.addSegmentAbsolute(-19.060136, -51.084351)
|
|
sk.addSegmentAbsolute(-60.823572, 34.825751)
|
|
sk.addSegmentAbsolute(-13.047004, 55.727527)
|
|
sk.close()
|
|
PrismBase = sk.wire(PrismSubstrate)
|
|
Prism = geompy.MakePrismVecH(PrismBase, PrismDir, 1400)
|
|
geompy.addToStudy( OriginalConeBaseCenter, 'OriginalConeBaseCenter' )
|
|
geompy.addToStudy( OriginalConeAxisAuxPnt, 'OriginalConeAxisAuxPnt' )
|
|
geompy.addToStudy( OriginalConeAxis, 'OriginalConeAxis' )
|
|
geompy.addToStudy( OriginalCone, 'OriginalCone' )
|
|
geompy.addToStudy( PrismSubstrateCenter, 'PrismSubstrateCenter' )
|
|
geompy.addToStudy( PrismDirAuxPnt, 'PrismDirAuxPnt' )
|
|
geompy.addToStudy( PrismDir, 'PrismDir' )
|
|
geompy.addToStudy( PrismSubstrate, 'PrismSubstrate' )
|
|
geompy.addToStudy( PrismBase, 'PrismBase' )
|
|
geompy.addToStudy( Prism, 'Prism' )
|
|
|
|
# Test on the original cone
|
|
ExpectedOriginalConeFragmentsShapeInfos = {
|
|
3: ["CONE2D", 100.0, 215.76160602318674, 25.761606023186744, 0.0, 0.7071067811865475, 0.7071067811865475, 79.7857956051852, 54.62305376134459, 150.9764510630437],
|
|
5: ["CONE2D", 100.0, 129.99999999999753, -60.000000000002466, 0.0, 0.7071067811865475, 0.7071067811865475, 100.00000000000058, 69.82277418813575, 181.06335487118898],
|
|
11: ["CONE2D", 100.0, 216.57653245407857, 26.57653245407856, 0.0, 0.7071067811865475, 0.7071067811865475, 79.59371560336794, 52.95933239773038, 159.80629923382543]
|
|
}
|
|
partitionConeAndAssertShapeInfosEqual(OriginalCone, Prism, ExpectedOriginalConeFragmentsShapeInfos, True)
|
|
|
|
# Test on isotropically scaled cone. Non-isotropical scaling does not preserve shape kind - it is desired behavior.
|
|
ScaledCone = geompy.MakeScaleTransform(OriginalCone, OriginalConeAxisAuxPnt, 2)
|
|
ScaledCone.SetName('ScaledCone')
|
|
ExpectedScaledConeFragmentsShapeInfos = {
|
|
4: ["CONE2D", 100.0, 29.9999999999999, -160.00000000000009, 0.0, 0.7071067811865475, 0.7071067811865475, 200.00000000000003, 162.64508449690112, 224.1294930185934],
|
|
6: ["CONE2D", 100.0, 262.09898500769475, 72.09898500769472, 0.0, 0.7071067811865475, 0.7071067811865475, 145.2937445981814, 120.13428858458612, 150.95673608157182],
|
|
12: ["CONE2D", 100.0, 262.8999708414969, 72.8999708414969, 0.0, 0.7071067811865475, 0.7071067811865475, 145.10495042660943, 117.46838914559419, 165.8193676860916]
|
|
}
|
|
partitionConeAndAssertShapeInfosEqual(ScaledCone, Prism, ExpectedScaledConeFragmentsShapeInfos, False)
|
|
|
|
# Test on a cone, mirrored relative to a point.
|
|
PntMirroredCone = geompy.MakeMirrorByPoint(OriginalCone, OriginalConeAxisAuxPnt)
|
|
PntMirroredCone.SetName('PntMirroredCone')
|
|
ExpectedPntMirroredConeFragmentsShapeInfos = {
|
|
2: ["CONE2D", 100.0, 229.8712015945071, 39.87120159450711, -0.0, -0.7071067811865475, -0.7071067811865475, 76.39941588513841, 51.25530645152799, 150.8646566016625],
|
|
7: ["CONE2D", 100.0, 330.0, 140.0, -0.0, -0.7071067811865475, -0.7071067811865475, 100.0, 71.73019727352477, 169.61881635885143],
|
|
10: ["CONE2D", 100.0, 249.15532313133338, 59.15532313133339, -0.0, -0.7071067811865475, -0.7071067811865475, 80.9447269211102, 51.428754043115056, 177.09583726797095]
|
|
}
|
|
partitionConeAndAssertShapeInfosEqual(PntMirroredCone, Prism, ExpectedPntMirroredConeFragmentsShapeInfos, False)
|
|
|
|
if salome.sg.hasDesktop():
|
|
salome.sg.updateObjBrowser()
|