946 lines
38 KiB
Python

# -*- coding: utf-8 -*-
#
# Copyright (C) 2007-2009 EDF R&D
#
# This file is part of PAL_SRC.
#
# PAL_SRC is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# PAL_SRC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with PAL_SRC; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#
"""
This module defines the different structural element parts. It is used to
build the geometric shapes of the structural elements. It should not be used
directly in the general case. Structural elements should be created by the
class :class:`~salome.geom.structelem.StructuralElementManager`.
"""
import salome
from salome.kernel.logger import Logger
from salome.kernel import termcolor
logger = Logger("salome.geom.structelem.parts", color = termcolor.RED)
from salome.geom.geomtools import getGeompy
import orientation
# Filling for the beams
FULL = "FULL"
HOLLOW = "HOLLOW"
# Minimum dimension for the shapes to extrude
MIN_DIM_FOR_EXTRUDED_SHAPE = 2e-4
MIN_LENGTH_FOR_EXTRUSION = 1e-4
MIN_THICKNESS = 1e-5
class InvalidParameterError(Exception):
"""
This exception is raised when an invalid parameter is used to build a
structural element part.
"""
def __init__(self, groupName, expression, minValue, value):
self.groupName = groupName
self.expression = expression
self.minValue = minValue
self.value = value
def __str__(self):
return "%s < %g (%s = %g in %s)" % (self.expression, self.minValue,
self.expression, self.value,
self.groupName)
class SubShapeID:
"""
This class enables the use of subshapes in sets or as dictionary keys.
It implements __eq__ and __hash__ methods so that subshapes with the same
CORBA object `mainShape` and the same `id` are considered equal.
"""
def __init__(self, mainShape, id):
self._mainShape = mainShape
self._id = id
def getObj(self, geom):
"""
Return the subshape (GEOM object). `geom` is a pseudo-geompy object
used to find the geometrical object.
"""
return geom.GetSubShape(self._mainShape, [self._id])
def __eq__(self, other):
return self._mainShape._is_equivalent(other._mainShape) and \
self._id == other._id
def __hash__(self):
return self._mainShape._hash(2147483647) ^ self._id
class StructuralElementPart:
"""
This class is the base class for all structural element parts. It should
not be instantiated directly (consider it as an "abstract" class).
:type studyId: integer
:param studyId: the ID of the study in which the part is created.
:type groupName: string
:param groupName: the name of the underlying geometrical primitive in the
study.
:type groupGeomObj: GEOM object
:param groupGeomObj: the underlying geometrical primitive.
:type parameters: dictionary
:param parameters: parameters defining the structural element (see
subclasses for details).
:type name: string
:param name: name to use for the created object in the study.
"""
DEFAULT_NAME = "StructElemPart"
def __init__(self, studyId, groupName, groupGeomObj, parameters,
name = DEFAULT_NAME):
self._parameters = parameters
self.groupName = groupName
self._groupGeomObj = groupGeomObj
self._orientation = None
self._paramUserName = {}
self.name = name
self.geom = getGeompy(studyId)
self.baseShapesSet = set()
mainShape = self.geom.GetMainShape(groupGeomObj)
listIDs = self.geom.GetObjectIDs(groupGeomObj)
if mainShape is not None and listIDs is not None:
for id in listIDs:
self.baseShapesSet.add(SubShapeID(mainShape, id))
def _getParameter(self, nameList, default = None):
"""
This method finds the value of a parameter in the parameters
dictionary. The argument is a list because some parameters can have
several different names.
"""
if len(nameList) > 0:
paramName = nameList[0]
for name in nameList:
if self._parameters.has_key(name):
self._paramUserName[paramName] = name
return self._parameters[name]
return default
def _getParamUserName(self, paramName):
"""
This method finds the user name for a parameter.
"""
if self._paramUserName.has_key(paramName):
return self._paramUserName[paramName]
else:
return paramName
def __repr__(self):
reprdict = self.__dict__.copy()
del reprdict["_parameters"]
del reprdict["groupName"]
del reprdict["_groupGeomObj"]
del reprdict["_paramUserName"]
del reprdict["name"]
del reprdict["geom"]
del reprdict["baseShapesSet"]
return '%s("%s", %s)' % (self.__class__.__name__, self.groupName,
reprdict)
def addOrientation(self, orientParams):
"""
Add orientation information to the structural element part. See class
:class:`~salome.geom.structelem.orientation.Orientation1D` for the description
of the parameters.
"""
self._orientation.addParams(orientParams)
def _checkSize(self, value, mindim, expression):
"""
This method checks that some parameters or some expressions involving
those parameters are greater than a minimum value.
"""
if value < mindim:
raise InvalidParameterError(self.groupName, expression,
mindim, value)
def build(self):
"""
Build the geometric shapes and the markers corresponding to the
structural element part in the study `studyId`.
"""
shape = self._buildPart()
markers = self._buildMarkers()
shape.SetColor(self._groupGeomObj.GetColor())
for marker in markers:
marker.SetColor(self._groupGeomObj.GetColor())
return (shape, markers)
def _buildPart(self):
"""
This abstract method must be implemented in subclasses and should
create the geometrical shape(s) of the structural element part.
"""
raise NotImplementedError("Method _buildPart not implemented in class"
" %s (it must be implemented in "
"StructuralElementPart subclasses)." %
self.__class__.__name__)
def _buildMarkers(self):
"""
This abstract method must be implemented in subclasses and should
create the markers defining the orientation of the structural element
part.
"""
raise NotImplementedError("Method _buildMarker not implemented in "
"class %s (it must be implemented in "
"StructuralElementPart subclasses)." %
self.__class__.__name__)
def _getSubShapes(self, minDim = MIN_LENGTH_FOR_EXTRUSION):
"""
Find and return the base subshapes in the structural element part.
"""
subShapes = []
for subShapeID in self.baseShapesSet:
subShape = subShapeID.getObj(self.geom)
length = self.geom.BasicProperties(subShape)[0]
if length < minDim:
logger.warning("Length too short (%s - ID %s, length = %g), "
"subshape will not be used in structural "
"element" % (self.groupName, subShapeID._id,
length))
else:
subShapes.append(subShape)
return subShapes
class Beam(StructuralElementPart):
"""
This class is an "abstract" class for all 1D structural element parts. It
should not be instantiated directly. See class
:class:`StructuralElementPart` for the description of the parameters.
"""
DEFAULT_NAME = "Beam"
def __init__(self, studyId, groupName, groupGeomObj, parameters,
name = DEFAULT_NAME):
StructuralElementPart.__init__(self, studyId, groupName, groupGeomObj,
parameters, name)
self._orientation = orientation.Orientation1D()
def _isReversed(self, path):
"""
This method checks if a 1D object is "reversed", i.e. if its
orientation is different than the orientation of the underlying OCC
object.
"""
p1 = self.geom.MakeVertexOnCurve(path, 0.0)
p2 = self.geom.GetFirstVertex(path)
dist = self.geom.MinDistance(p1, p2)
return dist != 0.0
def _getVertexAndTangentOnOrientedWire(self, path, param):
"""
Get a vertex and the corresponding tangent on a wire by parameter.
This method takes into account the "real" orientation of the wire
(i.e. the orientation of the underlying OCC object).
"""
if self._isReversed(path):
vertex = self.geom.MakeVertexOnCurve(path, 1.0 - param)
invtangent = self.geom.MakeTangentOnCurve(path, 1.0 - param)
tanpoint = self.geom.MakeTranslationVectorDistance(vertex,
invtangent,
-1.0)
tangent = self.geom.MakeVector(vertex, tanpoint)
else:
vertex = self.geom.MakeVertexOnCurve(path, param)
tangent = self.geom.MakeTangentOnCurve(path, param)
return (vertex, tangent)
def _makeSolidPipeFromWires(self, wire1, wire2, point1, point2, path):
"""
Create a solid by the extrusion of section `wire1` to section `wire2`
along `path`.
"""
face1 = self.geom.MakeFace(wire1, True)
face2 = self.geom.MakeFace(wire2, True)
shell = self.geom.MakePipeWithDifferentSections([wire1, wire2],
[point1, point2],
path, False, False)
closedShell = self.geom.MakeShell([face1, face2, shell])
solid = self.geom.MakeSolid([closedShell])
return solid
def _buildPart(self):
"""
Build the structural element part.
"""
# Get all the subshapes in the group (normally only edges and wires)
paths = self._getSubShapes()
listPipes = []
withContact = False
withCorrection = False
for path in paths:
# Build the sections (rectangular or circular) at each end of the
# beam
(fPoint, fNormal) = self._getVertexAndTangentOnOrientedWire(path,
0.0)
(lPoint, lNormal) = self._getVertexAndTangentOnOrientedWire(path,
1.0)
(outerWire1, innerWire1, outerWire2, innerWire2) = \
self._makeSectionWires(fPoint, fNormal, lPoint, lNormal)
# Create the resulting solid
outerSolid = self._makeSolidPipeFromWires(outerWire1, outerWire2,
fPoint, lPoint, path)
if self.filling == HOLLOW:
innerSolid = self._makeSolidPipeFromWires(innerWire1,
innerWire2, fPoint,
lPoint, path)
resultSolid = self.geom.MakeCut(outerSolid, innerSolid)
listPipes.append(resultSolid)
else:
listPipes.append(outerSolid)
if len(listPipes) == 0:
return None
elif len(listPipes) == 1:
return listPipes[0]
else:
return self.geom.MakeCompound(listPipes)
def _buildMarkers(self):
"""
Build the markers defining the orientation of the structural element
part.
"""
param = 0.5
paths = self._getSubShapes()
listMarkers = []
for path in paths:
(center, vecX) = self._getVertexAndTangentOnOrientedWire(path,
param)
marker = self._orientation.buildMarker(self.geom, center, vecX)
listMarkers.append(marker)
return listMarkers
class GeneralBeam(Beam):
"""
This class defines a beam with a generic section. It is represented only
as the underlying wire. See class :class:`StructuralElementPart` for the
description of the parameters.
"""
def __init__(self, studyId, groupName, groupGeomObj, parameters,
name = Beam.DEFAULT_NAME):
Beam.__init__(self, studyId, groupName, groupGeomObj, parameters,
name)
logger.debug(repr(self))
def _buildPart(self):
"""
Create a copy of the underlying wire.
"""
edges = self._getSubShapes(1e-7)
wire = None
if len(edges) > 0:
wire = self.geom.MakeWire(edges)
return wire
class CircularBeam(Beam):
"""
This class defines a beam with a circular section. It can be full or
hollow, and its radius and thickness can vary from one end of the beam to
the other. The valid parameters for circular beams are:
* "R1" or "R": radius at the first end of the beam.
* "R2" or "R": radius at the other end of the beam.
* "EP1" or "EP" (optional): thickness at the first end of the beam.
If not specified or equal to 0, the beam is considered full.
* "EP2" or "EP" (optional): thickness at the other end of the beam.
If not specified or equal to 0, the beam is considered full.
See class :class:`StructuralElementPart` for the description of the
other parameters.
"""
def __init__(self, studyId, groupName, groupGeomObj, parameters,
name = Beam.DEFAULT_NAME):
Beam.__init__(self, studyId, groupName, groupGeomObj, parameters,
name)
self.R1 = self._getParameter(["R1", "R"])
self.R2 = self._getParameter(["R2", "R"])
self.EP1 = self._getParameter(["EP1", "EP"])
self.EP2 = self._getParameter(["EP2", "EP"])
if self.EP1 is None or self.EP2 is None or \
self.EP1 == 0 or self.EP2 == 0:
self.filling = FULL
else:
self.filling = HOLLOW
logger.debug(repr(self))
# Check parameters
self._checkSize(self.R1, MIN_DIM_FOR_EXTRUDED_SHAPE / 2.0,
self._getParamUserName("R1"))
self._checkSize(self.R2, MIN_DIM_FOR_EXTRUDED_SHAPE / 2.0,
self._getParamUserName("R2"))
if self.filling == HOLLOW:
self._checkSize(self.EP1, MIN_THICKNESS,
self._getParamUserName("EP1"))
self._checkSize(self.EP2, MIN_THICKNESS,
self._getParamUserName("EP2"))
self._checkSize(self.R1 - self.EP1,
MIN_DIM_FOR_EXTRUDED_SHAPE / 2.0,
"%s - %s" % (self._getParamUserName("R1"),
self._getParamUserName("EP1")))
self._checkSize(self.R2 - self.EP2,
MIN_DIM_FOR_EXTRUDED_SHAPE / 2.0,
"%s - %s" % (self._getParamUserName("R2"),
self._getParamUserName("EP2")))
def _makeSectionWires(self, fPoint, fNormal, lPoint, lNormal):
"""
Create the circular sections used to build the pipe.
"""
outerCircle1 = self.geom.MakeCircle(fPoint, fNormal, self.R1)
outerCircle2 = self.geom.MakeCircle(lPoint, lNormal, self.R2)
if self.filling == HOLLOW:
innerCircle1 = self.geom.MakeCircle(fPoint, fNormal,
self.R1 - self.EP1)
innerCircle2 = self.geom.MakeCircle(lPoint, lNormal,
self.R2 - self.EP2)
else:
innerCircle1 = None
innerCircle2 = None
return (outerCircle1, innerCircle1, outerCircle2, innerCircle2)
class RectangularBeam(Beam):
"""
This class defines a beam with a rectangular section. It can be full or
hollow, and its dimensions can vary from one end of the beam to the other.
The valid parameters for rectangular beams are:
* "HY1", "HY", "H1" or "H": width at the first end of the beam.
* "HZ1", "HZ", "H1" or "H": height at the first end of the beam.
* "HY2", "HY", "H2" or "H": width at the other end of the beam.
* "HZ2", "HZ", "H2" or "H": height at the other end of the beam.
* "EPY1", "EPY", "EP1" or "EP" (optional): thickness in the width
direction at the first end of the beam. If not specified or equal to 0,
the beam is considered full.
* "EPZ1", "EPZ", "EP1" or "EP" (optional): thickness in the height
direction at the first end of the beam. If not specified or equal to 0,
the beam is considered full.
* "EPY2", "EPY", "EP2" or "EP" (optional): thickness in the width
direction at the other end of the beam. If not specified or equal to 0,
the beam is considered full.
* "EPZ2", "EPZ", "EP2" or "EP" (optional): thickness in the height
direction at the other end of the beam. If not specified or equal to 0,
the beam is considered full.
See class :class:`StructuralElementPart` for the description of the
other parameters.
"""
def __init__(self, studyId, groupName, groupGeomObj, parameters,
name = Beam.DEFAULT_NAME):
Beam.__init__(self, studyId, groupName, groupGeomObj, parameters,
name)
self.HY1 = self._getParameter(["HY1", "HY", "H1", "H"])
self.HZ1 = self._getParameter(["HZ1", "HZ", "H1", "H"])
self.HY2 = self._getParameter(["HY2", "HY", "H2", "H"])
self.HZ2 = self._getParameter(["HZ2", "HZ", "H2", "H"])
self.EPY1 = self._getParameter(["EPY1", "EPY", "EP1", "EP"])
self.EPZ1 = self._getParameter(["EPZ1", "EPZ", "EP1", "EP"])
self.EPY2 = self._getParameter(["EPY2", "EPY", "EP2", "EP"])
self.EPZ2 = self._getParameter(["EPZ2", "EPZ", "EP2", "EP"])
if self.EPY1 is None or self.EPZ1 is None or \
self.EPY2 is None or self.EPZ2 is None or \
self.EPY1 == 0 or self.EPZ1 == 0 or \
self.EPY2 == 0 or self.EPZ2 == 0:
self.filling = FULL
else:
self.filling = HOLLOW
logger.debug(repr(self))
# Check parameters
self._checkSize(self.HY1, MIN_DIM_FOR_EXTRUDED_SHAPE,
self._getParamUserName("HY1"))
self._checkSize(self.HZ1, MIN_DIM_FOR_EXTRUDED_SHAPE,
self._getParamUserName("HZ1"))
self._checkSize(self.HY2, MIN_DIM_FOR_EXTRUDED_SHAPE,
self._getParamUserName("HY2"))
self._checkSize(self.HZ2, MIN_DIM_FOR_EXTRUDED_SHAPE,
self._getParamUserName("HZ2"))
if self.filling == HOLLOW:
self._checkSize(self.EPY1, MIN_THICKNESS,
self._getParamUserName("EPY1"))
self._checkSize(self.EPZ1, MIN_THICKNESS,
self._getParamUserName("EPZ1"))
self._checkSize(self.EPY2, MIN_THICKNESS,
self._getParamUserName("EPY2"))
self._checkSize(self.EPZ2, MIN_THICKNESS,
self._getParamUserName("EPZ2"))
self._checkSize(self.HY1 - 2 * self.EPY1,
MIN_DIM_FOR_EXTRUDED_SHAPE,
"%s - 2 * %s" % (self._getParamUserName("HY1"),
self._getParamUserName("EPY1")))
self._checkSize(self.HZ1 - 2 * self.EPZ1,
MIN_DIM_FOR_EXTRUDED_SHAPE,
"%s - 2 * %s" % (self._getParamUserName("HZ1"),
self._getParamUserName("EPZ1")))
self._checkSize(self.HY2 - 2 * self.EPY2,
MIN_DIM_FOR_EXTRUDED_SHAPE,
"%s - 2 * %s" % (self._getParamUserName("HY2"),
self._getParamUserName("EPY2")))
self._checkSize(self.HZ2 - 2 * self.EPZ2,
MIN_DIM_FOR_EXTRUDED_SHAPE,
"%s - 2 * %s" % (self._getParamUserName("HZ2"),
self._getParamUserName("EPZ2")))
def _makeRectangle(self, HY, HZ, planeSect):
"""
Create a rectangle in the specified plane.
"""
halfHY = HY / 2.0
halfHZ = HZ / 2.0
sketchStr = "Sketcher:F %g" % (-halfHZ) + " %g" % (-halfHY) + ":"
sketchStr += "TT %g" % (halfHZ) + " %g" % (-halfHY) + ":"
sketchStr += "TT %g" % (halfHZ) + " %g" % (halfHY) + ":"
sketchStr += "TT %g" % (-halfHZ) + " %g" % (halfHY) + ":WW"
logger.debug('Drawing rectangle: "%s"' % sketchStr)
sketch = self.geom.MakeSketcherOnPlane(sketchStr, planeSect)
return sketch
def _makeSectionWires(self, fPoint, fNormal, lPoint, lNormal):
"""
Create the rectangular sections used to build the pipe.
"""
planeSect1 = self.geom.MakePlane(fPoint, fNormal, 1.0)
outerRect1 = self._makeRectangle(self.HY1, self.HZ1, planeSect1)
planeSect2 = self.geom.MakePlane(lPoint, lNormal, 1.0)
outerRect2 = self._makeRectangle(self.HY2, self.HZ2, planeSect2)
if self.filling == HOLLOW:
innerRect1 = self._makeRectangle(self.HY1 - 2 * self.EPY1,
self.HZ1 - 2 * self.EPZ1,
planeSect1)
innerRect2 = self._makeRectangle(self.HY2 - 2 * self.EPY2,
self.HZ2 - 2 * self.EPZ2,
planeSect2)
else:
innerRect1 = None
innerRect2 = None
return (outerRect1, innerRect1, outerRect2, innerRect2)
class StructuralElementPart2D(StructuralElementPart):
"""
This class is an "abstract" class for all 2D structural element parts. It
should not be instantiated directly. See class
:class:`StructuralElementPart` for the description of the parameters.
"""
DEFAULT_NAME = "StructuralElementPart2D"
def __init__(self, studyId, groupName, groupGeomObj, parameters,
name = DEFAULT_NAME):
StructuralElementPart.__init__(self, studyId, groupName, groupGeomObj,
parameters, name)
self._orientation = orientation.Orientation2D(
self._getParameter(["angleAlpha"]),
self._getParameter(["angleBeta"]),
self._getParameter(["Vecteur"]))
self.offset = self._getParameter(["Excentre"], 0.0)
def _makeFaceOffset(self, face, offset, epsilon = 1e-6):
"""
Create a copy of a face at a given offset.
"""
if abs(offset) < epsilon:
return self.geom.MakeCopy(face)
else:
offsetObj = self.geom.MakeOffset(face, offset)
# We have to explode the resulting object into faces because it is
# created as a polyhedron and not as a single face
faces = self.geom.SubShapeAll(offsetObj,
self.geom.ShapeType["FACE"])
return faces[0]
def _buildMarkersWithOffset(self, offset):
"""
Build the markers for the structural element part with a given offset
from the base face.
"""
uParam = 0.5
vParam = 0.5
listMarkers = []
subShapes = self._getSubShapes()
for subShape in subShapes:
faces = self.geom.SubShapeAll(subShape,
self.geom.ShapeType["FACE"])
for face in faces:
offsetFace = self._makeFaceOffset(face, offset)
# get tangent plane on surface by parameters
center = self.geom.MakeVertexOnSurface(offsetFace,
uParam, vParam)
tangPlane = self.geom.MakeTangentPlaneOnFace(offsetFace,
uParam, vParam,
1.0)
normal = self.geom.GetNormal(tangPlane)
marker = self._orientation.buildMarker(self.geom,
center, normal)
listMarkers.append(marker)
return listMarkers
class ThickShell(StructuralElementPart2D):
"""
This class defines a shell with a given thickness. It can be shifted from
the base face. The valid parameters for thick shells are:
* "Epais": thickness of the shell.
* "Excentre": offset of the shell from the base face.
* "angleAlpha": angle used to build the markers (see class
:class:`~salome.geom.structelem.orientation.Orientation2D`)
* "angleBeta": angle used to build the markers (see class
:class:`~salome.geom.structelem.orientation.Orientation2D`)
* "Vecteur": vector used instead of the angles to build the markers (see
class :class:`~salome.geom.structelem.orientation.Orientation2D`)
See class :class:`StructuralElementPart` for the description of the
other parameters.
"""
DEFAULT_NAME = "ThickShell"
def __init__(self, studyId, groupName, groupGeomObj, parameters,
name = DEFAULT_NAME):
StructuralElementPart2D.__init__(self, studyId, groupName,
groupGeomObj, parameters, name)
self.thickness = self._getParameter(["Epais"])
logger.debug(repr(self))
def _buildPart(self):
"""
Create the geometrical shapes corresponding to the thick shell.
"""
subShapes = self._getSubShapes()
listSolids = []
for subShape in subShapes:
faces = self.geom.SubShapeAll(subShape,
self.geom.ShapeType["FACE"])
for face in faces:
shape = self._buildThickShellForFace(face)
listSolids.append(shape)
if len(listSolids) == 0:
return None
elif len(listSolids) == 1:
return listSolids[0]
else:
return self.geom.MakeCompound(listSolids)
def _buildThickShellForFace(self, face):
"""
Create the geometrical shapes corresponding to the thick shell for a
given face.
"""
epsilon = 1e-6
if self.thickness < 2 * epsilon:
return self._makeFaceOffset(face, self.offset, epsilon)
upperOffset = self.offset + self.thickness / 2.0
lowerOffset = self.offset - self.thickness / 2.0
ruledMode = True
modeSolid = False
upperFace = self._makeFaceOffset(face, upperOffset, epsilon)
lowerFace = self._makeFaceOffset(face, lowerOffset, epsilon)
listShapes = [upperFace, lowerFace]
upperWires = self.geom.SubShapeAll(upperFace,
self.geom.ShapeType["WIRE"])
lowerWires = self.geom.SubShapeAll(lowerFace,
self.geom.ShapeType["WIRE"])
if self.geom.KindOfShape(face)[0] == self.geom.kind.CYLINDER2D:
# if the face is a cylinder, we remove the extra side edge
upperWires = self._removeCylinderExtraEdge(upperWires)
lowerWires = self._removeCylinderExtraEdge(lowerWires)
for i in range(len(upperWires)):
resShape = self.geom.MakeThruSections([upperWires[i],
lowerWires[i]],
modeSolid, epsilon,
ruledMode)
listShapes.append(resShape)
resultShell = self.geom.MakeShell(listShapes)
resultSolid = self.geom.MakeSolid([resultShell])
return resultSolid
def _removeCylinderExtraEdge(self, wires):
"""
Remove the side edge in a cylinder.
"""
result = []
for wire in wires:
edges = self.geom.SubShapeAll(wire, self.geom.ShapeType["EDGE"])
for edge in edges:
if self.geom.KindOfShape(edge)[0] == self.geom.kind.CIRCLE:
result.append(edge)
return result
def _buildMarkers(self):
"""
Build the markers defining the orientation of the thick shell.
"""
return self._buildMarkersWithOffset(self.offset +
self.thickness / 2.0)
class Grid(StructuralElementPart2D):
"""
This class defines a grid. A grid is represented by a 2D face patterned
with small lines in the main direction of the grid frame. The valid
parameters for grids are:
* "Excentre": offset of the grid from the base face.
* "angleAlpha": angle used to build the markers (see class
:class:`~salome.geom.structelem.orientation.Orientation2D`)
* "angleBeta": angle used to build the markers (see class
:class:`~salome.geom.structelem.orientation.Orientation2D`)
* "Vecteur": vector used instead of the angles to build the markers (see
class :class:`~salome.geom.structelem.orientation.Orientation2D`)
* "origAxeX": X coordinate of the origin of the axis used to determine the
orientation of the frame in the case of a cylindrical grid.
* "origAxeY": Y coordinate of the origin of the axis used to determine the
orientation of the frame in the case of a cylindrical grid.
* "origAxeZ": Z coordinate of the origin of the axis used to determine the
orientation of the frame in the case of a cylindrical grid.
* "axeX": X coordinate of the axis used to determine the orientation of
the frame in the case of a cylindrical grid.
* "axeY": Y coordinate of the axis used to determine the orientation of
the frame in the case of a cylindrical grid.
* "axeZ": Z coordinate of the axis used to determine the orientation of
the frame in the case of a cylindrical grid.
See class :class:`StructuralElementPart` for the description of the
other parameters.
"""
DEFAULT_NAME = "Grid"
def __init__(self, studyId, groupName, groupGeomObj, parameters,
name = DEFAULT_NAME):
StructuralElementPart2D.__init__(self, studyId, groupName,
groupGeomObj, parameters, name)
self.xr = self._getParameter(["origAxeX"])
self.yr = self._getParameter(["origAxeY"])
self.zr = self._getParameter(["origAxeZ"])
self.vx = self._getParameter(["axeX"])
self.vy = self._getParameter(["axeY"])
self.vz = self._getParameter(["axeZ"])
logger.debug(repr(self))
def _buildPart(self):
"""
Create the geometrical shapes representing the grid.
"""
subShapes = self._getSubShapes()
listGridShapes = []
for subShape in subShapes:
faces = self.geom.SubShapeAll(subShape,
self.geom.ShapeType["FACE"])
for face in faces:
if self.geom.KindOfShape(face)[0] == \
self.geom.kind.CYLINDER2D and \
self.xr is not None and self.yr is not None and \
self.zr is not None and self.vx is not None and \
self.vy is not None and self.vz is not None:
shape = self._buildGridForCylinderFace(face)
else:
shape = self._buildGridForNormalFace(face)
listGridShapes.append(shape)
if len(listGridShapes) == 0:
return None
elif len(listGridShapes) == 1:
return listGridShapes[0]
else:
return self.geom.MakeCompound(listGridShapes)
def _buildGridForNormalFace(self, face):
"""
Create the geometrical shapes representing the grid for a given
non-cylindrical face.
"""
baseFace = self._makeFaceOffset(face, self.offset)
gridList = [baseFace]
# Compute display length for grid elements
p1 = self.geom.MakeVertexOnSurface(baseFace, 0.0, 0.0)
p2 = self.geom.MakeVertexOnSurface(baseFace, 0.1, 0.1)
length = self.geom.MinDistance(p1, p2) / 2.0
for u in range(1, 10):
uParam = u * 0.1
for v in range(1, 10):
vParam = v * 0.1
# get tangent plane on surface by parameters
center = self.geom.MakeVertexOnSurface(baseFace,
uParam, vParam)
tangPlane = self.geom.MakeTangentPlaneOnFace(baseFace, uParam,
vParam, 1.0)
# use the marker to get the orientation of the frame
normal = self.geom.GetNormal(tangPlane)
marker = self._orientation.buildMarker(self.geom, center,
normal, False)
[Ox,Oy,Oz, Zx,Zy,Zz, Xx,Xy,Xz] = self.geom.GetPosition(marker)
xPoint = self.geom.MakeTranslation(center, Xx * length,
Xy * length, Xz * length)
gridLine = self.geom.MakeLineTwoPnt(center, xPoint)
gridList.append(gridLine)
grid = self.geom.MakeCompound(gridList)
return grid
def _buildGridForCylinderFace(self, face):
"""
Create the geometrical shapes representing the grid for a given
cylindrical face.
"""
baseFace = self._makeFaceOffset(face, self.offset)
gridList = [baseFace]
# Compute display length for grid elements
p1 = self.geom.MakeVertexOnSurface(baseFace, 0.0, 0.0)
p2 = self.geom.MakeVertexOnSurface(baseFace, 0.1, 0.1)
length = self.geom.MinDistance(p1, p2) / 2.0
# Create reference vector V
origPoint = self.geom.MakeVertex(self.xr, self.yr, self.zr)
vPoint = self.geom.MakeTranslation(origPoint,
self.vx, self.vy, self.vz)
refVec = self.geom.MakeVector(origPoint, vPoint)
for u in range(10):
uParam = u * 0.1
for v in range(1, 10):
vParam = v * 0.1
# Compute the local orientation of the frame
center = self.geom.MakeVertexOnSurface(baseFace,
uParam, vParam)
locPlaneYZ = self.geom.MakePlaneThreePnt(origPoint, center,
vPoint, 1.0)
locOrient = self.geom.GetNormal(locPlaneYZ)
xPoint = self.geom.MakeTranslationVectorDistance(center,
locOrient,
length)
gridLine = self.geom.MakeLineTwoPnt(center, xPoint)
gridList.append(gridLine)
grid = self.geom.MakeCompound(gridList)
return grid
def _buildMarkers(self):
"""
Create the markers defining the orientation of the grid.
"""
return self._buildMarkersWithOffset(self.offset)
def VisuPoutreGenerale(studyId, groupName, groupGeomObj, parameters,
name = "POUTRE"):
"""
Alias for class :class:`GeneralBeam`.
"""
return GeneralBeam(studyId, groupName, groupGeomObj, parameters, name)
def VisuPoutreCercle(studyId, groupName, groupGeomObj, parameters,
name = "POUTRE"):
"""
Alias for class :class:`CircularBeam`.
"""
return CircularBeam(studyId, groupName, groupGeomObj, parameters, name)
def VisuPoutreRectangle(studyId, groupName, groupGeomObj, parameters,
name = "POUTRE"):
"""
Alias for class :class:`RectangularBeam`.
"""
return RectangularBeam(studyId, groupName, groupGeomObj, parameters, name)
def VisuBarreGenerale(studyId, groupName, groupGeomObj, parameters,
name = "BARRE"):
"""
Alias for class :class:`GeneralBeam`.
"""
return GeneralBeam(studyId, groupName, groupGeomObj, parameters, name)
def VisuBarreRectangle(studyId, groupName, groupGeomObj, parameters,
name = "BARRE"):
"""
Alias for class :class:`RectangularBeam`.
"""
return RectangularBeam(studyId, groupName, groupGeomObj, parameters, name)
def VisuBarreCercle(studyId, groupName, groupGeomObj, parameters,
name = "BARRE"):
"""
Alias for class :class:`CircularBeam`.
"""
return CircularBeam(studyId, groupName, groupGeomObj, parameters, name)
def VisuCable(studyId, groupName, groupGeomObj, parameters, name = "CABLE"):
"""
Alias for class :class:`CircularBeam`.
"""
return CircularBeam(studyId, groupName, groupGeomObj, parameters, name)
def VisuCoque(studyId, groupName, groupGeomObj, parameters, name = "COQUE"):
"""
Alias for class :class:`ThickShell`.
"""
return ThickShell(studyId, groupName, groupGeomObj, parameters, name)
def VisuGrille(studyId, groupName, groupGeomObj, parameters, name = "GRILLE"):
"""
Alias for class :class:`Grid`.
"""
return Grid(studyId, groupName, groupGeomObj, parameters, name)