2019-10-24 21:22:25 +05:00
|
|
|
import json
|
|
|
|
import sys
|
|
|
|
import subprocess
|
|
|
|
import statistics
|
|
|
|
|
|
|
|
def readData(a, files):
|
|
|
|
amin=[]
|
|
|
|
amax=[]
|
|
|
|
amin1=[]
|
|
|
|
amax1=[]
|
|
|
|
bad=[]
|
|
|
|
ne1d=[]
|
|
|
|
ne2d=[]
|
|
|
|
ne3d=[]
|
|
|
|
for f in files:
|
|
|
|
for t in a[f]:
|
|
|
|
if t['ne1d']>0:
|
|
|
|
ne1d.append(t['ne1d'])
|
|
|
|
if t['ne2d']>0:
|
|
|
|
ne2d.append(t['ne2d'])
|
|
|
|
if t['ne3d']>0:
|
|
|
|
ne3d.append(t['ne3d'])
|
|
|
|
if t['total_badness']>0.0:
|
|
|
|
bad.append(t['total_badness'])
|
|
|
|
if 'angles_tet' in t:
|
|
|
|
amin.append(t['angles_tet'][0])
|
|
|
|
amax.append(t['angles_tet'][1])
|
|
|
|
if 'angles_trig' in t:
|
|
|
|
amin1.append(t['angles_trig'][0])
|
|
|
|
amax1.append(t['angles_trig'][1])
|
|
|
|
return {
|
|
|
|
"min tet angle":amin,
|
|
|
|
"max tet angle" : amax,
|
|
|
|
"min trig angle":amin1,
|
|
|
|
"max trig angle" : amax1,
|
|
|
|
"badness" : bad,
|
|
|
|
"#edges" : ne1d,
|
|
|
|
"#trigs" : ne2d,
|
|
|
|
"#tets" : ne3d,
|
|
|
|
}
|
|
|
|
|
|
|
|
import matplotlib.pyplot as plt
|
|
|
|
|
|
|
|
ref = 'master'
|
|
|
|
if len(sys.argv)>1:
|
|
|
|
ref = sys.argv[1]
|
|
|
|
|
|
|
|
res = subprocess.run(['git','show','{}:./results.json'.format(ref)], capture_output=True)
|
|
|
|
s = json.loads(res.stdout.decode())
|
|
|
|
|
|
|
|
if len(sys.argv) > 2:
|
|
|
|
ref2 = sys.argv[2]
|
|
|
|
res = subprocess.run(['git','show','{}:./results.json'.format(ref2)], capture_output=True)
|
|
|
|
s2 = res.stdout.decode()
|
|
|
|
else:
|
|
|
|
ref2 = 'current'
|
|
|
|
s2 = open('results.json','r').read()
|
|
|
|
s2 = json.loads(s2)
|
|
|
|
|
|
|
|
filenames = [f for f in s if f in s2]
|
|
|
|
data = readData(s, filenames)
|
|
|
|
data2 = readData(s2, filenames)
|
|
|
|
|
|
|
|
n = len(data)+1
|
|
|
|
fig,ax = plt.subplots(figsize=(10,7))
|
|
|
|
for i,d in enumerate(['min trig angle','min tet angle','max trig angle','max tet angle']):
|
|
|
|
ax = plt.subplot(2,5,i+1)
|
|
|
|
plt.title(d)
|
|
|
|
ax.set_xticks([1,2])
|
|
|
|
if len(data[d])==0 or len(data2[d])==0:
|
|
|
|
continue
|
|
|
|
|
|
|
|
plt.violinplot([data[d],data2[d]], showmedians=True)
|
|
|
|
med = statistics.median(data[d])
|
|
|
|
plt.hlines(med, 1,2, linestyle='dotted')
|
|
|
|
if d=='badness':
|
|
|
|
ax.set_yscale('log')
|
|
|
|
ax.set_xticklabels([ref, ref2])
|
|
|
|
|
|
|
|
|
|
|
|
for i,d in enumerate(['badness','#edges','#trigs','#tets']):
|
|
|
|
ax = plt.subplot(2,5,6+i)
|
|
|
|
plt.title('difference '+d+' (in %)')
|
|
|
|
# plt.violinplot([(y-x)/x for x,y in zip(data[d],data2[d])], showmedians=True)
|
2019-10-30 17:56:49 +05:00
|
|
|
plt.boxplot([100.0*(y-x)/x for x,y in zip(data[d],data2[d])])
|
2019-10-24 21:22:25 +05:00
|
|
|
plt.hlines(0.0, 0.5,1.5, linestyle='dotted')
|
|
|
|
|
|
|
|
|
|
|
|
# plt.savefig('comparison.png', dpi=100)
|
|
|
|
plt.show()
|
|
|
|
|