mirror of
https://github.com/NGSolve/netgen.git
synced 2024-11-11 16:49:16 +05:00
174 lines
3.3 KiB
C++
174 lines
3.3 KiB
C++
|
#include <mystdlib.h>
|
||
|
|
||
|
#include <myadt.hpp>
|
||
|
#include <gprim.hpp>
|
||
|
#include <linalg.hpp>
|
||
|
|
||
|
namespace netgen
|
||
|
{
|
||
|
|
||
|
Transformation3d :: Transformation3d ()
|
||
|
{
|
||
|
int i, j;
|
||
|
for (i = 0; i < 3; i++)
|
||
|
{
|
||
|
offset[i] = 0;
|
||
|
for (j = 0; j < 3; j++)
|
||
|
lin[i][j] = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Transformation3d :: Transformation3d (const Vec3d & translate)
|
||
|
{
|
||
|
int i, j;
|
||
|
for (i = 0; i < 3; i++)
|
||
|
for (j = 0; j < 3; j++)
|
||
|
lin[i][j] = 0;
|
||
|
for (i = 0; i < 3; i++)
|
||
|
{
|
||
|
offset[i] = translate.X(i+1);
|
||
|
lin[i][i] = 1;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
Transformation3d ::
|
||
|
Transformation3d (const Point3d & c, double alpha,
|
||
|
double beta, double gamma)
|
||
|
{
|
||
|
// total = T_c x Rot_0 x T_c^{-1}
|
||
|
// Use Euler angles, see many books from tech mech, e.g.
|
||
|
// Shabana "multibody systems"
|
||
|
|
||
|
Transformation3d tc(c);
|
||
|
Transformation3d tcinv;
|
||
|
tc.CalcInverse (tcinv);
|
||
|
|
||
|
Transformation3d r1, r2, r3, ht, ht2;
|
||
|
r1.SetAxisRotation (3, alpha);
|
||
|
r2.SetAxisRotation (1, beta);
|
||
|
r3.SetAxisRotation (3, gamma);
|
||
|
|
||
|
ht.Combine (tc, r3);
|
||
|
ht2.Combine (ht, r2);
|
||
|
ht.Combine (ht2, r1);
|
||
|
Combine (ht, tcinv);
|
||
|
|
||
|
cout << "Rotation - Transformation:" << (*this) << endl;
|
||
|
// (*testout) << "Rotation - Transformation:" << (*this) << endl;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
Transformation3d :: Transformation3d (const Point3d ** pp)
|
||
|
{
|
||
|
int i, j;
|
||
|
for (i = 1; i <= 3; i++)
|
||
|
{
|
||
|
offset[i-1] = (*pp[0]).X(i);
|
||
|
for (j = 1; j <= 3; j++)
|
||
|
lin[i-1][j-1] = (*pp[j]).X(i) - (*pp[0]).X(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
Transformation3d :: Transformation3d (const Point3d pp[])
|
||
|
{
|
||
|
int i, j;
|
||
|
for (i = 1; i <= 3; i++)
|
||
|
{
|
||
|
offset[i-1] = pp[0].X(i);
|
||
|
for (j = 1; j <= 3; j++)
|
||
|
lin[i-1][j-1] = pp[j].X(i) - pp[0].X(i);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void Transformation3d :: CalcInverse (Transformation3d & inv) const
|
||
|
{
|
||
|
static DenseMatrix a(3), inva(3);
|
||
|
static Vector b(3), sol(3);
|
||
|
int i, j;
|
||
|
|
||
|
for (i = 1; i <= 3; i++)
|
||
|
{
|
||
|
b.Elem(i) = offset[i-1];
|
||
|
for (j = 1; j <= 3; j++)
|
||
|
a.Elem(i, j) = lin[i-1][j-1];
|
||
|
}
|
||
|
|
||
|
::netgen::CalcInverse (a, inva);
|
||
|
inva.Mult (b, sol);
|
||
|
|
||
|
for (i = 1; i <= 3; i++)
|
||
|
{
|
||
|
inv.offset[i-1] = -sol.Get(i);
|
||
|
for (j = 1; j <= 3; j++)
|
||
|
inv.lin[i-1][j-1] = inva.Elem(i, j);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
void Transformation3d::
|
||
|
Combine (const Transformation3d & ta, const Transformation3d & tb)
|
||
|
{
|
||
|
int i, j, k;
|
||
|
|
||
|
// o = o_a+ m_a o_b
|
||
|
// m = m_a m_b
|
||
|
|
||
|
for (i = 0; i <= 2; i++)
|
||
|
{
|
||
|
offset[i] = ta.offset[i];
|
||
|
for (j = 0; j <= 2; j++)
|
||
|
offset[i] += ta.lin[i][j] * tb.offset[j];
|
||
|
}
|
||
|
|
||
|
for (i = 0; i <= 2; i++)
|
||
|
for (j = 0; j <= 2; j++)
|
||
|
{
|
||
|
lin[i][j] = 0;
|
||
|
for (k = 0; k <= 2; k++)
|
||
|
lin[i][j] += ta.lin[i][k] * tb.lin[k][j];
|
||
|
}
|
||
|
}
|
||
|
void Transformation3d :: SetAxisRotation (int dir, double alpha)
|
||
|
{
|
||
|
double co = cos(alpha);
|
||
|
double si = sin(alpha);
|
||
|
dir--;
|
||
|
int pos1 = (dir+1) % 3;
|
||
|
int pos2 = (dir+2) % 3;
|
||
|
|
||
|
int i, j;
|
||
|
for (i = 0; i <= 2; i++)
|
||
|
{
|
||
|
offset[i] = 0;
|
||
|
for (j = 0; j <= 2; j++)
|
||
|
lin[i][j] = 0;
|
||
|
}
|
||
|
|
||
|
lin[dir][dir] = 1;
|
||
|
lin[pos1][pos1] = co;
|
||
|
lin[pos2][pos2] = co;
|
||
|
lin[pos1][pos2] = si;
|
||
|
lin[pos2][pos1] = -si;
|
||
|
}
|
||
|
|
||
|
ostream & operator<< (ostream & ost, Transformation3d & trans)
|
||
|
{
|
||
|
int i, j;
|
||
|
ost << "offset = ";
|
||
|
for (i = 0; i <= 2; i++)
|
||
|
ost << trans.offset[i] << " ";
|
||
|
ost << endl << "linear = " << endl;
|
||
|
for (i = 0; i <= 2; i++)
|
||
|
{
|
||
|
for (j = 0; j <= 2; j++)
|
||
|
ost << trans.lin[i][j] << " ";
|
||
|
ost << endl;
|
||
|
}
|
||
|
return ost;
|
||
|
}
|
||
|
}
|