1
0
mirror of https://github.com/NGSolve/netgen.git synced 2025-01-15 23:40:34 +05:00
netgen/libsrc/meshing/fieldlines.cpp

386 lines
8.6 KiB
C++
Raw Normal View History

#include <mystdlib.h>
#include <myadt.hpp>
#include <meshing.hpp>
#include <csg.hpp>
#include <stlgeom.hpp>
#include "fieldlines.hpp"
namespace netgen
{
RKStepper :: ~RKStepper()
{
delete a;
}
RKStepper :: RKStepper(int type) : a(NULL), tolerance(1e100)
{
notrestarted = 0;
if (type == 0) // explicit Euler
{
c.SetSize(1); c[0] = 0;
b.SetSize(1); b[0] = 1;
steps = order = 1;
}
else if (type == 1) // Euler-Cauchy
{
c.SetSize(2); c[0] = 0; c[1] = 0.5;
b.SetSize(2); b[0] = 0; b[1] = 1;
NgArray<int> size(2);
size[0] = 0; size[1] = 1;
a = new TABLE<double>(size);
a->Set(2,1,0.5); // Set, Get: 1-based!
steps = order = 2;
}
else if (type == 2) // Simpson
{
c.SetSize(3); c[0] = 0; c[1] = 1; c[2] = 0.5;
b.SetSize(3); b[0] = b[1] = 1./6.; b[2] = 2./3.;
NgArray<int> size(3);
size[0] = 0; size[1] = 1; size[2] = 2;
a = new TABLE<double>(size);
a->Set(2,1,1);
a->Set(3,1,0.25); a->Set(3,2,0.25);
steps = order = 3;
}
else if (type == 3) // classical Runge-Kutta
{
c.SetSize(4); c[0] = 0; c[1] = c[2] = 0.5; c[3] = 1;
b.SetSize(4); b[0] = b[3] = 1./6.; b[1] = b[2] = 1./3.;
NgArray<int> size(4);
size[0] = 0; size[1] = 1; size[2] = 2; size[3] = 3;
a = new TABLE<double>(size);
a->Set(2,1,0.5);
a->Set(3,1,0); a->Set(3,2,0.5);
a->Set(4,1,0); a->Set(4,2,0); a->Set(4,3,1);
steps = order = 4;
}
K.SetSize(steps);
}
void RKStepper :: StartNextValCalc(const Point<3> & astartval, const double astartt, const double ah, const bool aadaptive)
{
//cout << "Starting RK-Step with h=" << ah << endl;
stepcount = 0;
h = ah;
startt = astartt;
startval = astartval;
adaptive = aadaptive;
adrun = 0;
}
bool RKStepper :: GetNextData(Point<3> & val, double & t, double & ah)
{
bool finished = false;
if(stepcount <= steps && stepcount>0)
{
t = startt + c[stepcount-1]*h;
val = startval;
for(int i=0; i<stepcount-1; i++)
val += h * a->Get(stepcount,i+1) * K[i];
}
if(stepcount == steps)
{
val = startval;
for(int i=0; i<steps; i++)
val += h * b[i] * K[i];
if(adaptive)
{
if(adrun == 0)
{
stepcount = 0;
h *= 0.5;
adrun = 1;
valh = val;
}
else if (adrun == 1)
{
stepcount = 0;
startval_bak = startval;
startval = val;
startt_bak = startt;
startt += h;//0.5*h;
adrun = 2;
}
else if (adrun == 2)
{
Point<3> valh2 = val;
val = valh2 + 1./(pow(2.,order)-1.) * (valh2 - valh);
auto errvec = val - valh;
double err = errvec.Length();
double fac = 0.7 * pow(tolerance/err,1./(order+1.));
if(fac > 1.3) fac = 1.3;
if(fac < 1 || notrestarted >= 2)
ah = 2.*h * fac;
if(err < tolerance)
{
finished = true;
notrestarted++;
//(*testout) << "finished RK-Step, new h=" << ah << " tolerance " << tolerance << " err " << err << endl;
}
else
{
//ah *= 0.9;
notrestarted = 0;
//(*testout) << "restarting h " << 2.*h << " ah " << ah << " tolerance " << tolerance << " err " << err << endl;
StartNextValCalc(startval_bak,startt_bak, ah, adaptive);
}
}
}
else
{
t = startt + h;
finished = true;
}
}
if(stepcount == 0)
{
t = startt + c[stepcount]*h;
val = startval;
for(int i=0; i<stepcount; i++)
val += h * a->Get(stepcount,i) * K[i];
}
return finished;
}
bool RKStepper :: FeedNextF(const Vec<3> & f)
{
K[stepcount] = f;
stepcount++;
return true;
}
void FieldLineCalc :: GenerateFieldLines(Array<Point<3>> & potential_startpoints, const int numlines)
{
Array<Point<3>> line_points;
Array<double> line_values;
Array<bool> drawelems;
Array<int> dirstart;
pstart.SetSize0();
pend.SetSize0();
values.SetSize0();
double crit = 1.0;
if(randomized)
{
double sum = 0;
double lami[3];
Vec<3> v;
for(int i=0; i<potential_startpoints.Size(); i++)
{
int elnr = mesh.GetElementOfPoint(potential_startpoints[i],lami,true) - 1;
if(elnr == -1)
continue;
mesh.SetPointSearchStartElement(elnr);
func(elnr, lami, v);
sum += v.Length();
}
crit = sum/double(numlines);
}
int calculated = 0;
cout << endl;
for(int i=0; i<potential_startpoints.Size(); i++)
{
cout << "\rFieldline Calculation " << int(100.*i/potential_startpoints.Size()) << "%"; cout.flush();
if(randomized)
SetCriticalValue((double(rand())/RAND_MAX)*crit);
if(calculated >= numlines) break;
Calc(potential_startpoints[i],line_points,line_values,drawelems,dirstart);
bool usable = false;
for(int j=1; j<dirstart.Size(); j++)
for(int k=dirstart[j-1]; k<dirstart[j]-1; k++)
{
if(!drawelems[k] || !drawelems[k+1]) continue;
usable = true;
pstart.Append(line_points[k]);
pend.Append(line_points[k+1]);
values.Append( 0.5*(line_values[k]+line_values[k+1]) );
}
if(usable) calculated++;
}
cout << "\rFieldline Calculation " << 100 << "%" << endl;
}
FieldLineCalc :: FieldLineCalc(const Mesh & amesh, const VectorFunction & afunc,
const double rel_length, const int amaxpoints,
const double rel_thickness, const double rel_tolerance, const int rk_type, const int adirection) :
mesh(amesh), func(afunc), stepper(rk_type)
{
mesh.GetBox (pmin, pmax);
rad = 0.5 * Dist (pmin, pmax);
maxlength = (rel_length > 0) ? rel_length : 0.5;
maxlength *= 2.*rad;
thickness = (rel_thickness > 0) ? rel_thickness : 0.0015;
thickness *= 2.*rad;
double auxtolerance = (rel_tolerance > 0) ? rel_tolerance : 1.5e-3;
auxtolerance *= 2.*rad;
stepper.SetTolerance(auxtolerance);
direction = adirection;
maxpoints = amaxpoints;
if(direction == 0)
{
maxlength *= 0.5;
maxpoints /= 2;
}
critical_value = -1;
randomized = false;
}
2022-04-26 21:44:11 +05:00
FieldLineCalc :: ~FieldLineCalc() {;}
void FieldLineCalc :: Calc(const Point<3> & startpoint, Array<Point<3>> & points, Array<double> & vals, Array<bool> & drawelems, Array<int> & dirstart)
{
Vec<3> v = 0.0;
double startlami[3] = {0.0, 0.0, 0.0};
points.SetSize(0);
vals.SetSize(0);
drawelems.SetSize(0);
dirstart.SetSize(0);
dirstart.Append(0);
int startelnr = mesh.GetElementOfPoint(startpoint,startlami,true) - 1;
(*testout) << "p = " << startpoint << "; elnr = " << startelnr << endl;
if (startelnr == -1)
return;
mesh.SetPointSearchStartElement(startelnr);
Vec<3> startv;
bool startdraw = func(startelnr, startlami, startv);
double startval = startv.Length();
if(critical_value > 0 && fabs(startval) < critical_value)
return;
//cout << "p = " << startpoint << "; elnr = " << startelnr << endl;
for(int dir = 1; dir >= -1; dir -= 2)
{
if(dir*direction < 0) continue;
points.Append(startpoint);
vals.Append(startval);
drawelems.Append(startdraw);
double h = 0.001*rad/startval; // otherwise no nice lines; should be made accessible from outside
v = startv;
if(dir == -1) v *= -1.;
int elnr = startelnr;
double lami[3] = { startlami[0], startlami[1], startlami[2]};
for(double length = 0; length < maxlength; length += h*vals.Last())
{
if(v.Length() < 1e-12*rad)
{
(*testout) << "Current fieldlinecalculation came to a stillstand at " << points.Last() << endl;
break;
}
2023-08-05 15:01:01 +05:00
double dummyt{0};
stepper.StartNextValCalc(points.Last(),dummyt,h,true);
stepper.FeedNextF(v);
bool drawelem = false;
Point<3> newp;
while(!stepper.GetNextData(newp,dummyt,h) && elnr != -1)
{
elnr = mesh.GetElementOfPoint(newp,lami,true) - 1;
if(elnr != -1)
{
mesh.SetPointSearchStartElement(elnr);
drawelem = func(elnr, lami, v);
if(dir == -1) v *= -1.;
stepper.FeedNextF(v);
}
}
if (elnr == -1)
{
//cout << "direction " <<dir << " reached the wall." << endl;
break;
}
points.Append(newp);
vals.Append(v.Length());
drawelems.Append(drawelem);
if(points.Size() % 40 == 0 && points.Size() > 1)
(*testout) << "Points in current fieldline: " << points.Size() << ", current position: " << newp << endl;
if(maxpoints > 0 && points.Size() >= maxpoints)
{
break;
}
//cout << "length " << length << " h " << h << " vals.Last() " << vals.Last() << " maxlength " << maxlength << endl;
}
dirstart.Append(points.Size());
}
}
}