1
0
mirror of https://github.com/NGSolve/netgen.git synced 2025-01-15 23:40:34 +05:00
netgen/libsrc/gprim/geomobjects2.hpp

367 lines
6.6 KiB
C++
Raw Normal View History

2009-01-13 04:40:13 +05:00
#ifndef FILE_OBJECTS
#define FILE_OBJECTS
/* *************************************************************************/
/* File: geomobjects.hpp */
/* Author: Joachim Schoeberl */
/* Date: 20. Jul. 02 */
/* *************************************************************************/
template <typename T>
class VecExpr
{
public:
VecExpr () { ; }
double operator() (int i) const { return static_cast<const T&> (*this) (i); }
};
template <int D> class Vec;
template <int D> class Point;
template <int D>
class Point : public VecExpr<Point<D> >
{
protected:
double x[D];
public:
Point () { ; }
Point (double ax) { x[0] = ax; }
Point (double ax, double ay) { x[0] = ax; x[1] = ay; }
Point (double ax, double ay, double az)
{ x[0] = ax; x[1] = ay; x[2] = az; }
Point (double ax, double ay, double az, double au)
{ x[0] = ax; x[1] = ay; x[2] = az; x[3] = au;}
Point (const Point<D> & p2)
{ for (int i = 0; i < D; i++) x[i] = p2.x[i]; }
explicit Point (const Vec<D> & v)
{ for (int i = 0; i < D; i++) x[i] = v(i); }
template <typename T>
explicit Point (const VecExpr<T> & expr)
{
for (int i = 0; i < D; i++) x[i] = expr(i);
}
Point & operator= (const Point<D> & p2)
{
for (int i = 0; i < D; i++) x[i] = p2.x[i];
return *this;
}
template <typename T>
Point & operator= (const VecExpr<T> & expr)
{
for (int i = 0; i < D; i++) x[i] = expr(i);
return *this;
}
double & operator() (int i) { return x[i]; }
const double & operator() (int i) const { return x[i]; }
operator const double* () const { return x; }
};
template <int D>
class Vec : public VecExpr<Vec<D> >
{
protected:
double x[D];
public:
Vec () { ; }
Vec (double ax) { for (int i = 0; i < D; i++) x[i] = ax; }
Vec (double ax, double ay) { x[0] = ax; x[1] = ay; }
Vec (double ax, double ay, double az)
{ x[0] = ax; x[1] = ay; x[2] = az; }
Vec (double ax, double ay, double az, double au)
{ x[0] = ax; x[1] = ay; x[2] = az; x[3] = au; }
Vec (const Vec<D> & p2)
{ for (int i = 0; i < D; i++) x[i] = p2.x[i]; }
explicit Vec (const Point<D> & p)
{ for (int i = 0; i < D; i++) x[i] = p(i); }
template <typename T>
explicit Vec (const VecExpr<T> & expr)
{
for (int i = 0; i < D; i++) x[i] = expr(i);
}
Vec & operator= (const Vec<D> & p2)
{
for (int i = 0; i < D; i++) x[i] = p2.x[i];
return *this;
}
template <typename T>
Vec & operator= (const VecExpr<T> & expr)
{
for (int i = 0; i < D; i++) x[i] = expr(i);
return *this;
}
Vec & operator= (double s)
{
for (int i = 0; i < D; i++) x[i] = s;
return *this;
}
double & operator() (int i) { return x[i]; }
const double & operator() (int i) const { return x[i]; }
operator const double* () const { return x; }
double Length () const
{
double l = 0;
for (int i = 0; i < D; i++)
l += x[i] * x[i];
return sqrt (l);
}
double Length2 () const
{
double l = 0;
for (int i = 0; i < D; i++)
l += x[i] * x[i];
return l;
}
const Vec<D> & Normalize ()
{
double l = Length();
if (l != 0)
for (int i = 0; i < D; i++)
x[i] /= l;
return *this;
}
Vec<D> GetNormal () const;
};
template <int H, int W=H>
class Mat
{
protected:
double x[H*W];
public:
Mat () { ; }
Mat (const Mat & b)
{ for (int i = 0; i < H*W; i++) x[i] = b.x[i]; }
Mat & operator= (double s)
{
for (int i = 0; i < H*W; i++) x[i] = s;
return *this;
}
Mat & operator= (const Mat & b)
{
for (int i = 0; i < H*W; i++) x[i] = b.x[i];
return *this;
}
double & operator() (int i, int j) { return x[i*W+j]; }
const double & operator() (int i, int j) const { return x[i*W+j]; }
Vec<H> Col (int i) const
{
Vec<H> hv;
for (int j = 0; j < H; j++)
hv(j) = x[j*W+i];
return hv;
}
Vec<W> Row (int i) const
{
Vec<W> hv;
for (int j = 0; j < W; j++)
hv(j) = x[i*W+j];
return hv;
}
void Solve (const Vec<H> & rhs, Vec<W> & sol) const
{
Mat<W,H> inv;
CalcInverse (*this, inv);
sol = inv * rhs;
}
};
template <int D>
class Box
{
protected:
Point<D> pmin, pmax;
public:
Box () { ; }
Box ( const Point<D> & p1, const Point<D> & p2)
{
for (int i = 0; i < D; i++)
{
pmin(i) = min2(p1(i), p2(i));
pmax(i) = max2(p1(i), p2(i));
}
}
const Point<D> & PMin () const { return pmin; }
const Point<D> & PMax () const { return pmax; }
void Set (const Point<D> & p)
{ pmin = pmax = p; }
void Add (const Point<D> & p)
{
for (int i = 0; i < D; i++)
{
if (p(i) < pmin(i)) pmin(i) = p(i);
else if (p(i) > pmax(i)) pmax(i) = p(i);
}
}
Point<D> Center () const
{
Point<D> c;
for (int i = 0; i < D; i++)
c(i) = 0.5 * (pmin(i)+pmax(i));
return c;
}
double Diam () const { return Abs (pmax-pmin); }
Point<D> GetPointNr (int nr) const
{
Point<D> p;
for (int i = 0; i < D; i++)
{
p(i) = (nr & 1) ? pmax(i) : pmin(i);
nr >>= 1;
}
return p;
}
bool Intersect (const Box<D> & box2) const
{
for (int i = 0; i < D; i++)
if (pmin(i) > box2.pmax(i) ||
pmax(i) < box2.pmin(i)) return 0;
return 1;
}
bool IsIn (const Point<D> & p) const
{
for (int i = 0; i < D; i++)
if (p(i) < pmin(i) || p(i) > pmax(i)) return 0;
return 1;
}
void Increase (double dist)
{
for (int i = 0; i < D; i++)
{
pmin(i) -= dist;
pmax(i) += dist;
}
}
};
template <int D>
class BoxSphere : public Box<D>
{
protected:
///
Point<D> c;
///
double diam;
///
double inner;
public:
///
BoxSphere () { };
///
BoxSphere ( Point<D> pmin, Point<D> pmax )
: Box<D> (pmin, pmax)
{
CalcDiamCenter();
}
///
const Point<D> & Center () const { return c; }
///
double Diam () const { return diam; }
///
double Inner () const { return inner; }
///
void GetSubBox (int nr, BoxSphere & sbox) const
{
for (int i = 0; i < D; i++)
{
if (nr & 1)
{
sbox.pmin(i) = c(i);
sbox.pmax(i) = this->pmax(i);
}
else
{
sbox.pmin(i) = this->pmin(i);
sbox.pmax(i) = c(i);
}
sbox.c(i) = 0.5 * (sbox.pmin(i) + sbox.pmax(i));
nr >>= 1;
}
sbox.diam = 0.5 * diam;
sbox.inner = 0.5 * inner;
}
///
void CalcDiamCenter ()
{
c = Box<D>::Center ();
diam = Dist (this->pmin, this->pmax);
inner = this->pmax(0) - this->pmin(0);
for (int i = 1; i < D; i++)
if (this->pmax(i) - this->pmin(i) < inner)
inner = this->pmax(i) - this->pmin(i);
}
};
#endif