netgen/ng/ngpkg.cpp

5122 lines
128 KiB
C++
Raw Normal View History

2009-01-13 04:40:13 +05:00
/*
The interface between the GUI and the netgen library
*/
#include <mystdlib.h>
#ifdef LINUX
#include <fenv.h>
#include <dlfcn.h>
#endif
#include <myadt.hpp>
#include <linalg.hpp>
#include <csg.hpp>
#ifdef OCCGEOMETRY
#include <occgeom.hpp>
#endif
#include <geometry2d.hpp>
#include <stlgeom.hpp>
#include <meshing.hpp>
#include <incvis.hpp>
#include <visual.hpp>
#ifdef SOCKETS
#include "../libsrc/sockets/sockets.hpp"
#include "../libsrc/sockets/socketmanager.hpp"
#endif
#include <parallel.hpp>
2009-01-20 14:08:01 +05:00
// to be sure to include the 'right' togl-version
#include "togl_1_7.h"
2009-01-13 04:40:13 +05:00
extern bool nodisplay;
namespace netgen
{
#include "../libsrc/interface/writeuser.hpp"
#include "demoview.hpp"
}
#ifdef ACIS
#include "ng_acis.hpp"
#endif
#ifdef VIDEOCLIP
#include <jpeglib.h>
extern "C" {
#include <ffmpeg/avcodec.h>
}
#endif
#ifdef NGSOLVE
extern "C" void NGSolve_Exit();
#endif
// extern void * ngsolve_handle;
namespace netgen
{
NetgenOutStream operator<< ( ostream & ost, Imp imp )
{
return ( NetgenOutStream ( &ost, imp ) );
}
NetgenOutStream operator<< ( ostream & ost, Proc proc )
{
return ( NetgenOutStream ( &ost, proc ) );
}
NetgenOutStream operator<< ( ostream & ost, Procs & procs )
{
return ( NetgenOutStream ( &ost, procs ) );
}
// global variable mesh (should not be used in libraries)
AutoPtr<Mesh> mesh;
// geometry: either CSG, or, if an other is non-null,
// then the other
AutoPtr<CSGeometry> geometry (new CSGeometry(""));
STLGeometry * stlgeometry = NULL;
AutoPtr<SplineGeometry2d> geometry2d (0);
#ifdef OCCGEOMETRY
OCCGeometry * occgeometry = NULL;
#endif
Tcl_Interp * tcl_interp;
#ifdef SOCKETS
AutoPtr<ClientSocket> clientsocket;
ServerSocketManager serversocketmanager;
//ARRAY< AutoPtr < ServerInfo > > servers;
ARRAY< ServerInfo* > servers;
AutoPtr<ServerSocketUserNetgen> serversocketusernetgen;
#endif
// OpenGL near and far clipping planes
extern double pnear;
extern double pfar;
// visualization scenes, pointer vs selects which one is drawn:
static VisualScene vscross;
static VisualSceneGeometry vsgeom;
static VisualSceneGeometry2d vsgeom2d;
#ifdef OPENGL
static VisualSceneSTLGeometry vsstlgeom;
extern VisualSceneSTLMeshing vsstlmeshing;
#endif
#ifdef OCCGEOMETRY
static VisualSceneOCCGeometry vsoccgeom;
#endif
#ifdef OPENGL
extern VisualSceneSurfaceMeshing vssurfacemeshing;
#endif
extern VisualSceneMesh vsmesh;
extern VisualSceneMeshDoctor vsmeshdoc;
static VisualSceneSpecPoints vsspecpoints;
VisualSceneSolution vssolution;
#ifdef STEP
static VisualSceneSTEPGeometry vsstepgeom;
#endif
#ifdef MODELLER
VisualScene * vsmodeller = NULL;
#endif
VisualScene *vs = &vscross;
static char * err_needsmesh = (char*) "This operation needs a mesh";
static char * err_needsstlgeometry = (char*) "This operation needs an STL geometry";
static char * err_jobrunning = (char*) "Meshing Job already running";
#ifdef _MSC_VER
// Afx - Threads need different return - value:
static void* (*sfun)(void *);
unsigned int fun2 (void * val)
{
sfun (val);
return 0;
}
void RunParallel ( void* (*fun)(void *), void * in)
{
sfun = fun;
if (mparam.parthread)
AfxBeginThread (fun2, in);
//AfxBeginThread (fun2, NULL);
else
fun (in);
}
#else
// #include <pthread.h>
static pthread_t meshingthread;
void RunParallel ( void * (*fun)(void *), void * in)
{
if (mparam.parthread)
{
pthread_attr_t attr;
pthread_attr_init (&attr);
// the following call can be removed if not available:
pthread_attr_setstacksize(&attr, 1000000);
//pthread_create (&meshingthread, &attr, fun, NULL);
pthread_create (&meshingthread, &attr, fun, in);
}
else
fun (in);
}
#endif
#ifndef SMALLLIB
// Destination for messages, errors, ...
void Ng_PrintDest(const char * s)
{
#ifdef PARALLEL
int id, ntasks;
MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
MPI_Comm_rank(MPI_COMM_WORLD, &id);
#else
int id = 0; int ntasks = 1;
#endif
if ( ntasks == 1 )
(*mycout) << s << flush;
else
(*mycout) << "p" << id << ": " << s << flush ;
}
void MyError(const char * ch)
{
cout << ch;
(*testout) << "Error !!! " << ch << endl << flush;
}
#endif
static clock_t starttimea;
void ResetTime ()
{
starttimea = clock();
}
#ifndef SMALLLIB
double GetTime ()
{
return double(clock() - starttimea) / CLOCKS_PER_SEC;
}
#endif
// file handling ..
int Ng_New (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (strcmp (argv[1], "mesh") == 0)
mesh.Reset();
if (strcmp (argv[1], "geom") == 0)
{
geometry.Reset (new CSGeometry (""));
if (stlgeometry)
{
delete stlgeometry;
stlgeometry = NULL;
}
#ifdef OCCGEOMETRY
if (occgeometry)
{
delete occgeometry;
occgeometry = NULL;
}
#endif
}
return TCL_OK;
}
int Ng_ImportMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[]);
int Ng_LoadMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
string filename (argv[1]);
if ( (strlen (filename.c_str()) > 4) &&
strcmp (&filename[strlen (filename.c_str())-4], ".vol") != 0 )
{
return Ng_ImportMesh(clientData,interp,argc,argv);
}
PrintMessage (1, "load mesh from file ", filename);
mesh.Reset (new Mesh());
try
{
//mesh -> Load (filename);
ifstream infile(filename.c_str());
mesh -> Load(infile);
string auxstring;
if(infile.good())
{
infile >> auxstring;
if(auxstring == "csgsurfaces")
{
if (geometry)
geometry.Reset (new CSGeometry (""));
if (stlgeometry)
{
delete stlgeometry;
stlgeometry = NULL;
}
#ifdef OCCGEOMETRY
if (occgeometry)
{
delete occgeometry;
occgeometry = NULL;
}
#endif
geometry2d.Reset (0);
geometry -> LoadSurfaces(infile);
}
}
}
catch (NgException e)
{
PrintMessage (3, e.What());
return TCL_ERROR;
}
PrintMessage (2, mesh->GetNP(), " Points, ",
mesh->GetNE(), " Elements.");
return TCL_OK;
}
int Ng_SaveMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
const string filename (argv[1]);
PrintMessage (1, "Save mesh to file ", filename);
//mesh -> Save (filename);
ofstream outfile(filename.c_str());
mesh -> Save (outfile);
outfile << endl << endl << "endmesh" << endl << endl;
if (geometry && geometry->GetNSurf()) geometry->SaveSurfaces(outfile);
return TCL_OK;
}
int Ng_MergeMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
string filename (argv[1]);
PrintMessage (1, "merge with mesh from file ", filename);
try
{
//mesh -> Merge (filename);
ifstream infile(filename.c_str());
const int offset = (geometry) ? geometry->GetNSurf() : 0;
mesh -> Merge(infile,offset);
string auxstring;
if(infile.good())
{
infile >> auxstring;
if(auxstring == "csgsurfaces")
geometry -> LoadSurfaces(infile);
}
}
catch (NgException e)
{
PrintMessage (3, e.What());
return TCL_ERROR;
}
PrintMessage (2, mesh->GetNP(), " Points, ",
mesh->GetNSE(), " Surface Elements.");
return TCL_OK;
}
int Ng_ExportMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
string filename (argv[1]);
string filetype (argv[2]);
if (WriteUserFormat (filetype, *mesh, *geometry, filename))
{
ostringstream ost;
ost << "Sorry, nothing known about file format " << filetype << endl;
Tcl_SetResult (interp, (char*)ost.str().c_str(), TCL_VOLATILE);
return TCL_ERROR;
}
return TCL_OK;
}
int Ng_ImportMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
const string filename (argv[1]);
PrintMessage (1, "import mesh from ", filename);
mesh.Reset (new Mesh());
ReadFile (*mesh, filename);
PrintMessage (2, mesh->GetNP(), " Points, ",
mesh->GetNE(), " Elements.");
mesh->SetGlobalH (mparam.maxh);
mesh->CalcLocalH();
return TCL_OK;
}
int Ng_ImportSolution (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
const char * filename = argv[1];
PrintMessage (1, "Import solution from file ", filename);
ImportSolution (filename);
return TCL_OK;
}
static DemoView * demoview = 0;
int Ng_ShowDemo (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
const char * filename = argv[1];
PrintMessage (1, "Show demo ", filename);
demoview = new DemoView (filename);
return TCL_OK;
}
int Ng_DemoSetTime (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
cout << "demosettime, time = " << argv[1] << endl;
int result = -1;
static char strminusone[] = "-1";
static char str0[] = "0";
if (demoview)
result = demoview->SetTime (atof (argv[1]));
if (result == -1)
Tcl_SetResult (interp, strminusone, TCL_STATIC);
else
Tcl_SetResult (interp, str0, TCL_STATIC);
return TCL_OK;
}
int Ng_SaveSolution (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
const char * filename = argv[1];
PrintMessage (1, "Save solution to file ", filename);
vssolution.SaveSolutionData (filename);
return TCL_OK;
}
int Ng_LoadGeometry (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
tcl_const char * lgfilename = argv[1];
#ifdef LOG_STREAM
(*logout) << "Load geometry file: " << lgfilename << endl;
#endif
#ifdef STAT_STREAM
(*statout) << lgfilename << " & " << endl;
#endif
if (geometry)
geometry.Reset (new CSGeometry (""));
if (stlgeometry)
{
delete stlgeometry;
stlgeometry = NULL;
}
#ifdef OCCGEOMETRY
if (occgeometry)
{
delete occgeometry;
occgeometry = NULL;
}
#endif
geometry2d.Reset (0);
try
{
ifstream infile(lgfilename);
if (strlen(lgfilename) < 4)
{
cout << "ERROR: cannot recognise file format!" << endl;
}
else
{
if (strcmp (&lgfilename[strlen(lgfilename)-3], "geo") == 0)
{
// strcpy (geomfilename, lgfilename);
PrintMessage (1, "Load geometry file ", lgfilename);
extern CSGeometry * ParseCSG (istream & istr);
// ifstream infile(lgfilename);
CSGeometry * hgeom = ParseCSG (infile);
if (hgeom)
geometry.Reset (hgeom);
else
{
geometry.Reset (new CSGeometry (""));
Tcl_SetResult (interp, (char*)"geo-file should start with 'algebraic3d'", TCL_STATIC);
return TCL_ERROR;
}
//geometry -> FindIdenticSurfaces(geometry->GetIdEps() * geometry->MaxSize()); // 1e-8*geometry->MaxSize()
geometry -> FindIdenticSurfaces(1e-8 * geometry->MaxSize()); // 1e-8*geometry->MaxSize()
}
else if (strcmp (&lgfilename[strlen(lgfilename)-3], "ngg") == 0)
{
// strcpy (geomfilename, lgfilename);
PrintMessage (1, "Load new geometry file ", lgfilename);
geometry.Reset (new CSGeometry(""));
geometry -> Load (infile);
}
// strcpy (geomfilename, lgfilename);
// (*mycout) << "Load geometry file " << lgfilename << endl;
else if (strcmp (&lgfilename[strlen(lgfilename)-3], "stl") == 0)
{
// strcpy (geomfilename, lgfilename);
PrintMessage (1, "Load stl geometry file ", lgfilename);
stlgeometry = STLGeometry :: Load (infile);
stlgeometry->edgesfound = 0;
}
else if ((strcmp (&lgfilename[strlen(lgfilename)-4], "iges") == 0) ||
(strcmp (&lgfilename[strlen(lgfilename)-3], "igs") == 0) ||
(strcmp (&lgfilename[strlen(lgfilename)-3], "IGS") == 0) ||
(strcmp (&lgfilename[strlen(lgfilename)-4], "IGES") == 0))
{
#ifdef OCCGEOMETRY
// strcpy (geomfilename, lgfilename);
PrintMessage (1, "Load IGES geometry file ", lgfilename);
occgeometry = LoadOCC_IGES (lgfilename);
#else
2009-01-20 14:08:01 +05:00
Tcl_SetResult (interp, (char*)"IGES import requires the OpenCascade geometry kernel. "
2009-01-13 04:40:13 +05:00
"Please install OpenCascade as described in the Netgen-website",
TCL_STATIC);
return TCL_ERROR;
#endif
}
else if (strcmp (&lgfilename[strlen(lgfilename)-3], "sat") == 0)
{
#ifdef ACIS
PrintMessage (1, "Load ACIS geometry file ", lgfilename);
acisgeometry = netgen::LoadACIS_SAT (lgfilename);
#endif
}
else if ((strcmp (&lgfilename[strlen(lgfilename)-4], "step") == 0) ||
(strcmp (&lgfilename[strlen(lgfilename)-3], "stp") == 0) ||
(strcmp (&lgfilename[strlen(lgfilename)-3], "STP") == 0) ||
(strcmp (&lgfilename[strlen(lgfilename)-4], "STEP") == 0))
{
#ifdef ACISxxx
PrintMessage (1, "Load STEP geometry file ", lgfilename);
acisgeometry = netgen::LoadACIS_STEP (lgfilename);
#else
#ifdef OCCGEOMETRY
// strcpy (geomfilename, lgfilename);
PrintMessage (1, "Load STEP geometry file ", lgfilename);
occgeometry = LoadOCC_STEP (lgfilename);
#else
2009-01-20 14:08:01 +05:00
Tcl_SetResult (interp, (char*)"IGES import requires the OpenCascade geometry kernel. "
2009-01-13 04:40:13 +05:00
"Please install OpenCascade as described in the Netgen-website",
TCL_STATIC);
return TCL_ERROR;
#endif
#endif
}
else if ((strcmp (&lgfilename[strlen(lgfilename)-4], "brep") == 0) ||
(strcmp (&lgfilename[strlen(lgfilename)-4], "Brep") == 0) ||
(strcmp (&lgfilename[strlen(lgfilename)-4], "BREP") == 0))
{
#ifdef OCCGEOMETRY
// strcpy (geomfilename, lgfilename);
PrintMessage (1, "Load BREP geometry file ", lgfilename);
occgeometry = LoadOCC_BREP (lgfilename);
#else
2009-01-20 14:08:01 +05:00
Tcl_SetResult (interp, (char*)"BREP import requires the OpenCascade geometry kernel. "
2009-01-13 04:40:13 +05:00
"Please install OpenCascade as described in the Netgen-website",
TCL_STATIC);
return TCL_ERROR;
#endif
}
else if (strcmp (&lgfilename[strlen(lgfilename)-4], "stlb") == 0)
{
// strcpy (geomfilename, lgfilename);
PrintMessage (1, "Load stl geometry file ", lgfilename, " in binary format");
stlgeometry = STLGeometry :: LoadBinary (infile);
stlgeometry->edgesfound = 0;
}
else if (strcmp (&lgfilename[strlen(lgfilename)-3], "nao") == 0)
{
// strcpy (geomfilename, lgfilename);
PrintMessage (1, "Load naomi (F. Kickinger) geometry file ", lgfilename);
stlgeometry = STLGeometry :: LoadNaomi (infile);
stlgeometry->edgesfound = 0;
}
else if (strcmp (&lgfilename[strlen(lgfilename)-4], "in2d") == 0)
{
// strcpy (geomfilename, lgfilename);
geometry2d.Reset (new SplineGeometry2d());
geometry2d -> Load (lgfilename);
}
}
}
catch (NgException e)
{
Tcl_SetResult (interp, const_cast<char*> (e.What().c_str()), TCL_VOLATILE);
return TCL_ERROR;
}
mesh.Reset();
return TCL_OK;
}
int Ng_SaveGeometry (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (argc == 2)
{
const char * cfilename = argv[1];
PrintMessage (1, "Save geometry to file ", cfilename);
if (strlen(cfilename) < 4) {cout << "ERROR: can not recognise file format!!!" << endl;}
else
{
#ifdef ACIS
if (acisgeometry)
{
char * filename = const_cast<char*> (argv[1]);
if (strcmp (&filename[strlen(filename)-3], "sat") == 0)
{
acisgeometry -> SaveSATFile (filename);
}
}
#endif
#ifdef OCCGEOMETRY
if (occgeometry)
{
char * filename = const_cast<char*> (argv[1]);
if (strcmp (&filename[strlen(filename)-3], "igs") == 0)
{
IGESControl_Writer writer("millimeters", 1);
writer.AddShape (occgeometry->shape);
writer.Write (filename);
}
else if (strcmp (&filename[strlen(filename)-3], "stp") == 0)
{
STEPControl_Writer writer;
writer.Transfer (occgeometry->shape, STEPControl_AsIs);
writer.Write (filename);
}
else if (strcmp (&filename[strlen(filename)-3], "stl") == 0)
{
StlAPI_Writer writer;
writer.ASCIIMode() = Standard_True;
writer.Write (occgeometry->shape, filename);
}
else if (strcmp (&filename[strlen(filename)-4], "stlb") == 0)
{
StlAPI_Writer writer;
writer.ASCIIMode() = Standard_False;
writer.Write (occgeometry->shape, filename);
}
}
else
#endif
if (strcmp (&cfilename[strlen(cfilename)-3], "ngg") == 0)
{
if (geometry)
{
ofstream of(cfilename);
geometry->Save (of);
}
}
else if (strlen(cfilename) > 3 &&
strcmp (&cfilename[strlen(cfilename)-3], "stl") == 0)
{
if (stlgeometry)
stlgeometry->Save (cfilename);
}
else if (strlen(cfilename) > 4 &&
strcmp (&cfilename[strlen(cfilename)-4], "stlb") == 0)
{
if (stlgeometry)
stlgeometry->SaveBinary (cfilename,"Binary STL Geometry");
}
else if (strlen(cfilename) > 4 &&
strcmp (&cfilename[strlen(cfilename)-4], "stle") == 0)
{
if (stlgeometry)
stlgeometry->SaveSTLE (cfilename);
}
}
}
else
{
if (geometry)
geometry->Save (cout);
}
return TCL_OK;
}
int Ng_ParseGeometry (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
#ifdef OCCGEOMETRY
if (!stlgeometry && !geometry2d && !occgeometry)
#else
if (!stlgeometry && !geometry2d)
#endif
{
double detail = atof (Tcl_GetVar (interp, "::geooptions.detail", 0));
double facets = atof (Tcl_GetVar (interp, "::geooptions.facets", 0));
Box<3> box (geometry->BoundingBox());
if (atoi (Tcl_GetVar (interp, "::geooptions.drawcsg", 0)))
geometry->CalcTriangleApproximation(box, detail, facets);
}
return TCL_OK;
}
/*
NgLock * ngpkg_lock = NULL;
int Ng_Lock (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
delete ngpkg_lock;
ngpkg_lock = NULL;
if(strcmp (argv[1], "mesh") == 0)
{
ngpkg_lock = new NgLock(mesh->Mutex());
}
else if(strcmp (argv[1], "unlock") == 0)
{
;
}
return TCL_OK;
}
*/
int Ng_GeometryOptions (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
const char * command = argv[1];
if (strcmp (command, "get") == 0)
{
char buf[20];
Point3d pmin = geometry->BoundingBox ().PMin();
Point3d pmax = geometry->BoundingBox ().PMax();
sprintf (buf, "%5.1lf", pmin.X());
Tcl_SetVar (interp, "::geooptions.minx", buf, 0);
sprintf (buf, "%5.1lf", pmin.Y());
Tcl_SetVar (interp, "::geooptions.miny", buf, 0);
sprintf (buf, "%5.1lf", pmin.Z());
Tcl_SetVar (interp, "::geooptions.minz", buf, 0);
sprintf (buf, "%5.1lf", pmax.X());
Tcl_SetVar (interp, "::geooptions.maxx", buf, 0);
sprintf (buf, "%5.1lf", pmax.Y());
Tcl_SetVar (interp, "::geooptions.maxy", buf, 0);
sprintf (buf, "%5.1lf", pmax.Z());
Tcl_SetVar (interp, "::geooptions.maxz", buf, 0);
}
else if (strcmp (command, "set") == 0)
{
Point<3> pmin (atof (Tcl_GetVar (interp, "::geooptions.minx", 0)),
atof (Tcl_GetVar (interp, "::geooptions.miny", 0)),
atof (Tcl_GetVar (interp, "::geooptions.minz", 0)));
Point<3> pmax (atof (Tcl_GetVar (interp, "::geooptions.maxx", 0)),
atof (Tcl_GetVar (interp, "::geooptions.maxy", 0)),
atof (Tcl_GetVar (interp, "::geooptions.maxz", 0)));
Box<3> box (pmin, pmax);
geometry -> SetBoundingBox (box);
CSGeometry::SetDefaultBoundingBox (box);
}
return TCL_OK;
}
// attempt of a simple modeller
int Ng_CreatePrimitive (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
tcl_const char * classname = argv[1];
tcl_const char * name = argv[2];
cout << "Create primitive, class = " << classname
<< ", name = " << name << endl;
Primitive * nprim = Primitive::CreatePrimitive (classname);
Solid * nsol = new Solid (nprim);
char sname[100];
for (int j = 1; j <= nprim->GetNSurfaces(); j++)
{
sprintf (sname, "%s,%d", name, j);
geometry -> AddSurface (sname, &nprim->GetSurface(j));
nprim -> SetSurfaceId (j, geometry->GetNSurf());
}
geometry->SetSolid (name, nsol);
return TCL_OK;
}
int Ng_SetPrimitiveData (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
tcl_const char * name = argv[1];
tcl_const char * value = argv[2];
ARRAY<double> coeffs;
cout << "Set primitive data, name = " << name
<< ", value = " << value << endl;
istringstream vst (value);
double val;
while (!vst.eof())
{
vst >> val;
coeffs.Append (val);
}
((Primitive*)
geometry->GetSolid (name)->GetPrimitive())->SetPrimitiveData (coeffs);
return TCL_OK;
}
int Ng_SetSolidData (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
tcl_const char * name = argv[1];
tcl_const char * val = argv[2];
cout << "Set Solid Data, name = " << name
<< ", value = " << val << endl;
istringstream vst (val);
Solid * nsol = Solid::CreateSolid (vst, geometry->GetSolids());
geometry->SetSolid (name, nsol);
return TCL_OK;
}
int Ng_GetPrimitiveData (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
tcl_const char * name = argv[1];
tcl_const char * classnamevar = argv[2];
tcl_const char * valuevar = argv[3];
const char * classname;
ARRAY<double> coeffs;
geometry->GetSolid (name)->GetPrimitive()->GetPrimitiveData (classname, coeffs);
ostringstream vst;
for (int i = 1; i <= coeffs.Size(); i++)
vst << coeffs.Get(i) << " ";
cout << "GetPrimitiveData, name = " << name
<< ", classnamevar = " << classnamevar
<< ", classname = " << classname << endl
<< " valuevar = " << valuevar
<< ", values = " << vst.str() << endl;
Tcl_SetVar (interp, classnamevar, (char*)classname, 0);
Tcl_SetVar (interp, valuevar, (char*)vst.str().c_str(), 0);
return TCL_OK;
}
int Ng_GetSolidData (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
tcl_const char * name = argv[1];
tcl_const char * valuevar = argv[2];
ostringstream vst;
const Solid * sol = geometry->GetSolid (name);
sol->GetSolidData (vst);
cout << "GetSolidData, name = " << name << ", data = " << vst.str() << endl;
Tcl_SetVar (interp, valuevar, (char*)vst.str().c_str(), 0);
return TCL_OK;
}
int Ng_GetPrimitiveList (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
tcl_const char * valuevar = argv[1];
int i;
stringstream vst;
for (i = 1; i <= geometry->GetNSolids(); i++)
{
const Solid * sol = geometry->GetSolid(i);
if (sol->GetPrimitive())
vst << sol->Name() << " ";
}
cout << "primnames = " << vst.str() << endl;
Tcl_SetVar (interp, valuevar, (char*)vst.str().c_str(), 0);
return TCL_OK;
}
int Ng_GetSurfaceList (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
tcl_const char * valuevar = argv[1];
int i;
stringstream vst;
for (i = 1; i <= geometry->GetNSurf(); i++)
{
const Surface * surf = geometry->GetSurface(i);
vst << surf->Name() << " ";
}
cout << "surfnames = " << vst.str() << endl;
Tcl_SetVar (interp, valuevar, (char*)vst.str().c_str(), 0);
return TCL_OK;
}
int Ng_GetSolidList (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
tcl_const char * valuevar = argv[1];
int i;
stringstream vst;
for (i = 1; i <= geometry->GetNSolids(); i++)
{
const Solid * sol = geometry->GetSolid(i);
if (!sol->GetPrimitive())
vst << sol->Name() << " ";
}
cout << "solnames = " << vst.str() << endl;
Tcl_SetVar (interp, valuevar, (char*)vst.str().c_str(), 0);
return TCL_OK;
}
int Ng_TopLevel (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
int i;
/*
for (i = 0; i < argc; i++)
cout << argv[i] << ", ";
cout << endl;
*/
if (strcmp (argv[1], "getlist") == 0)
{
stringstream vst;
for (i = 0; i < geometry->GetNTopLevelObjects(); i++)
{
const Solid * sol;
const Surface * surf;
geometry->GetTopLevelObject (i, sol, surf);
if (!surf)
vst << "{ " << sol->Name() << " } ";
else
vst << "{ " << sol->Name() << " " << surf->Name() << " } ";
}
tcl_const char * valuevar = argv[2];
Tcl_SetVar (interp, valuevar, (char*)vst.str().c_str(), 0);
}
if (strcmp (argv[1], "set") == 0)
{
tcl_const char * solname = argv[2];
tcl_const char * surfname = argv[3];
Solid * sol = (Solid*)geometry->GetSolid (solname);
Surface * surf = (Surface*)geometry->GetSurface (surfname);
geometry->SetTopLevelObject (sol, surf);
}
if (strcmp (argv[1], "remove") == 0)
{
tcl_const char * solname = argv[2];
tcl_const char * surfname = argv[3];
Solid * sol = (Solid*)geometry->GetSolid (solname);
Surface * surf = (Surface*)geometry->GetSurface (surfname);
geometry->RemoveTopLevelObject (sol, surf);
}
if (strcmp (argv[1], "setprop") == 0)
{
tcl_const char * solname = argv[2];
tcl_const char * surfname = argv[3];
tcl_const char * propvar = argv[4];
Solid * sol = (Solid*)geometry->GetSolid (solname);
Surface * surf = (Surface*)geometry->GetSurface (surfname);
TopLevelObject * tlo = geometry->GetTopLevelObject (sol, surf);
if (!tlo) return TCL_OK;
char varname[50];
sprintf (varname, "%s(red)", propvar);
double red = atof (Tcl_GetVar (interp, varname, 0));
sprintf (varname, "%s(blue)", propvar);
double blue = atof (Tcl_GetVar (interp, varname, 0));
sprintf (varname, "%s(green)", propvar);
double green = atof (Tcl_GetVar (interp, varname, 0));
tlo -> SetRGB (red, green, blue);
sprintf (varname, "%s(visible)", propvar);
tlo -> SetVisible (bool(atoi (Tcl_GetVar (interp, varname, 0))));
sprintf (varname, "%s(transp)", propvar);
tlo -> SetTransparent (bool(atoi (Tcl_GetVar (interp, varname, 0))));
}
if (strcmp (argv[1], "getprop") == 0)
{
tcl_const char * solname = argv[2];
tcl_const char * surfname = argv[3];
tcl_const char * propvar = argv[4];
Solid * sol = (Solid*)geometry->GetSolid (solname);
Surface * surf = (Surface*)geometry->GetSurface (surfname);
TopLevelObject * tlo = geometry->GetTopLevelObject (sol, surf);
if (!tlo) return TCL_OK;
char varname[50], varval[10];
sprintf (varname, "%s(red)", propvar);
sprintf (varval, "%lf", tlo->GetRed());
Tcl_SetVar (interp, varname, varval, 0);
sprintf (varname, "%s(green)", propvar);
sprintf (varval, "%lf", tlo->GetGreen());
Tcl_SetVar (interp, varname, varval, 0);
sprintf (varname, "%s(blue)", propvar);
sprintf (varval, "%lf", tlo->GetBlue());
Tcl_SetVar (interp, varname, varval, 0);
sprintf (varname, "%s(visible)", propvar);
sprintf (varval, "%d", tlo->GetVisible());
Tcl_SetVar (interp, varname, varval, 0);
sprintf (varname, "%s(transp)", propvar);
sprintf (varval, "%d", tlo->GetTransparent());
Tcl_SetVar (interp, varname, varval, 0);
}
return TCL_OK;
}
int Ng_ReadStatus (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
char buf[20], lstring[200];
if (mesh.Ptr())
{
sprintf (buf, "%d", mesh->GetNP());
Tcl_SetVar (interp, "::status_np", buf, 0);
sprintf (buf, "%d", mesh->GetNE());
Tcl_SetVar (interp, "::status_ne", buf, 0);
sprintf (buf, "%d", mesh->GetNSE());
Tcl_SetVar (interp, "::status_nse", buf, 0);
}
else
{
Tcl_SetVar (interp, "::status_np", "0", 0);
Tcl_SetVar (interp, "::status_ne", "0", 0);
Tcl_SetVar (interp, "::status_nse", "0", 0);
}
if (multithread.running)
Tcl_SetVar (interp, "::status_working", "working", 0);
else
Tcl_SetVar (interp, "::status_working", " ", 0);
Tcl_SetVar (interp, "::status_task", const_cast<char *>(multithread.task), 0);
sprintf (buf, "%lf", multithread.percent);
Tcl_SetVar (interp, "::status_percent", buf, 0);
int i;
lstring[0] = 0;
for (i = 1; i <= tets_in_qualclass.Size(); i++)
{
sprintf (buf, " %d", tets_in_qualclass.Get(i));
strcat (lstring, buf);
}
for (i = tets_in_qualclass.Size()+1; i <= 20; i++)
strcat (lstring, " 0");
Tcl_SetVar (interp, "::status_tetqualclasses", lstring, 0);
return TCL_OK;
}
int Ng_MemInfo (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
static char buf[100];
if (argc < 2) return TCL_ERROR;
if (strcmp (argv[1], "moveable") == 0)
{
sprintf (buf, "%6.1f", double(BaseMoveableMem::used)/1048576);
Tcl_SetResult (interp, buf, TCL_STATIC);
return TCL_OK;
}
if (strcmp (argv[1], "usedmb") == 0)
{ // returns string of 512 '0' or '1'
static char usedmb[513];
for (int i = 0; i < 512; i++)
usedmb[i] = (i % 7 == 0) ? '1' : '0';
usedmb[512] = 0;
BaseDynamicMem::GetUsed (512, usedmb);
Tcl_SetResult (interp, usedmb, TCL_STATIC);
return TCL_OK;
}
return TCL_ERROR;
}
int Ng_BCProp (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
static char buf[100];
if (argc < 2)
{
Tcl_SetResult (interp, (char*)"Ng_BCProp needs arguments", TCL_STATIC);
return TCL_ERROR;
}
if (strcmp (argv[1], "setbc") == 0)
{
int facenr = atoi (argv[2]);
int bcnr = atoi (argv[3]);
if (mesh.Ptr() && facenr >= 1 && facenr <= mesh->GetNFD())
mesh->GetFaceDescriptor (facenr).SetBCProperty (bcnr);
}
if (strcmp (argv[1], "setall") == 0)
{
int bcnr = atoi (argv[2]);
if (mesh.Ptr())
{
int nfd = mesh->GetNFD();
for (int i = 1; i <= nfd; i++)
mesh->GetFaceDescriptor (i).SetBCProperty (bcnr);
}
}
if (strcmp (argv[1], "getbc") == 0)
{
int facenr = atoi (argv[2]);
if (mesh.Ptr() && facenr >= 1 && facenr <= mesh->GetNFD())
{
sprintf (buf, "%d", mesh->GetFaceDescriptor(facenr).BCProperty());
}
else
{
strcpy (buf, "0");
}
Tcl_SetResult (interp, buf, TCL_STATIC);
}
if (strcmp (argv[1], "getbcname") == 0)
{
int facenr = atoi (argv[2]);
if (mesh.Ptr() && facenr >= 1 && facenr <= mesh->GetNFD())
{
sprintf (buf, "%s", mesh->GetFaceDescriptor(facenr).GetBCName().c_str());
}
else
{
strcpy (buf, "-");
}
Tcl_SetResult (interp, buf, TCL_STATIC);
}
if (strcmp (argv[1], "getactive") == 0)
{
sprintf (buf, "%d", vsmesh.SelectedFace());
Tcl_SetResult (interp, buf, TCL_STATIC);
}
if (strcmp (argv[1], "setactive") == 0)
{
int facenr = atoi (argv[2]);
if (mesh.Ptr() && facenr >= 1 && facenr <= mesh->GetNFD())
{
vsmesh.SetSelectedFace (facenr);
}
}
if (strcmp (argv[1], "getnfd") == 0)
{
if (mesh.Ptr())
sprintf (buf, "%d", mesh->GetNFD());
else
sprintf (buf, "0");
Tcl_SetResult (interp, buf, TCL_STATIC);
}
return TCL_OK;
}
int Ng_SetNextTimeStamp (ClientData clientData,
Tcl_Interp * interp,
int argqc, tcl_const char *argv[])
{
if (mesh.Ptr())
mesh -> SetNextTimeStamp();
return TCL_OK;
}
int Ng_Refine (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
if (stlgeometry)
{
RefinementSTLGeometry ref (*stlgeometry);
ref.Refine (*mesh);
}
else if (geometry2d)
{
Refinement2d ref (*geometry2d);
ref.Refine (*mesh);
}
#ifdef OCCGEOMETRY
else if (occgeometry)
{
OCCRefinementSurfaces ref (*occgeometry);
ref.Refine (*mesh);
}
#endif
#ifdef ACIS
else if (acisgeometry)
{
ACISRefinementSurfaces ref (*acisgeometry);
ACISMeshOptimize2dSurfaces opt(*acisgeometry);
ref.Set2dOptimizer(&opt);
ref.Refine (*mesh);
}
#endif
else
{
RefinementSurfaces ref (*geometry);
MeshOptimize2dSurfaces opt(*geometry);
ref.Set2dOptimizer(&opt);
ref.Refine (*mesh);
}
return TCL_OK;
}
int Ng_SecondOrder (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
if (stlgeometry)
{
RefinementSTLGeometry ref (*stlgeometry);
ref.MakeSecondOrder (*mesh);
}
#ifdef OCCGEOMETRY
else if (occgeometry)
{
OCCRefinementSurfaces ref (*occgeometry);
ref.MakeSecondOrder (*mesh);
}
#endif
else if (geometry2d)
{
Refinement2d ref (*geometry2d);
ref.MakeSecondOrder (*mesh);
}
else
{
RefinementSurfaces ref (*geometry);
ref.MakeSecondOrder (*mesh);
}
return TCL_OK;
}
void * HighOrderDummy (void *)
{
// mparam.elementorder = atoi (Tcl_GetVar (interp, "options.elementorder", 0));
const char * savetask = multithread.task;
Refinement * ref;
if (stlgeometry)
ref = new RefinementSTLGeometry (*stlgeometry);
else if (geometry2d)
ref = new Refinement2d (*geometry2d);
#ifdef OCCGEOMETRY
else if (occgeometry)
ref = new OCCRefinementSurfaces (*occgeometry);
#endif
#ifdef ACIS
else if (acisgeometry)
{
ref = new ACISRefinementSurfaces(*acisgeometry);
}
#endif
else
{
ref = new RefinementSurfaces (*geometry);
}
// if (!mesh -> coarsemesh)
mesh -> GetCurvedElements().BuildCurvedElements (ref, mparam.elementorder);
/*
else
{
mesh -> coarsemesh -> GetCurvedElements().BuildCurvedElements (ref, mparam.elementorder);
mesh -> GetCurvedElements().SetHighOrder(mparam.elementorder);
}
*/
delete ref;
//
// cout << "WARNING: Ng_HighOrder! ref is not deleted for edge projection visualization" << endl;
multithread.task = savetask;
multithread.running = 0;
multithread.terminate = 1;
mesh -> SetNextMajorTimeStamp();
return 0;
}
int Ng_HighOrder (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
multithread.running = 1;
multithread.terminate = 0;
mparam.elementorder = atoi(argv[1]);
// if(argc > 2 && strcmp(argv[2],"noparallel") == 0)
HighOrderDummy(NULL);
// else
// RunParallel (HighOrderDummy, NULL);
return TCL_OK;
}
void * ValidateDummy (void *)
{
RefinementSTLGeometry ref (*stlgeometry);
ref.ValidateSecondOrder (*mesh);
multithread.running = 0;
return NULL;
}
int Ng_ValidateSecondOrder (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
multithread.running = 1;
RunParallel (ValidateDummy, NULL);
return TCL_OK;
}
int Ng_ZRefinement (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
ZRefinementOptions opt;
opt.minref = 5;
if (argc >= 2) opt.minref = atoi (argv[1]);
ZRefinement (*mesh, geometry.Ptr(), opt);
return TCL_OK;
}
int Ng_HPRefinement (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
int levels = atoi (argv[1]);
Refinement * ref;
if (stlgeometry)
ref = new RefinementSTLGeometry (*stlgeometry);
else if (geometry2d)
ref = new Refinement2d (*geometry2d);
#ifdef OCCGEOMETRY
else if (occgeometry)
ref = new OCCRefinementSurfaces (*occgeometry);
#endif
else
ref = new RefinementSurfaces (*geometry);
HPRefinement (*mesh, ref, levels);
return TCL_OK;
}
int Ng_LoadMeshSize (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
mesh->LoadLocalMeshSize(argv[1]);
return TCL_OK;
}
int Ng_MeshSizeFromSurfaceMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
mesh->SetGlobalH (mparam.maxh);
mesh->CalcLocalH();
return TCL_OK;
}
int Ng_SingularPointMS (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
int i;
double globh = mparam.maxh;
for (i = 1; i <= geometry->singpoints.Size(); i++)
geometry->singpoints.Get(i)->SetMeshSize (*mesh, globh);
return TCL_OK;
}
int Ng_SingularEdgeMS (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
double globh = mparam.maxh;
for (int i = 1; i <= geometry->singedges.Size(); i++)
geometry->singedges.Get(i)->SetMeshSize (*mesh, globh);
return TCL_OK;
}
int Ng_InsertVirtualBL (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
InsertVirtualBoundaryLayer (*mesh);
return TCL_OK;
}
int Ng_CutOffAndCombine (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
Mesh othermesh;
othermesh.Load (argv[1]);
othermesh.SetGlobalH (mparam.maxh);
othermesh.CalcLocalH();
CutOffAndCombine (*mesh, othermesh);
return TCL_OK;
}
int Ng_HelmholtzMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
HelmholtzMesh (*mesh);
return TCL_OK;
}
int Ng_SetMeshingParameters (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
mparam.maxh = atof (Tcl_GetVar (interp, "::options.meshsize", 0));
mparam.minh = atof (Tcl_GetVar (interp, "::options.minmeshsize", 0));
mparam.meshsizefilename = Tcl_GetVar (interp, "::options.meshsizefilename", 0);
if (!strlen (mparam.meshsizefilename))
mparam.meshsizefilename = NULL;
mparam.curvaturesafety = atof (Tcl_GetVar (interp, "::options.curvaturesafety", 0));
mparam.segmentsperedge = atof (Tcl_GetVar (interp, "::options.segmentsperedge", 0));
mparam.badellimit = atof (Tcl_GetVar (interp, "::options.badellimit", 0));
mparam.secondorder = atoi (Tcl_GetVar (interp, "::options.secondorder", 0));
mparam.elementorder = atoi (Tcl_GetVar (interp, "::options.elementorder", 0));
mparam.quad = atoi (Tcl_GetVar (interp, "::options.quad", 0));
mparam.inverttets = atoi (Tcl_GetVar (interp, "::options.inverttets", 0));
mparam.inverttrigs = atoi (Tcl_GetVar (interp, "::options.inverttrigs", 0));
mparam.uselocalh = atoi (Tcl_GetVar (interp, "::options.localh", 0));
mparam.grading = atof (Tcl_GetVar (interp, "::options.grading", 0));
mparam.delaunay = atoi (Tcl_GetVar (interp, "::options.delaunay", 0));
mparam.checkoverlap = atoi (Tcl_GetVar (interp, "::options.checkoverlap", 0));
mparam.checkoverlappingboundary = atoi (Tcl_GetVar (interp, "::options.checkoverlappingboundary", 0));
mparam.checkchartboundary = atoi (Tcl_GetVar (interp, "::options.checkchartboundary", 0));
mparam.optsteps3d = atoi (Tcl_GetVar (interp, "::options.optsteps3d", 0));
mparam.optsteps2d = atoi (Tcl_GetVar (interp, "::options.optsteps2d", 0));
mparam.opterrpow = atof (Tcl_GetVar (interp, "::options.opterrpow", 0));
mparam.parthread = atoi (Tcl_GetVar (interp, "::options.parthread", 0));
mparam.elsizeweight = atof (Tcl_GetVar (interp, "::options.elsizeweight", 0));
mparam.autozrefine = atoi (Tcl_GetVar (interp, "::options.autozrefine", 0));
extern int printmessage_importance;
extern int printdots;
printmessage_importance = atoi (Tcl_GetVar (interp, "::options.printmsg", 0));
printdots = (printmessage_importance >= 4);
BaseMoveableMem::totalsize =
1048576 * atoi (Tcl_GetVar (interp, "::options.memory", 0));
if (mesh.Ptr())
{
mesh->SetGlobalH (mparam.maxh);
mesh->SetMinimalH (mparam.minh);
}
return TCL_OK;
}
int Ng_SetDebugParameters (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
debugparam.slowchecks = atoi (Tcl_GetVar (interp, "::debug.slowchecks", 0));
debugparam.debugoutput = atoi (Tcl_GetVar (interp, "::debug.debugoutput", 0));
debugparam.haltexistingline = atoi (Tcl_GetVar (interp, "::debug.haltexistingline", 0));
debugparam.haltoverlap = atoi (Tcl_GetVar (interp, "::debug.haltoverlap", 0));
debugparam.haltsuccess = atoi (Tcl_GetVar (interp, "::debug.haltsuccess", 0));
debugparam.haltnosuccess = atoi (Tcl_GetVar (interp, "::debug.haltnosuccess", 0));
debugparam.haltlargequalclass = atoi (Tcl_GetVar (interp, "::debug.haltlargequalclass", 0));
debugparam.haltsegment = atoi (Tcl_GetVar (interp, "::debug.haltsegment", 0));
debugparam.haltnode = atoi (Tcl_GetVar (interp, "::debug.haltnode", 0));
debugparam.haltface = atoi (Tcl_GetVar (interp, "::debug.haltface", 0));
debugparam.haltsegmentp1 = atoi (Tcl_GetVar (interp, "::debug.haltsegmentp1", 0));
debugparam.haltsegmentp2 = atoi (Tcl_GetVar (interp, "::debug.haltsegmentp2", 0));
debugparam.haltfacenr = atoi (Tcl_GetVar (interp, "::debug.haltfacenr", 0));
return TCL_OK;
}
int Ng_SetSTLParameters (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
stlparam.yangle =
atof (Tcl_GetVar (interp, "::stloptions.yangle", 0));
stlparam.contyangle =
atof (Tcl_GetVar (interp, "::stloptions.contyangle", 0));
stlparam.edgecornerangle =
atof (Tcl_GetVar (interp, "::stloptions.edgecornerangle", 0));
stlparam.chartangle =
atof (Tcl_GetVar (interp, "::stloptions.chartangle", 0));
stlparam.outerchartangle =
atof (Tcl_GetVar (interp, "::stloptions.outerchartangle", 0));
stlparam.usesearchtree =
atoi (Tcl_GetVar (interp, "::stloptions.usesearchtree", 0));
stlparam.atlasminh =
atof (Tcl_GetVar (interp, "::stloptions.atlasminh", 0));
stlparam.resthsurfcurvfac =
atof (Tcl_GetVar (interp, "::stloptions.resthsurfcurvfac", 0));
stlparam.resthsurfcurvenable =
atoi (Tcl_GetVar (interp, "::stloptions.resthsurfcurvenable", 0));
stlparam.resthatlasfac =
atof (Tcl_GetVar (interp, "::stloptions.resthatlasfac", 0));
stlparam.resthatlasenable =
atoi (Tcl_GetVar (interp, "::stloptions.resthatlasenable", 0));
stlparam.resthchartdistfac =
atof (Tcl_GetVar (interp, "::stloptions.resthchartdistfac", 0));
stlparam.resthchartdistenable =
atoi (Tcl_GetVar (interp, "::stloptions.resthchartdistenable", 0));
stlparam.resthlinelengthfac =
atof (Tcl_GetVar (interp, "::stloptions.resthlinelengthfac", 0));
stlparam.resthlinelengthenable =
atoi (Tcl_GetVar (interp, "::stloptions.resthlinelengthenable", 0));
stlparam.resthcloseedgefac =
atof (Tcl_GetVar (interp, "::stloptions.resthcloseedgefac", 0));
stlparam.resthcloseedgeenable =
atoi (Tcl_GetVar (interp, "::stloptions.resthcloseedgeenable", 0));
stlparam.resthedgeanglefac =
atof (Tcl_GetVar (interp, "::stloptions.resthedgeanglefac", 0));
stlparam.resthedgeangleenable =
atoi (Tcl_GetVar (interp, "::stloptions.resthedgeangleenable", 0));
stlparam.resthsurfmeshcurvfac =
atof (Tcl_GetVar (interp, "::stloptions.resthsurfmeshcurvfac", 0));
stlparam.resthsurfmeshcurvenable =
atoi (Tcl_GetVar (interp, "::stloptions.resthsurfmeshcurvenable", 0));
stlparam.recalc_h_opt =
atoi (Tcl_GetVar (interp, "::stloptions.recalchopt", 0));
// stlparam.Print (cout);
return TCL_OK;
}
int Ng_GetCommandLineParameter (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (argc != 2)
{
Tcl_SetResult (interp, (char*)"Ng_GetCommandLineParameter needs 1 parameter",
TCL_STATIC);
return TCL_ERROR;
}
static char buf[10];
if (parameters.StringFlagDefined (argv[1]))
Tcl_SetResult (interp,
(char*)parameters.GetStringFlag (argv[1], NULL), TCL_STATIC);
else if (parameters.NumFlagDefined (argv[1]))
{
sprintf (buf, "%lf", parameters.GetNumFlag (argv[1], 0));
Tcl_SetResult (interp, buf, TCL_STATIC);
}
else if (parameters.GetDefineFlag (argv[1]))
Tcl_SetResult (interp, (char*)"defined", TCL_STATIC);
else
Tcl_SetResult (interp, (char*)"undefined", TCL_STATIC);
return TCL_OK;
}
extern int GenerateMesh (CSGeometry & geom,
Mesh *& mesh, int perfstepsstart, int perfstepsend,
const char * optstr);
extern int STLMeshingDummy (STLGeometry* stlgeometry, Mesh*& mesh,
int perfstepsstart, int perfstepsend, char* optstring);
#ifdef OCCGEOMETRY
extern int OCCGenerateMesh (OCCGeometry & occgeometry, Mesh*& mesh,
int perfstepsstart, int perfstepsend, char* optstring);
#endif
static int perfstepsstart;
static int perfstepsend;
static char* optstring = NULL;
static char* optstringcsg = NULL;
void * MeshingDummy (void *)
{
const char * savetask = multithread.task;
multithread.task = "Generate Mesh";
ResetTime();
try
{
#ifdef LOG_STREAM
(*logout) << "Start meshing" << endl;
(*logout) << "Meshing parameters:" << endl;
mparam.Print (*logout);
#endif
if (stlgeometry)
{
#ifdef LOG_STREAM
(*logout) << "STL parameters:" << endl;
stlparam.Print (*logout);
#endif
STLMeshingDummy(stlgeometry, mesh.Ptr(), perfstepsstart, perfstepsend, optstring);
}
#ifdef OCCGEOMETRY
else if (occgeometry)
{
OCCGenerateMesh(*occgeometry, mesh.Ptr(), perfstepsstart, perfstepsend, optstring);
}
#endif
#ifdef ACIS
else if (acisgeometry)
{
ACISGenerateMesh(*acisgeometry, mesh.Ptr(), perfstepsstart, perfstepsend, optstring);
}
#endif
else if (geometry2d)
{
extern void MeshFromSpline2D (SplineGeometry2d & geometry2d,
Mesh *& mesh, MeshingParameters & mp);
MeshFromSpline2D (*geometry2d, mesh.Ptr(), mparam);
}
else
{
int res =
GenerateMesh (*geometry, mesh.Ptr(), perfstepsstart, perfstepsend, optstringcsg);
if (res != MESHING3_OK) return 0;
if(mparam.autozrefine)
{
ZRefinementOptions opt;
opt.minref = 5;
ZRefinement (*mesh, geometry.Ptr(), opt);
}
}
if (mparam.secondorder)
{
if (stlgeometry)
{
RefinementSTLGeometry ref (*stlgeometry);
ref.MakeSecondOrder (*mesh);
}
#ifdef OCCGEOMETRY
else if (occgeometry)
{
OCCRefinementSurfaces ref (*occgeometry);
ref.MakeSecondOrder (*mesh);
}
#endif
else if (geometry2d)
{
Refinement2d ref (*geometry2d);
ref.MakeSecondOrder (*mesh);
}
else
{
RefinementSurfaces ref (*geometry);
ref.MakeSecondOrder (*mesh);
}
}
if (mparam.elementorder > 1)
{
Refinement * ref;
if (stlgeometry)
ref = new RefinementSTLGeometry (*stlgeometry);
else if (geometry2d)
ref = new Refinement2d (*geometry2d);
#ifdef OCCGEOMETRY
else if (occgeometry)
ref = new OCCRefinementSurfaces (*occgeometry);
#endif
#ifdef ACIS
else if (acisgeometry)
ref = new ACISRefinementSurfaces(*acisgeometry);
#endif
else
ref = new RefinementSurfaces (*geometry);
mesh -> GetCurvedElements().BuildCurvedElements (ref, mparam.elementorder);
// cout << "WARNING: Ng_HighOrder! ref is not deleted for edge projection visualization" << endl;
delete ref;
mesh -> SetNextMajorTimeStamp();
}
PrintMessage (1, "Meshing done, time = ", GetTime(), " sec");
#ifdef LOG_STREAM
(*logout) << "Meshing done, time = " << GetTime() << endl;
#endif
}
catch (NgException e)
{
cout << e.What() << endl;
}
multithread.task = savetask;
multithread.running = 0;
#ifdef OCCGEOMETRY
if (occgeometry)
{
if (occgeometry->ErrorInSurfaceMeshing())
{
char script[] = "rebuildoccdialog";
int errcode = Tcl_GlobalEval (tcl_interp, script);
}
}
#endif
return NULL;
}
int MeshingVal(tcl_const char* str)
{
if (strcmp(str, "ag") == 0) {return MESHCONST_ANALYSE;}
if (strcmp(str, "me") == 0) {return MESHCONST_MESHEDGES;}
if (strcmp(str, "ms") == 0) {return MESHCONST_MESHSURFACE;}
if (strcmp(str, "os") == 0) {return MESHCONST_OPTSURFACE;}
if (strcmp(str, "mv") == 0) {return MESHCONST_MESHVOLUME;}
if (strcmp(str, "ov") == 0) {return MESHCONST_OPTVOLUME;}
cout << "TCL TK ERROR, wrong meshing value, return='" << str << "'" << endl;
return 0;
}
int Ng_GenerateMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
multithread.running = 1;
multithread.terminate = 0;
Ng_SetSTLParameters (clientData, interp, 0, argv);
Ng_SetMeshingParameters (clientData, interp, 0, argv);
perfstepsstart = 1;
perfstepsend = 6;
if (optstringcsg) delete optstringcsg;
optstringcsg = NULL;
if (optstring) delete optstring;
optstring = NULL;
if (argc == 2)
{
perfstepsstart = 1;
perfstepsend = MeshingVal(argv[1]);
}
else if (argc == 3)
{
perfstepsstart = MeshingVal(argv[1]);
perfstepsend = MeshingVal(argv[2]);
}
else if (argc == 4)
{
perfstepsstart = MeshingVal(argv[1]);
perfstepsend = MeshingVal(argv[2]);
optstring = new char[strlen(argv[3])+1];
strcpy(optstring, argv[3]);
optstringcsg = new char[strlen(argv[3])+1];
strcpy(optstringcsg, argv[3]);
}
RunParallel (MeshingDummy, NULL);
return TCL_OK;
}
int Ng_StopMeshing (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
multithread.terminate = 1;
return TCL_OK;
}
int Ng_MeshInfo (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
ostringstream str;
if (argc >= 2 && strcmp (argv[1], "dim") == 0)
str << mesh->GetDimension();
else if (argc >= 2 && strcmp (argv[1], "np") == 0)
str << mesh->GetNP();
else if (argc >= 2 && strcmp (argv[1], "ne") == 0)
str << mesh->GetNE();
else if (argc >= 2 && strcmp (argv[1], "nse") == 0)
str << mesh->GetNSE();
else if (argc >= 2 && strcmp (argv[1], "nseg") == 0)
str << mesh->GetNSeg();
else if (argc >= 2 && strcmp (argv[1], "bbox") == 0)
{
Point3d pmin, pmax;
mesh->GetBox (pmin, pmax);
str << pmin.X() << " " << pmax.X() << " "
<< pmin.Y() << " " << pmax.Y() << " "
<< pmin.Z() << " " << pmax.Z() << endl;
}
else
{
cout << "argv[1] = " << argv[1] << endl;
Tcl_SetResult (interp, (char*)"Ng_MeshInfo requires an argument out of \n dim np ne", TCL_STATIC);
return TCL_ERROR;
}
Tcl_SetResult (interp, (char*)str.str().c_str(), TCL_VOLATILE);
return TCL_OK;
}
int Ng_MeshQuality (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
double angles[4];
char buf[10];
if (mesh.Ptr())
mesh->CalcMinMaxAngle(mparam.badellimit, angles);
else
{
angles[0] = angles[1] = angles[2] = angles[3] = 0;
}
sprintf (buf, "%5.1lf", angles[0]);
Tcl_SetVar (interp, argv[1], buf, 0);
sprintf (buf, "%5.1lf", angles[1]);
Tcl_SetVar (interp, argv[2], buf, 0);
sprintf (buf, "%5.1lf", angles[2]);
Tcl_SetVar (interp, argv[3], buf, 0);
sprintf (buf, "%5.1lf", angles[3]);
Tcl_SetVar (interp, argv[4], buf, 0);
return TCL_OK;
}
int Ng_CheckSurfaceMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
mesh->FindOpenElements();
if (mesh->CheckConsistentBoundary())
{
PrintMessage (1, "surface mesh not consistent, trying orientation");
mesh->SurfaceMeshOrientation();
}
else
{
PrintMessage (1, "surface mesh consistent");
}
mesh->CheckOverlappingBoundary();
return TCL_OK;
}
int Ng_CheckVolumeMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
mesh->CheckVolumeMesh();
return TCL_OK;
}
int Ng_DeleteVolMesh (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (mesh.Ptr())
mesh->ClearVolumeElements();
return TCL_OK;
}
int Ng_SplitSeparatedFaces (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (mesh.Ptr())
mesh->SplitSeparatedFaces ();
return TCL_OK;
}
int Ng_RestrictH (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
if (argc != 3)
return TCL_OK;
if (!mesh.Ptr())
return TCL_OK;
double loch = atof (argv[2]);
if (strcmp (argv[1], "face") == 0)
{
cout << "Restrict h at face to " << loch << endl;
mesh -> RestrictLocalH (RESTRICTH_FACE, vsmesh.SelectedFace(), loch);
}
if (strcmp (argv[1], "edge") == 0)
{
cout << "Restrict h at edge to " << loch << endl;
mesh -> RestrictLocalH (RESTRICTH_EDGE, vsmesh.SelectedEdge(), loch);
}
if (strcmp (argv[1], "point") == 0)
{
cout << "Restrict h at point to " << loch << endl;
mesh -> RestrictLocalH (RESTRICTH_POINT, vsmesh.SelectedPoint(), loch);
}
return TCL_OK;
}
int Ng_Anisotropy (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
if (argc != 2)
return TCL_OK;
if (!mesh.Ptr())
return TCL_OK;
if (strcmp (argv[1], "edge") == 0)
{
int edgenr = vsmesh.SelectedEdge();
for (int i = 1; i <= mesh->GetNSeg(); i++)
{
Segment & seg = mesh->LineSegment(i);
if (seg.edgenr == edgenr)
{
seg.singedge_left = 1 - seg.singedge_left;
seg.singedge_right = 1 - seg.singedge_right;
}
}
}
return TCL_OK;
}
BisectionOptions biopt;
void * BisectDummy (void *)
{
Refinement * ref;
MeshOptimize2d * opt = NULL;
if (stlgeometry)
ref = new RefinementSTLGeometry(*stlgeometry);
#ifdef OCCGEOMETRY
else if (occgeometry)
ref = new OCCRefinementSurfaces (*occgeometry);
#endif
#ifdef ACIS
else if (acisgeometry)
{
ref = new ACISRefinementSurfaces(*acisgeometry);
opt = new ACISMeshOptimize2dSurfaces(*acisgeometry);
ref->Set2dOptimizer(opt);
}
#endif
else
{
ref = new RefinementSurfaces(*geometry);
opt = new MeshOptimize2dSurfaces(*geometry);
ref->Set2dOptimizer(opt);
}
if(!mesh->LocalHFunctionGenerated())
mesh->CalcLocalH();
mesh->LocalHFunction().SetGrading (mparam.grading);
ref -> Bisect (*mesh, biopt);
mesh -> UpdateTopology();
mesh -> GetCurvedElements().BuildCurvedElements (ref, mparam.elementorder);
multithread.running = 0;
delete ref;
delete opt;
return NULL;
}
int Ng_Bisect (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
cout << "Thread alrad running" << endl;
return TCL_OK;
}
multithread.running = 1;
biopt.outfilename = NULL; // "ngfepp.vol";
biopt.femcode = "fepp";
biopt.refinementfilename = NULL;
if (argc >= 2)
biopt.refinementfilename = argv[1];
// pthread_create (&meshingthread, NULL, &BisectDummy, NULL);
BisectDummy (0);
/*
extern void BisectTets (Mesh &, const CSGeometry *);
BisectTets (*mesh, geometry);
*/
return TCL_OK;
}
// int Ng_BisectCopyMesh (ClientData clientData,
// Tcl_Interp * interp,
// int argc, tcl_const char *argv[])
// {
// if (!mesh.Ptr())
// {
// Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
// return TCL_ERROR;
// }
// if (multithread.running)
// {
// Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
// return TCL_ERROR;
// }
// BisectTetsCopyMesh (*mesh, geometry.Ptr(), biopt);
// return TCL_OK;
// }
int Ng_Split2Tets (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!mesh.Ptr())
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
if (multithread.running)
{
Tcl_SetResult (interp, err_jobrunning, TCL_STATIC);
return TCL_ERROR;
}
mesh->Split2Tets ();
return TCL_OK;
}
int Ng_STLDoctor (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
//cout << "STL doctor" << endl;
stldoctor.drawmeshededges =
atoi (Tcl_GetVar (interp, "::stldoctor.drawmeshededges", 0));
stldoctor.geom_tol_fact =
atof (Tcl_GetVar (interp, "::stldoctor.geom_tol_fact", 0));
stldoctor.useexternaledges =
atoi (Tcl_GetVar (interp, "::stldoctor.useexternaledges", 0));
stldoctor.showfaces =
atoi (Tcl_GetVar (interp, "::stldoctor.showfaces", 0));
stldoctor.conecheck =
atoi (Tcl_GetVar (interp, "::stldoctor.conecheck", 0));
stldoctor.spiralcheck =
atoi (Tcl_GetVar (interp, "::stldoctor.spiralcheck", 0));
stldoctor.selectwithmouse =
atoi (Tcl_GetVar (interp, "::stldoctor.selectwithmouse", 0));
stldoctor.showedgecornerpoints =
atoi (Tcl_GetVar (interp, "::stldoctor.showedgecornerpoints", 0));
stldoctor.showmarkedtrigs =
atoi (Tcl_GetVar (interp, "::stldoctor.showmarkedtrigs", 0));
stldoctor.showtouchedtrigchart =
atoi (Tcl_GetVar (interp, "::stldoctor.showtouchedtrigchart", 0));
//cout << "smt=" << stldoctor.showmarkedtrigs << endl;
stldoctor.dirtytrigfact =
atof (Tcl_GetVar (interp, "::stldoctor.dirtytrigfact", 0));
stldoctor.smoothnormalsweight =
atof (Tcl_GetVar (interp, "::stldoctor.smoothnormalsweight", 0));
stldoctor.smoothangle =
atof (Tcl_GetVar (interp, "::stldoctor.smoothangle", 0));
stldoctor.selectmode =
atoi (Tcl_GetVar (interp, "::stldoctor.selectmode", 0));
stldoctor.edgeselectmode =
atoi (Tcl_GetVar (interp, "::stldoctor.edgeselectmode", 0));
stldoctor.longlinefact =
atoi (Tcl_GetVar (interp, "::stldoctor.longlinefact", 0));
stldoctor.showexcluded =
atoi (Tcl_GetVar (interp, "::stldoctor.showexcluded", 0));
if (!stldoctor.selectwithmouse)
{
stldoctor.selecttrig =
atoi (Tcl_GetVar (interp, "::stldoctor.selecttrig", 0));
stldoctor.nodeofseltrig =
atoi (Tcl_GetVar (interp, "::stldoctor.nodeofseltrig", 0));
}
stldoctor.showvicinity =
atoi (Tcl_GetVar (interp, "::stldoctor.showvicinity", 0));
stldoctor.vicinity =
atoi (Tcl_GetVar (interp, "::stldoctor.vicinity", 0));
if (argc >= 2)
{
if (!stlgeometry)
{
Tcl_SetResult (interp, err_needsstlgeometry, TCL_STATIC);
return TCL_ERROR;
}
if (strcmp (argv[1], "destroy0trigs") == 0)
{
stlgeometry->DestroyDirtyTrigs();
}
else if (strcmp (argv[1], "movepointtomiddle") == 0)
{
stlgeometry->MoveSelectedPointToMiddle();
}
else if (strcmp (argv[1], "calcnormals") == 0)
{
stlgeometry->CalcNormalsFromGeometry();
}
else if (strcmp (argv[1], "showchartnum") == 0)
{
stlgeometry->ShowSelectedTrigChartnum();
}
else if (strcmp (argv[1], "showcoords") == 0)
{
stlgeometry->ShowSelectedTrigCoords();
}
else if (strcmp (argv[1], "loadmarkedtrigs") == 0)
{
stlgeometry->LoadMarkedTrigs();
}
else if (strcmp (argv[1], "savemarkedtrigs") == 0)
{
stlgeometry->SaveMarkedTrigs();
}
else if (strcmp (argv[1], "neighbourangles") == 0)
{
stlgeometry->NeighbourAnglesOfSelectedTrig();
}
else if (strcmp (argv[1], "vicinity") == 0)
{
stlgeometry->CalcVicinity(stldoctor.selecttrig);
}
else if (strcmp (argv[1], "markdirtytrigs") == 0)
{
stlgeometry->MarkDirtyTrigs();
}
else if (strcmp (argv[1], "smoothdirtytrigs") == 0)
{
stlgeometry->SmoothDirtyTrigs();
}
else if (strcmp (argv[1], "smoothrevertedtrigs") == 0)
{
stlgeometry->GeomSmoothRevertedTrigs();
}
else if (strcmp (argv[1], "invertselectedtrig") == 0)
{
stlgeometry->InvertTrig(stlgeometry->GetSelectTrig());
}
else if (strcmp (argv[1], "deleteselectedtrig") == 0)
{
stlgeometry->DeleteTrig(stlgeometry->GetSelectTrig());
}
else if (strcmp (argv[1], "smoothgeometry") == 0)
{
stlgeometry->SmoothGeometry();
}
else if (strcmp (argv[1], "orientafterselectedtrig") == 0)
{
stlgeometry->OrientAfterTrig(stlgeometry->GetSelectTrig());
}
else if (strcmp (argv[1], "marktoperrortrigs") == 0)
{
stlgeometry->MarkTopErrorTrigs();
}
else if (strcmp (argv[1], "exportedges") == 0)
{
stlgeometry->ExportEdges();
}
else if (strcmp (argv[1], "importedges") == 0)
{
stlgeometry->ImportEdges();
}
else if (strcmp (argv[1], "importexternaledges") == 0)
{
stlgeometry->ImportExternalEdges(argv[2]);
}
else if (strcmp (argv[1], "loadedgedata") == 0)
{
if (argc >= 3)
{
stlgeometry->LoadEdgeData(argv[2]);
}
}
else if (strcmp (argv[1], "saveedgedata") == 0)
{
if (argc >= 3)
{
stlgeometry->SaveEdgeData(argv[2]);
}
}
else if (strcmp (argv[1], "buildexternaledges") == 0)
{
stlgeometry->BuildExternalEdgesFromEdges();
}
else if (strcmp (argv[1], "smoothnormals") == 0)
{
stlgeometry->SmoothNormals();
}
else if (strcmp (argv[1], "marknonsmoothnormals") == 0)
{
stlgeometry->MarkNonSmoothNormals();
}
else if (strcmp (argv[1], "addexternaledge") == 0)
{
stlgeometry->AddExternalEdgeAtSelected();
}
else if (strcmp (argv[1], "addgeomline") == 0)
{
stlgeometry->AddExternalEdgesFromGeomLine();
}
else if (strcmp (argv[1], "addlonglines") == 0)
{
stlgeometry->AddLongLinesToExternalEdges();
}
else if (strcmp (argv[1], "addclosedlines") == 0)
{
stlgeometry->AddClosedLinesToExternalEdges();
}
else if (strcmp (argv[1], "addnotsinglelines") == 0)
{
stlgeometry->AddAllNotSingleLinesToExternalEdges();
}
else if (strcmp (argv[1], "deletedirtyexternaledges") == 0)
{
stlgeometry->DeleteDirtyExternalEdges();
}
else if (strcmp (argv[1], "deleteexternaledge") == 0)
{
stlgeometry->DeleteExternalEdgeAtSelected();
}
else if (strcmp (argv[1], "deletevicexternaledge") == 0)
{
stlgeometry->DeleteExternalEdgeInVicinity();
}
else if (strcmp (argv[1], "addlonglines") == 0)
{
stlgeometry->STLDoctorLongLinesToCandidates();
}
else if (strcmp (argv[1], "deletedirtyedges") == 0)
{
stlgeometry->STLDoctorDirtyEdgesToCandidates();
}
else if (strcmp (argv[1], "undoedgechange") == 0)
{
stlgeometry->UndoEdgeChange();
}
else if (strcmp (argv[1], "buildedges") == 0)
{
stlgeometry->STLDoctorBuildEdges();
}
else if (strcmp (argv[1], "confirmedge") == 0)
{
stlgeometry->STLDoctorConfirmEdge();
}
else if (strcmp (argv[1], "candidateedge") == 0)
{
stlgeometry->STLDoctorCandidateEdge();
}
else if (strcmp (argv[1], "excludeedge") == 0)
{
stlgeometry->STLDoctorExcludeEdge();
}
else if (strcmp (argv[1], "undefinededge") == 0)
{
stlgeometry->STLDoctorUndefinedEdge();
}
else if (strcmp (argv[1], "setallundefinededges") == 0)
{
stlgeometry->STLDoctorSetAllUndefinedEdges();
}
else if (strcmp (argv[1], "erasecandidateedges") == 0)
{
stlgeometry->STLDoctorEraseCandidateEdges();
}
else if (strcmp (argv[1], "confirmcandidateedges") == 0)
{
stlgeometry->STLDoctorConfirmCandidateEdges();
}
else if (strcmp (argv[1], "confirmedtocandidateedges") == 0)
{
stlgeometry->STLDoctorConfirmedToCandidateEdges();
}
}
return TCL_OK;
}
extern int Ng_MeshDoctor (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[]);
int Ng_STLInfo (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
double data[10];
static char buf[20];
if (!stlgeometry)
{
Tcl_SetResult (interp, err_needsstlgeometry, TCL_STATIC);
return TCL_ERROR;
}
if (stlgeometry)
{
stlgeometry->STLInfo(data);
// cout << "NT=" << data[0] << endl;
if (argc == 2)
{
if (strcmp (argv[1], "status") == 0)
{
switch (stlgeometry->GetStatus())
{
case STLGeometry::STL_GOOD:
strcpy (buf, "GOOD"); break;
case STLGeometry::STL_WARNING:
strcpy (buf, "WARNING"); break;
case STLGeometry::STL_ERROR:
strcpy (buf, "ERROR"); break;
}
Tcl_SetResult (interp, buf, TCL_STATIC);
return TCL_OK;
}
if (strcmp (argv[1], "statustext") == 0)
{
Tcl_SetResult (interp, (char*)stlgeometry->GetStatusText().c_str(), TCL_STATIC);
return TCL_OK;
}
if (strcmp (argv[1], "topology_ok") == 0)
{
sprintf (buf, "%d", stlgeometry->Topology_Ok());
Tcl_SetResult (interp, buf, TCL_STATIC);
}
if (strcmp (argv[1], "orientation_ok") == 0)
{
sprintf (buf, "%d", stlgeometry->Orientation_Ok());
Tcl_SetResult (interp, buf, TCL_STATIC);
}
}
}
else
{
data[0] = 0;
data[1] = 0;
data[2] = 0;
data[3] = 0;
data[4] = 0;
data[5] = 0;
data[6] = 0;
data[7] = 0;
}
sprintf (buf, "%i", (int)data[0]);
Tcl_SetVar (interp, argv[1], buf, 0);
sprintf (buf, "%5.3g", data[1]);
Tcl_SetVar (interp, argv[2], buf, 0);
sprintf (buf, "%5.3g", data[2]);
Tcl_SetVar (interp, argv[3], buf, 0);
sprintf (buf, "%5.3g", data[3]);
Tcl_SetVar (interp, argv[4], buf, 0);
sprintf (buf, "%5.3g", data[4]);
Tcl_SetVar (interp, argv[5], buf, 0);
sprintf (buf, "%5.3g", data[5]);
Tcl_SetVar (interp, argv[6], buf, 0);
sprintf (buf, "%5.3g", data[6]);
Tcl_SetVar (interp, argv[7], buf, 0);
sprintf (buf, "%i", (int)data[7]);
Tcl_SetVar (interp, argv[8], buf, 0);
return TCL_OK;
}
int Ng_STLCalcLocalH (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
Ng_SetSTLParameters (clientData, interp, argc, argv);
Ng_SetMeshingParameters (clientData, interp, argc, argv);
if (mesh.Ptr() && stlgeometry)
{
mesh -> SetLocalH (stlgeometry->GetBoundingBox().PMin() - Vec3d(10, 10, 10),
stlgeometry->GetBoundingBox().PMax() + Vec3d(10, 10, 10),
mparam.grading);
stlgeometry -> RestrictLocalH(*mesh, mparam.maxh);
if (stlparam.resthsurfmeshcurvenable)
mesh -> CalcLocalHFromSurfaceCurvature (stlparam.resthsurfmeshcurvfac);
}
return TCL_OK;
}
SYMBOLTABLE<VisualScene*> & GetVisualizationScenes ()
{
static SYMBOLTABLE<VisualScene*> vss;
return vss;
}
void AddVisualizationScene (const string & name,
VisualScene * avs)
{
GetVisualizationScenes().Set (name.c_str(), avs);
}
void SetVisualScene (Tcl_Interp * interp)
{
#ifdef OPENGL
#ifndef SMALLLIB
const char * vismode = vispar.selectvisual;
// Tcl_GetVar (interp, "selectvisual", 0);
vs = &vscross;
if (GetVisualizationScenes().Used(vismode))
{
vs = GetVisualizationScenes().Get(vismode);
}
else if (vismode)
{
if (strcmp (vismode, "geometry") == 0)
{
if (stlgeometry != NULL)
vs = &vsstlmeshing;
else if (geometry2d)
vs = &vsgeom2d;
#ifdef OCCGEOMETRY
else if (occgeometry)
vs = &vsoccgeom;
#endif // OCCGEOMETRY
#ifdef ACIS
else if (acisgeometry)
vs = &vsacisgeom;
#endif // ACIS
else
vs = &vsgeom;
// vs = &vsstlgeom;
}
if (strcmp (vismode, "mesh") == 0)
{
if (!meshdoctor.active)
vs = &vsmesh;
else
vs = &vsmeshdoc;
}
// if (strcmp (vismode, "surfmeshing") == 0) vs = &vssurfacemeshing;
if (strcmp (vismode, "specpoints") == 0) vs = &vsspecpoints;
// if (strcmp (vismode, "solution") == 0) vs = &vssolution;
}
#endif // !SMALLLIB
#endif // OPENGL
}
2009-01-20 14:08:01 +05:00
#if TOGL_MAJOR_VERSION==1
// Togl
2009-01-13 04:40:13 +05:00
static void init( struct Togl *togl )
{
VisualScene::fontbase = Togl_LoadBitmapFont( togl, TOGL_BITMAP_8_BY_13 );
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
glMatrixMode(GL_MODELVIEW);
SetVisualScene (Togl_Interp(togl));
vs->DrawScene();
}
static void zap( struct Togl *togl )
{
;
}
static void draw( struct Togl *togl )
{
Tcl_Interp * interp = Togl_Interp(togl);
SetVisualScene (interp);
#ifdef STEREO
if (1) // vispar.stereo)
{
glMatrixMode (GL_MODELVIEW);
glPushMatrix();
glLoadIdentity ();
// glTranslatef (0.1, 0, 0);
gluLookAt (0.3, 0, 6, 0, 0, 0, 0, 1, 0);
Togl_StereoDrawBuffer(GL_BACK_RIGHT);
vs->DrawScene();
glLoadIdentity ();
// glTranslatef (-0.1, 0, 0);
gluLookAt (-0.3, 0, 6, 0, 0, 0, 0, 1, 0);
Togl_StereoDrawBuffer(GL_BACK_LEFT);
vs->DrawScene();
glPopMatrix();
Togl_SwapBuffers(togl);
}
else
#endif
{
glPushMatrix();
glLoadIdentity();
// gluLookAt (0, 0, 6, 0, 0, 0, 0, 1, 0);
vs->DrawScene();
Togl_SwapBuffers(togl);
glPopMatrix();
}
}
2009-01-20 14:08:01 +05:00
static void reshape( struct Togl *togl)
{
int w = Togl_Width (togl);
int h = Togl_Height (togl);
glViewport(0, 0, w, h);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluPerspective(20.0f, double(w) / h, pnear, pfar);
glMatrixMode(GL_MODELVIEW);
draw (togl);
}
#else
// Sorry, Togl 2.0 not supported
#endif
#if TOGL_MAJOR_VERSION==1
2009-01-13 04:40:13 +05:00
#ifndef VIDEOCLIP
static int Ng_SnapShot (struct Togl * togl,
int argc, tcl_const char *argv[])
{
const char * filename = argv[2];
char str[250];
char filename2[250];
int len = strlen(filename);
strcpy (filename2, filename);
filename2[len-3] = 'p';
filename2[len-2] = 'p';
filename2[len-1] = 'm';
filename2[len] = 0;
cout << "Snapshot to file '" << filename << endl;
int w = Togl_Width (togl);
w = int((w + 1) / 4) * 4 + 4;
int h = Togl_Height (togl);
// unsigned char * buffer = new unsigned char[w*h*4];
unsigned char * buffer = new unsigned char[w*h*3];
glReadPixels (0, 0, w, h, GL_RGB, GL_UNSIGNED_BYTE, buffer);
ofstream outfile(filename2);
outfile << "P6" << endl
<< "# CREATOR: Netgen" << endl
<< w << " " << h << endl
<< "255" << endl;
for (int i = 0; i < h; i++)
for (int j = 0; j < w; j++)
for (int k = 0; k < 3; k++)
outfile.put (buffer[k+3*j+3*w*(h-i-1)]);
outfile << flush;
delete[] buffer;
// convert image file (Unix/Linux only):
sprintf(str,"convert -quality 100 %s %s", filename2, filename);
int err = system(str);
if (err != 0)
{
Tcl_SetResult (Togl_Interp(togl), (char*)"Cannot convert image file", TCL_VOLATILE);
return TCL_ERROR;
}
sprintf(str,"rm %s", filename2);
system(str);
return TCL_OK;
}
#else
static int Ng_SnapShot (struct Togl * togl,
int argc, tcl_const char *argv[])
{
const char * filename = argv[2];
int len = strlen(filename);
if (strcmp ("jpg", filename+len-3) == 0)
{
cout << "Snapshot to file '" << filename << "'" << endl;
int w = Togl_Width (togl);
w = int((w + 1) / 4) * 4 + 4;
int h = Togl_Height (togl);
// unsigned char * buffer = new unsigned char[w*h*4];
unsigned char * buffer = new unsigned char[w*h*3];
glReadPixels (0, 0, w, h, GL_RGB, GL_UNSIGNED_BYTE, buffer);
struct jpeg_compress_struct cinfo;
struct jpeg_error_mgr jerr;
FILE *outfile = fopen(filename,"wb");
JSAMPROW row_pointer[1];
int row_stride, quality = 85; // 1...100
cinfo.err = jpeg_std_error( &jerr );
jpeg_create_compress( &cinfo );
jpeg_stdio_dest( &cinfo, outfile );
cinfo.image_width = w;
cinfo.image_height = h;
cinfo.input_components = 3;
cinfo.in_color_space = JCS_RGB;
jpeg_set_defaults( &cinfo );
jpeg_set_quality( &cinfo, quality, TRUE );
jpeg_start_compress( &cinfo, TRUE );
row_stride = 3*w;
while( cinfo.next_scanline < cinfo.image_height ) {
row_pointer[0] = &buffer[ (h-1-cinfo.next_scanline) * row_stride ];
(void)jpeg_write_scanlines( &cinfo, row_pointer, 1 );
}
jpeg_finish_compress( &cinfo );
fclose( outfile );
jpeg_destroy_compress( &cinfo );
fprintf( stdout, "done [ok]\n" );
fflush( stdout );
free( buffer );
return TCL_OK;
}
else
{
cout << "Snapshot to " << filename << " not supported" << endl;
return TCL_ERROR;
}
}
#endif
#ifdef VIDEOCLIP
// VIDEO CLIP:
#define INBUF_SIZE 4096
#define STATE_READY 0
#define STATE_STARTED 1
#define DEFAULT_B_FRAMES 3
// #define DEFAULT_B_FRAMES 0
#define DEFAULT_GOP_SIZE 200
// #define DEFAULT_GOP_SIZE 10
// #define DEFAULT_BITRATE 500000
#define DEFAULT_BITRATE 5000000
// #define DEFAULT_MPG_BUFSIZE 500000
#define DEFAULT_MPG_BUFSIZE 500000
typedef struct buffer_s {
uint8_t *MPG;
uint8_t *YUV;
uint8_t *RGB;
uint8_t *ROW;
} buffer_t;
void free_buffers( buffer_t *buff ) {
free( buff->MPG );
free( buff->YUV );
free( buff->RGB );
free( buff->ROW );
}
static double psnr( double d ) {
if( d==0 )
return INFINITY;
return -10.0*log( d )/log( 10.0 );
}
void print_info( int count_frames, AVCodecContext *context, int bytes ) {
double tmp = context->width * context->height * 255.0 * 255.0;
double Ypsnr = psnr( context->coded_frame->error[0] / tmp );
double quality = context->coded_frame->quality/(double)FF_QP2LAMBDA;
char pict_type = av_get_pict_type_char(context->coded_frame->pict_type);
cout << "video: frame=" << count_frames << " type=" << pict_type;
cout << " size=" << bytes << " PSNR(Y)=" << Ypsnr << " dB q=" << (float)quality << endl;
}
static int Ng_VideoClip (struct Togl * togl,
int argc, tcl_const char *argv[])
{
static AVCodec *codec = NULL;
static AVCodecContext *context = NULL;
static AVFrame *YUVpicture = NULL;
static AVFrame *RGBpicture = NULL;
static int bytes, PIXsize, stride;
static int y, nx, ny, ox, oy, viewp[4];
static int i_state = STATE_READY;
static int initialized = 0;
static int count_frames = 0;
static int bitrate = DEFAULT_BITRATE;
static int gopsize = DEFAULT_GOP_SIZE;
static int bframes = DEFAULT_B_FRAMES;
static int MPGbufsize = DEFAULT_MPG_BUFSIZE;
static CodecID codec_id = CODEC_ID_MPEG1VIDEO;
static FILE *MPGfile;
static buffer_t buff;
if (strcmp (argv[2], "init") == 0)
{
// Can't initialize when running:
//-------------------------------
if( i_state != STATE_READY ) {
cout << "cannot initialize: already running" << endl;
return TCL_ERROR;
}
// Open output file:
//-------------------
const char * filename = argv[3];
cout << "Saving videoclip to file '" << filename << "'" << endl;
MPGfile = fopen(filename, "wb");
// Determine picture size:
//------------------------
nx = Togl_Width (togl);
nx = int((nx + 1) / 4) * 4 + 4;
ny = Togl_Height (togl);
ny = 2 * (ny/2);
cout << "Width=" << nx << ", height=" << ny << endl;
// Allocate buffers:
//------------------
PIXsize = nx*ny;
stride = 3*nx;
buff.RGB = (uint8_t*)malloc(stride*ny);
buff.ROW = (uint8_t*)malloc(stride);
buff.YUV = (uint8_t*)malloc(3*(PIXsize/2));
buff.MPG = (uint8_t*)malloc(MPGbufsize);
// Initialize libavcodec:
//-----------------------
if( !initialized ) {
avcodec_init();
avcodec_register_all();
initialized = 1;
}
// Choose codec:
//--------------
codec = avcodec_find_encoder( codec_id );
if( !codec ) {
free_buffers( &buff );
fclose( MPGfile );
cout << "can't find codec" << endl;
return TCL_ERROR;
}
// Init codec context etc.:
//--------------------------
context = avcodec_alloc_context();
context->bit_rate = bitrate;
context->width = nx;
context->height = ny;
context->time_base = (AVRational){ 1, 25 };
context->gop_size = gopsize;
context->max_b_frames = bframes;
context->pix_fmt = PIX_FMT_YUV420P;
context->flags |= CODEC_FLAG_PSNR;
if( avcodec_open( context, codec ) < 0 ) {
avcodec_close( context );
av_free( context );
free_buffers( &buff );
fclose( MPGfile );
cout << "can't open codec" << endl;
return TCL_ERROR;
}
YUVpicture = avcodec_alloc_frame();
YUVpicture->data[0] = buff.YUV;
YUVpicture->data[1] = buff.YUV + PIXsize;
YUVpicture->data[2] = buff.YUV + PIXsize + PIXsize / 4;
YUVpicture->linesize[0] = nx;
YUVpicture->linesize[1] = nx / 2;
YUVpicture->linesize[2] = nx / 2;
RGBpicture = avcodec_alloc_frame();
RGBpicture->data[0] = buff.RGB;
RGBpicture->data[1] = buff.RGB;
RGBpicture->data[2] = buff.RGB;
RGBpicture->linesize[0] = stride;
RGBpicture->linesize[1] = stride;
RGBpicture->linesize[2] = stride;
// Set state "started":
//----------------------
i_state = STATE_STARTED;
cout << "savempg: state: started" << endl;
return TCL_OK;
}
else if (strcmp (argv[2], "addframe") == 0)
{
// Can't compress if status != started:
//-------------------------------------
if( i_state != STATE_STARTED ) {
cout << "cannot add frame: codec not initialized" << endl;
return TCL_ERROR;
}
// Read RGB data:
//---------------
glReadPixels (0, 0, nx, ny, GL_RGB, GL_UNSIGNED_BYTE, buff.RGB );
// The picture is upside down - flip it:
//---------------------------------------
for( y=0; y<ny/2; y++ ) {
uint8_t *r1 = buff.RGB + stride*y;
uint8_t *r2 = buff.RGB + stride*(ny-1-y);
memcpy( buff.ROW, r1, stride );
memcpy( r1, r2, stride );
memcpy( r2, buff.ROW, stride );
}
// Convert to YUV:
//----------------
img_convert( (AVPicture*)YUVpicture, PIX_FMT_YUV420P,
(AVPicture*)RGBpicture, PIX_FMT_RGB24, nx, ny );
// Encode frame:
//--------------
bytes = avcodec_encode_video( context, buff.MPG,
MPGbufsize, YUVpicture );
count_frames++;
print_info( count_frames, context, bytes );
fwrite( buff.MPG, 1, bytes, MPGfile );
return TCL_OK;
}
else if (strcmp (argv[2], "finalize") == 0)
{
// Can't stop if status != started:
//---------------------------------
if( i_state != STATE_STARTED ) {
cout << "cannot finalize: codec not initialized" << endl;
return TCL_ERROR;
}
// Get the delayed frames, if any:
//--------------------------------
for( ; bytes; ) {
bytes = avcodec_encode_video( context, buff.MPG, MPGbufsize, NULL );
count_frames++;
print_info( count_frames, context, bytes );
fwrite( buff.MPG, 1, bytes, MPGfile );
}
// Add sequence end code:
//-----------------------
if( codec_id == CODEC_ID_MPEG1VIDEO ) {
buff.MPG[0] = 0x00;
buff.MPG[1] = 0x00;
buff.MPG[2] = 0x01;
buff.MPG[3] = 0xb7;
fwrite( buff.MPG, 1, 4, MPGfile );
}
// Finalize:
//-----------
avcodec_close( context );
av_free( context );
av_free( YUVpicture );
av_free( RGBpicture );
free_buffers( &buff );
fclose( MPGfile );
i_state = STATE_READY;
cout << "finalized" << endl;
return TCL_OK;
}
}
#else
static int Ng_VideoClip (struct Togl * togl,
int argc, tcl_const char *argv[])
{
return TCL_OK;
}
#endif
2009-01-20 14:08:01 +05:00
#endif
2009-01-13 04:40:13 +05:00
int Ng_MouseMove (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
int oldx, oldy;
int newx, newy;
oldx = atoi (argv[1]);
oldy = atoi (argv[2]);
newx = atoi (argv[3]);
newy = atoi (argv[4]);
SetVisualScene(interp);
vs->MouseMove (oldx, oldy, newx, newy, argv[5][0]);
return TCL_OK;
}
int Ng_MouseDblClick (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
int px, py;
px = atoi (argv[1]);
py = atoi (argv[2]);
SetVisualScene(interp);
vs->MouseDblClick (px, py);
return TCL_OK;
}
int Ng_ZoomAll (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
SetVisualScene(interp);
vs->BuildScene (1);
return TCL_OK;
}
int Ng_Center (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
SetVisualScene(interp);
vs->BuildScene (2);
return TCL_OK;
}
int Ng_StandardRotation (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
SetVisualScene(interp);
vs->StandardRotation (argv[1]);
return TCL_OK;
}
int Ng_ArbitraryRotation (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
SetVisualScene(interp);
ARRAY<double> alpha;
ARRAY<Vec3d> vec;
for(int i=1; i<argc; i+=4)
{
alpha.Append(atof(argv[i]));
vec.Append(Vec3d(atof(argv[i+1]),atof(argv[i+2]),atof(argv[i+3])));
}
vs->ArbitraryRotation (alpha,vec);
return TCL_OK;
}
int Ng_Metis (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
#ifdef METIS
if (!mesh)
{
Tcl_SetResult (interp, err_needsmesh, TCL_STATIC);
return TCL_ERROR;
}
// METIS Partitioning
if (mesh->GetDimension() == 3)
{
using namespace metis;
int ne = mesh->GetNE();
if (ne < 3)
{
Tcl_SetResult (interp, "This operation needs a volume mesh", TCL_STATIC);
return TCL_ERROR;
}
int nn = mesh->GetNP();
ELEMENT_TYPE elementtype = mesh->VolumeElement(1).GetType();
int npe = mesh->VolumeElement(1).GetNP();
for (int i = 2; i<=ne; i++)
if (mesh->VolumeElement(i).GetType() != elementtype)
{
Tcl_SetResult (interp, "Works in 3D only uniformal tet or hex meshes", TCL_STATIC);
return TCL_ERROR;
}
idxtype *elmnts;
elmnts = new idxtype[ne*npe];
int etype;
if (elementtype == TET)
etype = 2;
else if (elementtype == HEX)
etype = 3;
else
{
Tcl_SetResult (interp, "Works in 3D only uniformal tet or hex meshes", TCL_STATIC);
return TCL_ERROR;
}
for (int i=1; i<=ne; i++)
for (int j=1; j<=npe; j++)
elmnts[(i-1)*npe+(j-1)] = mesh->VolumeElement(i).PNum(j)-1;
int numflag = 0;
int nparts = atoi (argv[1]);
int edgecut;
idxtype *epart, *npart;
epart = new idxtype[ne];
npart = new idxtype[nn];
cout << "Starting Metis (" << ne << " Elements, " << nn << " Nodes, " << nparts << " Partitions) ... " << flush;
METIS_PartMeshNodal (&ne, &nn, elmnts, &etype, &numflag, &nparts,
&edgecut, epart, npart);
cout << "done" << endl;
cout << "edge-cut: " << edgecut << ", balance: " << ComputeElementBalance(ne, nparts, epart) << endl;
for (int i=1; i<=ne; i++)
mesh->VolumeElement(i).SetPartition(epart[i-1]);
mesh->SetNextTimeStamp();
}
#endif
return TCL_OK;
}
int Ng_SetOCCVisParameters (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
#ifdef OCCGEOMETRY
int showvolume;
showvolume = atoi (Tcl_GetVar (interp, "::occoptions.showvolumenr", 0));
if (showvolume != vispar.occshowvolumenr)
{
if (showvolume < 0 || showvolume > occgeometry->NrSolids())
{
char buf[20];
sprintf (buf, "%5i", vispar.occshowvolumenr);
Tcl_SetVar (interp, "::occoptions.showvolumenr", buf, 0);
}
else
{
vispar.occshowvolumenr = showvolume;
if (occgeometry)
occgeometry -> changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
}
int temp;
temp = atoi (Tcl_GetVar (interp, "::occoptions.visproblemfaces", 0));
if ((bool) temp != vispar.occvisproblemfaces)
{
vispar.occvisproblemfaces = temp;
if (occgeometry)
occgeometry -> changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
vispar.occshowsurfaces = atoi (Tcl_GetVar (interp, "::occoptions.showsurfaces", 0));
vispar.occshowedges = atoi (Tcl_GetVar (interp, "::occoptions.showedges", 0));
vispar.occzoomtohighlightedentity = atoi (Tcl_GetVar (interp, "::occoptions.zoomtohighlightedentity", 0));
vispar.occdeflection = pow(10.0,-1-atof (Tcl_GetVar (interp, "::occoptions.deflection", 0)));
#endif
#ifdef ACIS
vispar.ACISshowfaces = atoi (Tcl_GetVar (interp, "::occoptions.showsurfaces", 0));
vispar.ACISshowedges = atoi (Tcl_GetVar (interp, "::occoptions.showedges", 0));
vispar.ACISshowsolidnr = atoi (Tcl_GetVar (interp, "::occoptions.showsolidnr", 0));
vispar.ACISshowsolidnr2 = atoi (Tcl_GetVar (interp, "::occoptions.showsolidnr2", 0));
#endif
return TCL_OK;
}
void SelectFaceInOCCDialogTree (int facenr)
{
char script[50];
sprintf (script, "selectentity {Face %i}", facenr);
int errcode = Tcl_GlobalEval (tcl_interp, script);
}
int Ng_GetOCCData (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
#ifdef OCCGEOMETRY
static char buf[1000];
buf[0] = 0;
stringstream str;
if (argc >= 2)
{
if (strcmp (argv[1], "getentities") == 0)
{
if (occgeometry)
{
occgeometry->GetTopologyTree(str);
}
}
}
Tcl_SetResult (interp, (char*)str.str().c_str(), TCL_VOLATILE);
#endif
return TCL_OK;
}
int Ng_OCCCommand (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
#ifdef OCCGEOMETRY
stringstream str;
if (argc >= 2)
{
if (strcmp (argv[1], "isoccgeometryloaded") == 0)
{
if (occgeometry)
str << "1 " << flush;
else str << "0 " << flush;
Tcl_SetResult (interp, (char*)str.str().c_str(), TCL_VOLATILE);
}
if (occgeometry)
{
if (strcmp (argv[1], "buildvisualizationmesh") == 0)
{
occgeometry->BuildVisualizationMesh();
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
if (strcmp (argv[1], "mesherror") == 0)
{
if (occgeometry->ErrorInSurfaceMeshing())
str << 1;
else
str << 0;
}
if (strcmp (argv[1], "sewfaces") == 0)
{
cout << "Before operation:" << endl;
occgeometry->PrintNrShapes();
occgeometry->SewFaces();
occgeometry->BuildFMap();
cout << endl << "After operation:" << endl;
occgeometry->PrintNrShapes();
occgeometry->BuildVisualizationMesh();
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
if (strcmp (argv[1], "makesolid") == 0)
{
cout << "Before operation:" << endl;
occgeometry->PrintNrShapes();
occgeometry->MakeSolid();
occgeometry->BuildFMap();
cout << endl << "After operation:" << endl;
occgeometry->PrintNrShapes();
occgeometry->BuildVisualizationMesh();
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
if (strcmp (argv[1], "upgradetopology") == 0)
{
cout << "Before operation:" << endl;
occgeometry->PrintNrShapes();
occgeometry->SewFaces();
occgeometry->MakeSolid();
occgeometry->BuildFMap();
cout << endl << "After operation:" << endl;
occgeometry->PrintNrShapes();
occgeometry->BuildVisualizationMesh();
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
if (strcmp (argv[1], "shapehealing") == 0)
{
occgeometry->tolerance =
atof (Tcl_GetVar (interp, "::occoptions.tolerance", 0));
occgeometry->fixsmalledges =
atoi (Tcl_GetVar (interp, "::occoptions.fixsmalledges", 0));
occgeometry->fixspotstripfaces =
atoi (Tcl_GetVar (interp, "::occoptions.fixspotstripfaces", 0));
occgeometry->sewfaces =
atoi (Tcl_GetVar (interp, "::occoptions.sewfaces", 0));
occgeometry->makesolids =
atoi (Tcl_GetVar (interp, "::occoptions.makesolids", 0));
occgeometry->splitpartitions =
atoi (Tcl_GetVar (interp, "::occoptions.splitpartitions", 0));
// cout << "Before operation:" << endl;
// occgeometry->PrintNrShapes();
occgeometry->HealGeometry();
occgeometry->BuildFMap();
// cout << endl << "After operation:" << endl;
// occgeometry->PrintNrShapes();
occgeometry->BuildVisualizationMesh();
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
if (strcmp (argv[1], "highlightentity") == 0)
{
if (strcmp (argv[2], "Face") == 0)
{
int nr = atoi (argv[3]);
occgeometry->LowLightAll();
occgeometry->fvispar[nr-1].Highlight();
if (vispar.occzoomtohighlightedentity)
occgeometry->changed = OCCGEOMETRYVISUALIZATIONFULLCHANGE;
else
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
if (strcmp (argv[2], "Shell") == 0)
{
int nr = atoi (argv[3]);
occgeometry->LowLightAll();
TopExp_Explorer exp;
for (exp.Init (occgeometry->shmap(nr), TopAbs_FACE);
exp.More(); exp.Next())
{
int i = occgeometry->fmap.FindIndex (TopoDS::Face(exp.Current()));
occgeometry->fvispar[i-1].Highlight();
}
if (vispar.occzoomtohighlightedentity)
occgeometry->changed = OCCGEOMETRYVISUALIZATIONFULLCHANGE;
else
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
if (strcmp (argv[2], "Solid") == 0)
{
int nr = atoi (argv[3]);
occgeometry->LowLightAll();
TopExp_Explorer exp;
for (exp.Init (occgeometry->somap(nr), TopAbs_FACE);
exp.More(); exp.Next())
{
int i = occgeometry->fmap.FindIndex (TopoDS::Face(exp.Current()));
occgeometry->fvispar[i-1].Highlight();
}
if (vispar.occzoomtohighlightedentity)
occgeometry->changed = OCCGEOMETRYVISUALIZATIONFULLCHANGE;
else
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
/*
if (strcmp (argv[2], "CompSolid") == 0)
{
int nr = atoi (argv[3]);
occgeometry->LowLightAll();
TopExp_Explorer exp;
for (exp.Init (occgeometry->cmap(nr), TopAbs_FACE);
exp.More(); exp.Next())
{
int i = occgeometry->fmap.FindIndex (TopoDS::Face(exp.Current()));
occgeometry->fvispar[i-1].Highlight();
}
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
*/
if (strcmp (argv[2], "Edge") == 0)
{
int nr = atoi (argv[3]);
occgeometry->LowLightAll();
occgeometry->evispar[nr-1].Highlight();
if (vispar.occzoomtohighlightedentity)
occgeometry->changed = OCCGEOMETRYVISUALIZATIONFULLCHANGE;
else
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
if (strcmp (argv[2], "Wire") == 0)
{
int nr = atoi (argv[3]);
occgeometry->LowLightAll();
TopExp_Explorer exp;
for (exp.Init (occgeometry->wmap(nr), TopAbs_EDGE);
exp.More(); exp.Next())
{
int i = occgeometry->emap.FindIndex (TopoDS::Edge(exp.Current()));
occgeometry->evispar[i-1].Highlight();
}
if (vispar.occzoomtohighlightedentity)
occgeometry->changed = OCCGEOMETRYVISUALIZATIONFULLCHANGE;
else
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
if (strcmp (argv[2], "Vertex") == 0)
{
int nr = atoi (argv[3]);
occgeometry->LowLightAll();
occgeometry->vvispar[nr-1].Highlight();
if (vispar.occzoomtohighlightedentity)
occgeometry->changed = OCCGEOMETRYVISUALIZATIONFULLCHANGE;
else
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
}
}
if (strcmp (argv[1], "show") == 0)
{
int nr = atoi (argv[3]);
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
if (strcmp (argv[2], "Face") == 0)
{
occgeometry->fvispar[nr-1].Show();
}
if (strcmp (argv[2], "Shell") == 0)
{
TopExp_Explorer exp;
for (exp.Init (occgeometry->shmap(nr), TopAbs_FACE);
exp.More(); exp.Next())
{
int i = occgeometry->fmap.FindIndex (TopoDS::Face(exp.Current()));
occgeometry->fvispar[i-1].Show();
}
}
if (strcmp (argv[2], "Solid") == 0)
{
TopExp_Explorer exp;
for (exp.Init (occgeometry->somap(nr), TopAbs_FACE);
exp.More(); exp.Next())
{
int i = occgeometry->fmap.FindIndex (TopoDS::Face(exp.Current()));
occgeometry->fvispar[i-1].Show();
}
}
if (strcmp (argv[2], "Edge") == 0)
{
occgeometry->evispar[nr-1].Show();
}
if (strcmp (argv[2], "Wire") == 0)
{
TopExp_Explorer exp;
for (exp.Init (occgeometry->wmap(nr), TopAbs_EDGE);
exp.More(); exp.Next())
{
int i = occgeometry->emap.FindIndex (TopoDS::Edge(exp.Current()));
occgeometry->evispar[i-1].Show();
}
}
}
if (strcmp (argv[1], "hide") == 0)
{
int nr = atoi (argv[3]);
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
if (strcmp (argv[2], "Face") == 0)
{
occgeometry->fvispar[nr-1].Hide();
}
if (strcmp (argv[2], "Shell") == 0)
{
TopExp_Explorer exp;
for (exp.Init (occgeometry->shmap(nr), TopAbs_FACE);
exp.More(); exp.Next())
{
int i = occgeometry->fmap.FindIndex (TopoDS::Face(exp.Current()));
occgeometry->fvispar[i-1].Hide();
}
}
if (strcmp (argv[2], "Solid") == 0)
{
TopExp_Explorer exp;
for (exp.Init (occgeometry->somap(nr), TopAbs_FACE);
exp.More(); exp.Next())
{
int i = occgeometry->fmap.FindIndex (TopoDS::Face(exp.Current()));
occgeometry->fvispar[i-1].Hide();
}
}
if (strcmp (argv[2], "Edge") == 0)
{
occgeometry->evispar[nr-1].Hide();
}
if (strcmp (argv[2], "Wire") == 0)
{
TopExp_Explorer exp;
for (exp.Init (occgeometry->wmap(nr), TopAbs_EDGE);
exp.More(); exp.Next())
{
int i = occgeometry->emap.FindIndex (TopoDS::Edge(exp.Current()));
occgeometry->evispar[i-1].Hide();
}
}
}
if (strcmp (argv[1], "findsmallentities") == 0)
{
stringstream str("");
occgeometry->CheckIrregularEntities(str);
Tcl_SetResult (interp, (char*)str.str().c_str(), TCL_VOLATILE);
}
if (strcmp (argv[1], "getunmeshedfaceinfo") == 0)
{
occgeometry->GetUnmeshedFaceInfo(str);
Tcl_SetResult (interp, (char*)str.str().c_str(), TCL_VOLATILE);
}
if (strcmp (argv[1], "getnotdrawablefaces") == 0)
{
occgeometry->GetNotDrawableFaces(str);
Tcl_SetResult (interp, (char*)str.str().c_str(), TCL_VOLATILE);
}
if (strcmp (argv[1], "redrawstatus") == 0)
{
int i = atoi (argv[2]);
occgeometry->changed = i;
}
if (strcmp (argv[1], "swaporientation") == 0)
{
IGESControl_Writer writer("millimeters", 1);
writer.AddShape (occgeometry->shape);
writer.Write ("1.igs");
/*
int nr = atoi (argv[3]);
// const_cast<TopoDS_Shape&> (occgeometry->fmap(nr)).Reverse();
Handle_ShapeBuild_ReShape rebuild = new ShapeBuild_ReShape;
rebuild->Apply(occgeometry->shape);
TopoDS_Shape sh;
// if (strcmp (argv[2], "CompSolid") == 0) sh = occgeometry->cmap(nr);
if (strcmp (argv[2], "Solid") == 0) sh = occgeometry->somap(nr);
if (strcmp (argv[2], "Shell") == 0) sh = occgeometry->shmap(nr);
if (strcmp (argv[2], "Face") == 0) sh = occgeometry->fmap(nr);
if (strcmp (argv[2], "Wire") == 0) sh = occgeometry->wmap(nr);
if (strcmp (argv[2], "Edge") == 0) sh = occgeometry->emap(nr);
rebuild->Replace(sh, sh.Reversed(), Standard_False);
TopoDS_Shape newshape = rebuild->Apply(occgeometry->shape, TopAbs_SHELL, 1);
occgeometry->shape = newshape;
occgeometry->BuildFMap();
occgeometry->BuildVisualizationMesh();
occgeometry->changed = OCCGEOMETRYVISUALIZATIONHALFCHANGE;
*/
}
if (strcmp (argv[1], "marksingular") == 0)
{
int nr = atoi (argv[3]);
cout << "marking " << argv[2] << " " << nr << endl;
char buf[2]; buf[0] = '0'; buf[1] = 0;
bool sing = false;
if (strcmp (argv[2], "Face") == 0)
sing = occgeometry->fsingular[nr-1] = !occgeometry->fsingular[nr-1];
if (strcmp (argv[2], "Edge") == 0)
sing = occgeometry->esingular[nr-1] = !occgeometry->esingular[nr-1];
if (strcmp (argv[2], "Vertex") == 0)
sing = occgeometry->vsingular[nr-1] = !occgeometry->vsingular[nr-1];
if (sing) buf[0] = '1';
Tcl_SetVar (interp, "::ismarkedsingular", buf, 0);
stringstream str;
occgeometry->GetTopologyTree (str);
char* cstr = (char*)str.str().c_str();
(*testout) << cstr << endl;
char helpstr[1000];
while (strchr (cstr, '}'))
{
strncpy (helpstr, cstr+2, strlen(strchr(cstr+2, '}')));
(*testout) << "***" << cstr << "***" << endl;
cstr = strchr (cstr, '}');
}
}
}
}
#endif
return TCL_OK;
}
#ifdef OCCGEOMETRY
void OCCConstructGeometry (OCCGeometry & geom);
int Ng_OCCConstruction (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (occgeometry)
OCCConstructGeometry (*occgeometry);
return TCL_OK;
}
#endif
#ifndef ACIS
int Ng_ACISCommand (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (argc >= 2)
{
if (strcmp (argv[1], "isACISavailable") == 0)
{
2009-01-20 14:08:01 +05:00
Tcl_SetResult (interp, (char*)"no", TCL_STATIC);
2009-01-13 04:40:13 +05:00
return TCL_OK;
}
}
2009-01-20 14:08:01 +05:00
Tcl_SetResult (interp, (char*)"undefined ACiS command", TCL_STATIC);
2009-01-13 04:40:13 +05:00
return TCL_ERROR;
}
#endif
int Ng_SetVisParameters (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
if (!Tcl_GetVar (interp, "::viewoptions.light.amb", TCL_GLOBAL_ONLY))
return TCL_ERROR;
vispar.lightamb = atof (Tcl_GetVar (interp, "::viewoptions.light.amb", TCL_GLOBAL_ONLY));
vispar.lightdiff = atof (Tcl_GetVar (interp, "::viewoptions.light.diff", TCL_GLOBAL_ONLY));
vispar.lightspec = atof (Tcl_GetVar (interp, "::viewoptions.light.spec", TCL_GLOBAL_ONLY));
vispar.shininess = atof (Tcl_GetVar (interp, "::viewoptions.mat.shininess", TCL_GLOBAL_ONLY));
vispar.locviewer = atoi (Tcl_GetVar (interp, "::viewoptions.light.locviewer", TCL_GLOBAL_ONLY));
vispar.transp = atof (Tcl_GetVar (interp, "::viewoptions.mat.transp", TCL_GLOBAL_ONLY));
vispar.clipnormal.X() = atof (Tcl_GetVar (interp, "::viewoptions.clipping.nx", TCL_GLOBAL_ONLY));
vispar.clipnormal.Y() = atof (Tcl_GetVar (interp, "::viewoptions.clipping.ny", TCL_GLOBAL_ONLY));
vispar.clipnormal.Z() = atof (Tcl_GetVar (interp, "::viewoptions.clipping.nz", TCL_GLOBAL_ONLY));
vispar.clipdist = atof (Tcl_GetVar (interp, "::viewoptions.clipping.dist", TCL_GLOBAL_ONLY));
vispar.clipenable = atoi (Tcl_GetVar (interp, "::viewoptions.clipping.enable", TCL_GLOBAL_ONLY));
vispar.clipdomain =
atoi (Tcl_GetVar (interp, "::viewoptions.clipping.onlydomain", TCL_GLOBAL_ONLY));
vispar.donotclipdomain =
atoi (Tcl_GetVar (interp, "::viewoptions.clipping.notdomain", TCL_GLOBAL_ONLY));
vispar.clipplanetimestamp = NextTimeStamp();
vispar.whitebackground = atoi (Tcl_GetVar (interp, "::viewoptions.whitebackground", TCL_GLOBAL_ONLY));
vispar.drawcoordinatecross = atoi (Tcl_GetVar (interp, "::viewoptions.drawcoordinatecross", TCL_GLOBAL_ONLY));
vispar.drawcolorbar = atoi (Tcl_GetVar (interp, "::viewoptions.drawcolorbar", TCL_GLOBAL_ONLY));
vispar.drawnetgenlogo = atoi (Tcl_GetVar (interp, "::viewoptions.drawnetgenlogo", TCL_GLOBAL_ONLY));
vispar.stereo = atoi (Tcl_GetVar (interp, "::viewoptions.stereo", TCL_GLOBAL_ONLY));
vispar.colormeshsize = atoi (Tcl_GetVar (interp, "::viewoptions.colormeshsize", TCL_GLOBAL_ONLY));
VisualScene :: SetBackGroundColor (vispar.whitebackground ? 1 : 0);
strcpy (vispar.selectvisual, Tcl_GetVar (interp, "::selectvisual", TCL_GLOBAL_ONLY));
// vispar.showstltrias = atoi (Tcl_GetVar (interp, "::viewoptions.stl.showtrias", TCL_GLOBAL_ONLY));
vispar.stlshowtrias =
atoi (Tcl_GetVar (interp, "::stloptions.showtrias", TCL_GLOBAL_ONLY));
vispar.stlshowfilledtrias =
atoi (Tcl_GetVar (interp, "::stloptions.showfilledtrias", TCL_GLOBAL_ONLY));
vispar.stlshowedges =
atoi (Tcl_GetVar (interp, "::stloptions.showedges", TCL_GLOBAL_ONLY));
vispar.stlshowmarktrias =
atoi (Tcl_GetVar (interp, "::stloptions.showmarktrias", TCL_GLOBAL_ONLY));
vispar.stlshowactivechart =
atoi (Tcl_GetVar (interp, "::stloptions.showactivechart", TCL_GLOBAL_ONLY));
vispar.stlchartnumber =
atoi (Tcl_GetVar (interp, "::stloptions.chartnumber", TCL_GLOBAL_ONLY));
vispar.stlchartnumberoffset =
atoi (Tcl_GetVar (interp, "::stloptions.chartnumberoffset", TCL_GLOBAL_ONLY));
vispar.occshowsurfaces =
atoi (Tcl_GetVar (interp, "::occoptions.showsurfaces", TCL_GLOBAL_ONLY));
vispar.occshowedges =
atoi (Tcl_GetVar (interp, "::occoptions.showedges", TCL_GLOBAL_ONLY));
vispar.drawoutline =
atoi (Tcl_GetVar (interp, "::viewoptions.drawoutline", TCL_GLOBAL_ONLY));
vispar.drawfilledtrigs =
atoi (Tcl_GetVar (interp, "::viewoptions.drawfilledtrigs", TCL_GLOBAL_ONLY));
vispar.subdivisions =
atoi (Tcl_GetVar (interp, "::visoptions.subdivisions", TCL_GLOBAL_ONLY));
vispar.drawbadels =
atoi (Tcl_GetVar (interp, "::viewoptions.drawbadels", TCL_GLOBAL_ONLY));
vispar.drawedges =
atoi (Tcl_GetVar (interp, "::viewoptions.drawedges", TCL_GLOBAL_ONLY));
vispar.drawtetsdomain =
atoi (Tcl_GetVar (interp, "::viewoptions.drawtetsdomain", TCL_GLOBAL_ONLY));
vispar.drawtets =
atoi (Tcl_GetVar (interp, "::viewoptions.drawtets", TCL_GLOBAL_ONLY));
vispar.drawprisms =
atoi (Tcl_GetVar (interp, "::viewoptions.drawprisms", TCL_GLOBAL_ONLY));
vispar.drawpyramids =
atoi (Tcl_GetVar (interp, "::viewoptions.drawpyramids", TCL_GLOBAL_ONLY));
vispar.drawhexes =
atoi (Tcl_GetVar (interp, "::viewoptions.drawhexes", TCL_GLOBAL_ONLY));
vispar.shrink =
atof (Tcl_GetVar (interp, "::viewoptions.shrink", TCL_GLOBAL_ONLY));
vispar.drawidentified =
atoi (Tcl_GetVar (interp, "::viewoptions.drawidentified", TCL_GLOBAL_ONLY));
vispar.drawpointnumbers =
atoi (Tcl_GetVar (interp, "::viewoptions.drawpointnumbers", TCL_GLOBAL_ONLY));
vispar.drawedgenumbers =
atoi (Tcl_GetVar (interp, "::viewoptions.drawedgenumbers", TCL_GLOBAL_ONLY));
vispar.drawfacenumbers =
atoi (Tcl_GetVar (interp, "::viewoptions.drawfacenumbers", TCL_GLOBAL_ONLY));
vispar.drawelementnumbers =
atoi (Tcl_GetVar (interp, "::viewoptions.drawelementnumbers", TCL_GLOBAL_ONLY));
vispar.drawdomainsurf =
atoi (Tcl_GetVar (interp, "::viewoptions.drawdomainsurf", TCL_GLOBAL_ONLY));
vispar.drawededges =
atoi (Tcl_GetVar (interp, "::viewoptions.drawededges", TCL_GLOBAL_ONLY));
vispar.drawedpoints =
atoi (Tcl_GetVar (interp, "::viewoptions.drawedpoints", TCL_GLOBAL_ONLY));
vispar.drawedpointnrs =
atoi (Tcl_GetVar (interp, "::viewoptions.drawedpointnrs", TCL_GLOBAL_ONLY));
vispar.drawedtangents =
atoi (Tcl_GetVar (interp, "::viewoptions.drawedtangents", TCL_GLOBAL_ONLY));
vispar.drawededgenrs =
atoi (Tcl_GetVar (interp, "::viewoptions.drawededgenrs", TCL_GLOBAL_ONLY));
vispar.drawcurveproj =
atoi (Tcl_GetVar (interp, "::viewoptions.drawcurveproj", TCL_GLOBAL_ONLY));
vispar.drawcurveprojedge =
atoi (Tcl_GetVar (interp, "::viewoptions.drawcurveprojedge", TCL_GLOBAL_ONLY));
vispar.centerpoint =
atoi (Tcl_GetVar (interp, "::viewoptions.centerpoint", TCL_GLOBAL_ONLY));
vispar.use_center_coords =
atoi (Tcl_GetVar (interp, "::viewoptions.usecentercoords", TCL_GLOBAL_ONLY)) > 0;
vispar.centerx =
atof (Tcl_GetVar (interp, "::viewoptions.centerx", TCL_GLOBAL_ONLY));
vispar.centery =
atof (Tcl_GetVar (interp, "::viewoptions.centery", TCL_GLOBAL_ONLY));
vispar.centerz =
atof (Tcl_GetVar (interp, "::viewoptions.centerz", TCL_GLOBAL_ONLY));
vispar.drawelement =
atoi (Tcl_GetVar (interp, "::viewoptions.drawelement", TCL_GLOBAL_ONLY));
vispar.drawmetispartition =
atoi (Tcl_GetVar (interp, "::viewoptions.drawmetispartition", TCL_GLOBAL_ONLY));
vispar.drawspecpoint =
atoi (Tcl_GetVar (interp, "::viewoptions.drawspecpoint", TCL_GLOBAL_ONLY));
vispar.specpointx =
atof (Tcl_GetVar (interp, "::viewoptions.specpointx", TCL_GLOBAL_ONLY));
vispar.specpointy =
atof (Tcl_GetVar (interp, "::viewoptions.specpointy", TCL_GLOBAL_ONLY));
vispar.specpointz =
atof (Tcl_GetVar (interp, "::viewoptions.specpointz", TCL_GLOBAL_ONLY));
vsspecpoints.len =
atof (Tcl_GetVar (interp, "::viewoptions.specpointvlen", TCL_GLOBAL_ONLY));
#ifdef OCCGEOMETRY
vispar.occdeflection = pow(10.0,-1-atof (Tcl_GetVar (interp, "::occoptions.deflection", TCL_GLOBAL_ONLY)));
#endif
#ifdef PARALLELGL
vsmesh.Broadcast ();
#endif
return TCL_OK;
}
int Ng_SelectSurface (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
int surfnr = atoi (argv[1]);
vsgeom.SelectSurface (surfnr);
return TCL_OK;
}
int Ng_BuildFieldLines (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
vssolution.BuildFieldLinesPlot();
return TCL_OK;
}
#ifdef PARALLEL
int Ng_VisualizeAll (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
int id, rc, ntasks;
MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
MPI_Comm_rank(MPI_COMM_WORLD, &id);
string visualizationmode = Tcl_GetVar (interp, "::selectvisual", 0);
string scalfun = Tcl_GetVar (interp, "::visoptions.scalfunction", 0);
for ( int dest = 1; dest < ntasks; dest++)
{
MyMPI_Send ( "visualize", dest );
MyMPI_Send ( visualizationmode, dest);
if ( visualizationmode == "solution" )
MyMPI_Send ( scalfun, dest);
}
return TCL_OK;
}
int Ng_VisualizeOne (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
int id, rc, ntasks;
MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
MPI_Comm_rank(MPI_COMM_WORLD, &id);
string visualizationmode = Tcl_GetVar (interp, "::selectvisual", 0);
string scalfun = Tcl_GetVar (interp, "::visoptions.scalfunction", 0);
MyMPI_Send ( "visualize", 1 );
MyMPI_Send ( visualizationmode, 1);
if ( visualizationmode == "solution" )
MyMPI_Send ( scalfun, 1);
return TCL_OK;
}
int Ng_IncrOverlap ( ClientData clientDate,
Tcl_Interp * interp,
int argc, tcl_const char * argv[] )
{
int id, rc, ntasks;
MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
MPI_Comm_rank(MPI_COMM_WORLD, &id);
for ( int dest = 1; dest < ntasks; dest++)
{
MyMPI_Send ( "overlap++", dest );
}
mesh->UpdateOverlap();
return TCL_OK;
}
int Ng_SetSelectVisual ( ClientData clientDate,
Tcl_Interp * interp,
int argc, tcl_const char * argv[] )
{
string visualizationmode;
MyMPI_Recv ( visualizationmode, 0);
Tcl_SetVar (interp, "::selectvisual", visualizationmode.c_str(), 0);
return TCL_OK;
}
int Ng_SetScalarFunction ( ClientData clientDate,
Tcl_Interp * interp,
int argc, tcl_const char * argv[] )
{
string visualizationmode;
string scalarfun;
visualizationmode = Tcl_GetVar (interp, "::selectvisual", 0);
if ( visualizationmode == "solution" )
{
MyMPI_Recv ( scalarfun, 0);
Tcl_SetVar (interp, "::visoptions.scalfunction", scalarfun.c_str(), 0);
}
return TCL_OK;
}
#endif
int Ng_IsParallel (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
#ifdef PARALLEL
int id, rc, ntasks;
MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
MPI_Comm_rank(MPI_COMM_WORLD, &id);
if ( ntasks > 1 )
Tcl_SetVar (interp, "::parallel_netgen", "1", 0);
else
Tcl_SetVar (interp, "::parallel_netgen", "0", 0);
#else
Tcl_SetVar (interp, "::parallel_netgen", "0", 0);
#endif
return TCL_OK;
}
int Ng_Exit (ClientData clientData,
Tcl_Interp * interp,
int argc, tcl_const char *argv[])
{
#ifdef PARALLEL
int id, rc, ntasks;
MPI_Comm_size(MPI_COMM_WORLD, &ntasks);
MPI_Comm_rank(MPI_COMM_WORLD, &id);
if ( id != 0 )
return TCL_OK;
#endif
/*
if (ngsolve_handle)
{
void (*ngs_exit)();
ngs_exit = ( void (*)() ) dlsym (ngsolve_handle, "NGSolve_Exit");
if (ngs_exit) (*ngs_exit)();
}
*/
#ifdef NGSOLVE
NGSolve_Exit ();
#endif
delete stlgeometry;
stlgeometry = NULL;
geometry.Reset (0);
geometry2d.Reset (0);
#ifdef ACIS
outcome res;
res = api_terminate_faceter();
if(!res.ok())
cerr << "problem with terminating acis faceter" << endl;
res = api_terminate_constructors();
if(!res.ok())
cerr << "problem with terminating acis constructors" << endl;
res = api_terminate_kernel();
if(!res.ok())
cerr << "problem with terminating acis kernel" << endl;
res = api_stop_modeller();
if(!res.ok())
cerr << "problem with terminating acis modeller" << endl;
//cout << "stopped acis, outcome = " << res.ok() << endl;
#endif
#ifdef PARALLEL
for ( int dest = 1; dest < ntasks; dest++)
MyMPI_Send ( "end", dest );
#endif
delete testout;
return TCL_OK;
}
#ifdef SOCKETS
void * ServerSocketManagerRunDummy ( void * nix )
{
serversocketmanager.Run();
return NULL;
}
extern "C" int Ng_ServerSocketManagerRun( void );
int Ng_ServerSocketManagerRun( void )
{
if(mparam.parthread)
RunParallel(ServerSocketManagerRunDummy,NULL);
else
serversocketmanager.Run();
return TCL_OK;
}
extern "C" int Ng_ServerSocketManagerInit(int port);
int Ng_ServerSocketManagerInit(int port)
{
serversocketmanager.Init(port);
return TCL_OK;
}
#endif //SOCKETS
extern "C" int Ng_Init (Tcl_Interp * interp);
// int main_Eero (ClientData clientData,
// Tcl_Interp * interp,
// int argc, tcl_const char *argv[]);
int Ng_Init (Tcl_Interp * interp)
{
#ifdef SOCKETS
if(serversocketmanager.Good())
serversocketusernetgen.Reset(new ServerSocketUserNetgen (serversocketmanager, mesh, geometry));
#endif
tcl_interp = interp;
// Tcl_CreateCommand (interp, "Ng_Eero", main_Eero,
// (ClientData)NULL,
// (Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_New", Ng_New,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
// Tcl_CreateCommand (interp, "Ng_Lock", Ng_Lock,
// (ClientData)NULL,
// (Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_LoadGeometry", Ng_LoadGeometry,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SaveGeometry", Ng_SaveGeometry,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_ParseGeometry", Ng_ParseGeometry,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_LoadMesh", Ng_LoadMesh,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SaveMesh", Ng_SaveMesh,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_MergeMesh", Ng_MergeMesh,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_ExportMesh", Ng_ExportMesh,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_ImportMesh", Ng_ImportMesh,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_ImportSolution", Ng_ImportSolution,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_ShowDemo", Ng_ShowDemo,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_DemoSetTime", Ng_DemoSetTime,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SaveSolution", Ng_SaveSolution,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_GeometryOptions", Ng_GeometryOptions,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
// geometry
Tcl_CreateCommand (interp, "Ng_CreatePrimitive", Ng_CreatePrimitive,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SetPrimitiveData", Ng_SetPrimitiveData,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_GetPrimitiveData", Ng_GetPrimitiveData,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_GetPrimitiveList", Ng_GetPrimitiveList,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_GetSurfaceList", Ng_GetSurfaceList,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SetSolidData", Ng_SetSolidData,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_GetSolidData", Ng_GetSolidData,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_GetSolidList", Ng_GetSolidList,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_TopLevel", Ng_TopLevel,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
// meshing
Tcl_CreateCommand (interp, "Ng_GenerateMesh", Ng_GenerateMesh,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_StopMeshing", Ng_StopMeshing,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_MeshInfo", Ng_MeshInfo,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_MeshQuality", Ng_MeshQuality,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_CheckSurfaceMesh", Ng_CheckSurfaceMesh,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_CheckVolumeMesh", Ng_CheckVolumeMesh,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_DeleteVolMesh", Ng_DeleteVolMesh,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SplitSeparatedFaces", Ng_SplitSeparatedFaces,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SetNextTimeStamp", Ng_SetNextTimeStamp,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_Refine", Ng_Refine,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SecondOrder", Ng_SecondOrder,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_HighOrder", Ng_HighOrder,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_ValidateSecondOrder", Ng_ValidateSecondOrder,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_RestrictH", Ng_RestrictH,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_Anisotropy", Ng_Anisotropy,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_Bisect", Ng_Bisect,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
// Tcl_CreateCommand (interp, "Ng_BisectCopyMesh", Ng_BisectCopyMesh,
// (ClientData)NULL,
// (Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_Split2Tets", Ng_Split2Tets,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_ZRefinement", Ng_ZRefinement,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_HPRefinement", Ng_HPRefinement,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_LoadMeshSize", Ng_LoadMeshSize,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_MeshSizeFromSurfaceMesh", Ng_MeshSizeFromSurfaceMesh,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SingularEdgeMS", Ng_SingularEdgeMS,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SingularPointMS", Ng_SingularPointMS,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_InsertVirtualBL", Ng_InsertVirtualBL,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_CutOffAndCombine", Ng_CutOffAndCombine,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_HelmholtzMesh", Ng_HelmholtzMesh,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_ReadStatus", Ng_ReadStatus,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_MemInfo", Ng_MemInfo,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_STLDoctor", Ng_STLDoctor,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_MeshDoctor", Ng_MeshDoctor,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_BCProp", Ng_BCProp,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_STLInfo", Ng_STLInfo,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_STLCalcLocalH",
Ng_STLCalcLocalH,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SetOCCVisParameters",
Ng_SetOCCVisParameters,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_GetOCCData",
Ng_GetOCCData,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
#ifdef OCCGEOMETRY
Tcl_CreateCommand (interp, "Ng_OCCConstruction",
Ng_OCCConstruction,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
#endif
Tcl_CreateCommand (interp, "Ng_OCCCommand",
Ng_OCCCommand,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_ACISCommand",
Ng_ACISCommand,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_MouseMove", Ng_MouseMove,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_MouseDblClick", Ng_MouseDblClick,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_ZoomAll", Ng_ZoomAll,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_Center", Ng_Center,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_StandardRotation", Ng_StandardRotation,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_ArbitraryRotation", Ng_ArbitraryRotation,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SetVisParameters", Ng_SetVisParameters,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SetMeshingParameters", Ng_SetMeshingParameters,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SetDebugParameters", Ng_SetDebugParameters,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SetSTLParameters", Ng_SetSTLParameters,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SelectSurface", Ng_SelectSurface,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_GetCommandLineParameter",
Ng_GetCommandLineParameter,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_Exit",
Ng_Exit,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_Metis",
Ng_Metis,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_BuildFieldLines",
Ng_BuildFieldLines,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
#ifdef PARALLEL
Tcl_CreateCommand (interp, "Ng_VisualizeAll", Ng_VisualizeAll,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_VisualizeOne", Ng_VisualizeOne,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_IncrOverlap", Ng_IncrOverlap,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SetSelectVisual", Ng_SetSelectVisual,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
Tcl_CreateCommand (interp, "Ng_SetScalarFunction", Ng_SetScalarFunction,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
#endif
Tcl_CreateCommand (interp, "Ng_IsParallel", Ng_IsParallel,
(ClientData)NULL,
(Tcl_CmdDeleteProc*) NULL);
2009-01-20 14:08:01 +05:00
#if TOGL_MAJOR_VERSION==1
2009-01-13 04:40:13 +05:00
if (!nodisplay && Togl_Init(interp) == TCL_ERROR) {
return TCL_ERROR;
}
2009-01-20 14:08:01 +05:00
#endif
2009-01-13 04:40:13 +05:00
/*
* Specify the C callback functions for widget creation, display,
* and reshape.
*/
2009-01-20 14:08:01 +05:00
#if TOGL_MAJOR_VERSION==1
2009-01-13 04:40:13 +05:00
if(!nodisplay)
{
Togl_CreateFunc( init );
Togl_DestroyFunc( zap );
Togl_DisplayFunc( draw );
Togl_ReshapeFunc( reshape );
// Togl_TimerFunc( idle );
Togl_CreateCommand( (char*)"Ng_SnapShot", Ng_SnapShot);
Togl_CreateCommand( (char*)"Ng_VideoClip", Ng_VideoClip);
// Togl_CreateCommand("position",position);
}
2009-01-20 14:08:01 +05:00
#else
cout << "togl 2.0 setup missing" << endl;
#endif
2009-01-13 04:40:13 +05:00
multithread.pause = 0;
multithread.testmode = 0;
multithread.redraw = 0;
multithread.drawing = 1;
multithread.terminate = 0;
multithread.running = 0;
multithread.task = "";
multithread.percent = 20;
Tcl_LinkVar (interp, "multithread_pause",
(char*)&multithread.pause, TCL_LINK_INT);
Tcl_LinkVar (interp, "multithread_testmode",
(char*)&multithread.testmode, TCL_LINK_INT);
Tcl_LinkVar (interp, "multithread_redraw",
(char*)&multithread.redraw, TCL_LINK_INT);
Tcl_LinkVar (interp, "multithread_drawing",
(char*)&multithread.drawing, TCL_LINK_INT);
Tcl_LinkVar (interp, "multithread_terminate",
(char*)&multithread.terminate, TCL_LINK_INT);
Tcl_LinkVar (interp, "multithread_running",
(char*)&multithread.running, TCL_LINK_INT);
//testout->setstate(ios_base::badbit);
myerr = &cerr;
extern ostream * mycout;
mycout = &cout;
testmode = 0;
#ifdef ACIS
outcome res;
res = api_start_modeller (0);
if(!res.ok())
cerr << "problem with starting acis modeller" << endl;
#ifdef ACIS_R17
unlock_spatial_products_661();
#endif
res = api_initialize_kernel();
if(!res.ok())
cerr << "problem with starting acis kernel" << endl;
res = api_initialize_constructors();
if(!res.ok())
cerr << "problem with starting acis constructors" << endl;
res = api_initialize_faceter();
if(!res.ok())
cerr << "problem with starting acis faceter" << endl;
#endif
return TCL_OK;
}
}
namespace netgen {
extern CSGeometry * ParseCSG (istream & istr);
}
void Netgen_Test ()
{
ifstream infile ("examples/cube.geo");
netgen::geometry.Reset (netgen::ParseCSG (infile) );
netgen:: geometry -> FindIdenticSurfaces(1e-10);
netgen::GenerateMesh (*netgen::geometry.Ptr(), netgen::mesh.Ptr(), 1, 6, "");
}