mirror of
https://github.com/NGSolve/netgen.git
synced 2024-11-14 10:08:32 +05:00
199 lines
3.3 KiB
C++
199 lines
3.3 KiB
C++
|
#include <mystdlib.h>
|
||
|
#include <linalg.hpp>
|
||
|
|
||
|
namespace netgen
|
||
|
{
|
||
|
|
||
|
QuadraticPolynomial1V ::
|
||
|
QuadraticPolynomial1V (double ac, double acx, double acxx)
|
||
|
{
|
||
|
c = ac;
|
||
|
cx = acx;
|
||
|
cxx = acxx;
|
||
|
}
|
||
|
|
||
|
double QuadraticPolynomial1V ::
|
||
|
Value (double x)
|
||
|
{
|
||
|
return c + cx * x + cxx * x * x;
|
||
|
}
|
||
|
|
||
|
double QuadraticPolynomial1V :: MaxUnitInterval ()
|
||
|
{
|
||
|
// inner max
|
||
|
if (cxx < 0 && cx > 0 && cx < -2 * cxx)
|
||
|
{
|
||
|
return c - 0.25 * cx * cx / cxx;
|
||
|
}
|
||
|
|
||
|
|
||
|
if (cx + cxx > 0) // right edge
|
||
|
return c + cx + cxx;
|
||
|
|
||
|
// left end
|
||
|
return c;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
LinearPolynomial2V ::
|
||
|
LinearPolynomial2V (double ac, double acx, double acy)
|
||
|
{
|
||
|
c = ac;
|
||
|
cx = acx;
|
||
|
cy = acy;
|
||
|
};
|
||
|
|
||
|
|
||
|
QuadraticPolynomial2V ::
|
||
|
QuadraticPolynomial2V ()
|
||
|
{
|
||
|
;
|
||
|
}
|
||
|
|
||
|
|
||
|
QuadraticPolynomial2V ::
|
||
|
QuadraticPolynomial2V (double ac, double acx, double acy,
|
||
|
double acxx, double acxy, double acyy)
|
||
|
{
|
||
|
c = ac;
|
||
|
cx = acx;
|
||
|
cy = acy;
|
||
|
cxx = acxx;
|
||
|
cxy = acxy;
|
||
|
cyy = acyy;
|
||
|
}
|
||
|
|
||
|
void QuadraticPolynomial2V ::
|
||
|
Square (const LinearPolynomial2V & lp)
|
||
|
{
|
||
|
c = lp.c * lp.c;
|
||
|
cx = 2 * lp.c * lp.cx;
|
||
|
cy = 2 * lp.c * lp.cy;
|
||
|
|
||
|
cxx = lp.cx * lp.cx;
|
||
|
cxy = 2 * lp.cx * lp.cy;
|
||
|
cyy = lp.cy * lp.cy;
|
||
|
}
|
||
|
|
||
|
void QuadraticPolynomial2V ::
|
||
|
Add (double lam, const QuadraticPolynomial2V & qp2)
|
||
|
{
|
||
|
c += lam * qp2.c;
|
||
|
cx += lam * qp2.cx;
|
||
|
cy += lam * qp2.cy;
|
||
|
cxx += lam * qp2.cxx;
|
||
|
cxy += lam * qp2.cxy;
|
||
|
cyy += lam * qp2.cyy;
|
||
|
}
|
||
|
|
||
|
double QuadraticPolynomial2V ::
|
||
|
Value (double x, double y)
|
||
|
{
|
||
|
return c + cx * x + cy * y + cxx * x * x + cxy * x * y + cyy * y * y;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
double QuadraticPolynomial2V ::
|
||
|
MinUnitSquare ()
|
||
|
{
|
||
|
double x, y;
|
||
|
double minv = 1e8;
|
||
|
double val;
|
||
|
for (x = 0; x <= 1; x += 0.1)
|
||
|
for (y = 0; y <= 1; y += 0.1)
|
||
|
{
|
||
|
val = Value (x, y);
|
||
|
if (val < minv)
|
||
|
minv = val;
|
||
|
}
|
||
|
return minv;
|
||
|
};
|
||
|
*/
|
||
|
|
||
|
double QuadraticPolynomial2V ::
|
||
|
MaxUnitSquare ()
|
||
|
{
|
||
|
// find critical point
|
||
|
|
||
|
double maxv = c;
|
||
|
double hv;
|
||
|
|
||
|
double det, x0, y0;
|
||
|
det = 4 * cxx * cyy - cxy * cxy;
|
||
|
|
||
|
if (det > 0)
|
||
|
{
|
||
|
// definite surface
|
||
|
|
||
|
x0 = (-2 * cyy * cx + cxy * cy) / det;
|
||
|
y0 = (cxy * cx -2 * cxx * cy) / det;
|
||
|
|
||
|
if (x0 >= 0 && x0 <= 1 && y0 >= 0 && y0 <= 1)
|
||
|
{
|
||
|
hv = Value (x0, y0);
|
||
|
if (hv > maxv) maxv = hv;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
QuadraticPolynomial1V e1(c, cx, cxx);
|
||
|
QuadraticPolynomial1V e2(c, cy, cyy);
|
||
|
QuadraticPolynomial1V e3(c+cy+cyy, cx+cxy, cxx);
|
||
|
QuadraticPolynomial1V e4(c+cx+cxx, cy+cxy, cyy);
|
||
|
|
||
|
hv = e1.MaxUnitInterval();
|
||
|
if (hv > maxv) maxv = hv;
|
||
|
hv = e2.MaxUnitInterval();
|
||
|
if (hv > maxv) maxv = hv;
|
||
|
hv = e3.MaxUnitInterval();
|
||
|
if (hv > maxv) maxv = hv;
|
||
|
hv = e4.MaxUnitInterval();
|
||
|
if (hv > maxv) maxv = hv;
|
||
|
|
||
|
return maxv;
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
double QuadraticPolynomial2V ::
|
||
|
MaxUnitTriangle ()
|
||
|
{
|
||
|
// find critical point
|
||
|
|
||
|
double maxv = c;
|
||
|
double hv;
|
||
|
|
||
|
double det, x0, y0;
|
||
|
det = 4 * cxx * cyy - cxy * cxy;
|
||
|
|
||
|
if (cxx < 0 && det > 0)
|
||
|
{
|
||
|
// definite surface
|
||
|
|
||
|
x0 = (-2 * cyy * cx + cxy * cy) / det;
|
||
|
y0 = (cxy * cx -2 * cxx * cy) / det;
|
||
|
|
||
|
if (x0 >= 0 && y0 >= 0 && x0+y0 <= 1)
|
||
|
{
|
||
|
return Value (x0, y0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
|
||
|
QuadraticPolynomial1V e1(c, cx, cxx);
|
||
|
QuadraticPolynomial1V e2(c, cy, cyy);
|
||
|
QuadraticPolynomial1V e3(c+cy+cyy, cx-cy+cxy-2*cyy, cxx-cxy+cyy);
|
||
|
|
||
|
hv = e1.MaxUnitInterval();
|
||
|
if (hv > maxv) maxv = hv;
|
||
|
hv = e2.MaxUnitInterval();
|
||
|
if (hv > maxv) maxv = hv;
|
||
|
hv = e3.MaxUnitInterval();
|
||
|
if (hv > maxv) maxv = hv;
|
||
|
|
||
|
return maxv;
|
||
|
}
|
||
|
}
|