netgen/libsrc/geom2d/spline.cpp

341 lines
7.2 KiB
C++
Raw Normal View History

2009-01-13 04:40:13 +05:00
/*
Spline curve for Mesh generator
*/
#include <mystdlib.h>
#include <csg.hpp>
#include <linalg.hpp>
#include <meshing.hpp>
namespace netgen
{
#include "spline.hpp"
2009-04-03 20:39:52 +06:00
// just for testing (JS)
template <int D>
void ProjectTrivial (const SplineSeg3<D> & seg,
const Point<D> point, Point<D> & point_on_curve, double & t)
{
double mindist = -1;
for (int i = 0; i <= 1000; i++)
2009-01-13 04:40:13 +05:00
{
2009-04-03 20:39:52 +06:00
double ht = double(i)/1000;
Point<D> p = seg.GetPoint(ht);
double dist = Dist2 (p, point);
if (i == 0 || dist < mindist)
{
mindist = dist;
t = ht;
}
2009-01-13 04:40:13 +05:00
}
2009-04-03 20:39:52 +06:00
point_on_curve = seg.GetPoint(t);
}
2009-01-13 04:40:13 +05:00
2009-07-20 14:36:36 +06:00
2009-04-15 01:20:09 +06:00
template<int D>
void SplineSeg3<D> :: Project (const Point<D> point, Point<D> & point_on_curve, double & t) const
{
double t_old = -1;
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
if(proj_latest_t > 0. && proj_latest_t < 1.)
t = proj_latest_t;
else
t = 0.5;
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
Point<D> phi;
Vec<D> phip,phipp,phimp;
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
int i=0;
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
while(t > -0.5 && t < 1.5 && i<20 && fabs(t-t_old) > 1e-15 )
{
GetDerivatives(t,phi,phip,phipp);
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
t_old = t;
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
phimp = phi-point;
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
//t = min2(max2(t-(phip*phimp)/(phipp*phimp + phip*phip),0.),1.);
t -= (phip*phimp)/(phipp*phimp + phip*phip);
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
i++;
}
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
//if(i<10 && t > 0. && t < 1.)
if(i<20 && t > -0.4 && t < 1.4)
{
if(t < 0)
{
t = 0.;
}
if(t > 1)
{
t = 1.;
}
point_on_curve = SplineSeg3<D>::GetPoint(t);
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
double dist = Dist(point,point_on_curve);
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
phi = SplineSeg3<D> ::GetPoint(0);
double auxdist = Dist(phi,point);
if(auxdist < dist)
{
t = 0.;
point_on_curve = phi;
dist = auxdist;
}
phi = SplineSeg3<D> ::GetPoint(1);
auxdist = Dist(phi,point);
if(auxdist < dist)
{
t = 1.;
point_on_curve = phi;
dist = auxdist;
}
}
else
{
double t0 = 0;
double t1 = 0.5;
double t2 = 1.;
2009-04-03 20:39:52 +06:00
2009-04-15 01:20:09 +06:00
double d0,d1,d2;
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
//(*testout) << "newtonersatz" << endl;
while(t2-t0 > 1e-8)
{
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
phi = SplineSeg3<D> ::GetPoint(t0); d0 = Dist(phi,point);
phi = SplineSeg3<D> ::GetPoint(t1); d1 = Dist(phi,point);
phi = SplineSeg3<D> ::GetPoint(t2); d2 = Dist(phi,point);
double a = (2.*d0 - 4.*d1 +2.*d2)/pow(t2-t0,2);
if(a <= 0)
{
if(d0 < d2)
t2 -= 0.3*(t2-t0);
else
t0 += 0.3*(t2-t0);
t1 = 0.5*(t2+t0);
}
else
{
double b = (d1-d0-a*(t1*t1-t0*t0))/(t1-t0);
double auxt1 = -0.5*b/a;
if(auxt1 < t0)
{
t2 -= 0.4*(t2-t0);
t0 = max2(0.,t0-0.1*(t2-t0));
}
else if (auxt1 > t2)
{
t0 += 0.4*(t2-t0);
t2 = min2(1.,t2+0.1*(t2-t0));
}
else
{
t1 = auxt1;
auxt1 = 0.25*(t2-t0);
t0 = max2(0.,t1-auxt1);
t2 = min2(1.,t1+auxt1);
}
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
t1 = 0.5*(t2+t0);
}
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
}
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
phi = SplineSeg3<D> ::GetPoint(t0); d0 = Dist(phi,point);
phi = SplineSeg3<D> ::GetPoint(t1); d1 = Dist(phi,point);
phi = SplineSeg3<D> ::GetPoint(t2); d2 = Dist(phi,point);
2009-04-03 20:39:52 +06:00
2009-04-15 01:20:09 +06:00
double mind = d0;
t = t0;
if(d1 < mind)
{
t = t1;
mind = d1;
}
if(d2 < mind)
{
t = t2;
mind = d2;
}
point_on_curve = SplineSeg3<D> ::GetPoint(t);
}
//(*testout) << " latest_t " << proj_latest_t << " t " << t << endl;
2009-01-13 04:40:13 +05:00
2009-04-15 01:20:09 +06:00
proj_latest_t = t;
/*
2009-04-03 20:39:52 +06:00
// test it by trivial sampling
2009-04-15 01:20:09 +06:00
double ht;
Point<D> hp;
ProjectTrivial (*this, point, hp, ht);
if (fabs (t-ht) > 1e-3)
2009-04-03 20:39:52 +06:00
{
2009-04-15 01:20:09 +06:00
// if (Dist2 (point, hp) < Dist2 (point, point_on_curve))
cout << "project is wrong" << endl;
cout << "t = " << t << ", ht = " << ht << endl;
cout << "dist org = " << Dist(point, point_on_curve) << endl;
cout << "dist trivial = " << Dist(point, hp) << endl;
2009-04-03 20:39:52 +06:00
}
2009-04-15 01:20:09 +06:00
*/
}
template<int D>
void SplineSeg3<D> :: GetDerivatives (const double t,
Point<D> & point,
Vec<D> & first,
Vec<D> & second) const
{
Vec<D> v1(p1), v2(p2), v3(p3);
double b1 = (1.-t)*(1.-t);
double b2 = sqrt(2.)*t*(1.-t);
double b3 = t*t;
double w = b1+b2+b3;
b1 *= 1./w; b2 *= 1./w; b3 *= 1./w;
double b1p = 2.*(t-1.);
double b2p = sqrt(2.)*(1.-2.*t);
double b3p = 2.*t;
const double wp = b1p+b2p+b3p;
const double fac1 = wp/w;
b1p *= 1./w; b2p *= 1./w; b3p *= 1./w;
const double b1pp = 2.;
const double b2pp = -2.*sqrt(2.);
const double b3pp = 2.;
const double wpp = b1pp+b2pp+b3pp;
const double fac2 = (wpp*w-2.*wp*wp)/(w*w);
for(int i=0; i<D; i++)
point(i) = b1*p1(i) + b2*p2(i) + b3*p3(i);
first = (b1p - b1*fac1) * v1 +
(b2p - b2*fac1) * v2 +
(b3p - b3*fac1) * v3;
/*
second = (b1pp/w - b1p*fac1 - b1*fac2) * v1 +
(b2pp/w - b2p*fac1 - b2*fac2) * v2 +
(b3pp/w - b3p*fac1 - b3*fac2) * v3;
*/
// JS: 2 was missing
second = (b1pp/w - 2*b1p*fac1 - b1*fac2) * v1 +
(b2pp/w - 2*b2p*fac1 - b2*fac2) * v2 +
(b3pp/w - 2*b3p*fac1 - b3*fac2) * v3;
}
2009-04-03 20:39:52 +06:00
template class SplineSeg3<2>;
template class SplineSeg3<3>;
2009-01-13 04:40:13 +05:00
void CalcPartition (double l, double h, double r1, double r2,
2009-01-25 17:35:25 +05:00
double ra, double elto0, Array<double> & points)
2009-01-13 04:40:13 +05:00
{
int i, j, n, nel;
double sum, t, dt, fun, fperel, oldf, f;
n = 1000;
points.SetSize (0);
sum = 0;
dt = l / n;
t = 0.5 * dt;
for (i = 1; i <= n; i++)
{
fun = min3 (h/ra, t/elto0 + h/r1, (l-t)/elto0 + h/r2);
sum += dt / fun;
t += dt;
}
nel = int (sum+1);
fperel = sum / nel;
points.Append (0);
i = 1;
oldf = 0;
t = 0.5 * dt;
for (j = 1; j <= n && i < nel; j++)
{
fun = min3 (h/ra, t/elto0 + h/r1, (l-t)/elto0 + h/r2);
f = oldf + dt / fun;
while (f > i * fperel && i < nel)
{
points.Append ( (l/n) * (j-1 + (i * fperel - oldf) / (f - oldf)) );
i++;
}
oldf = f;
t += dt;
}
points.Append (l);
}
template<>
double SplineSeg3<2> :: MaxCurvature(void) const
{
Vec<2> v1 = p1-p2;
Vec<2> v2 = p3-p2;
double l1 = v1.Length();
double l2 = v2.Length();
double cosalpha = (v1*v2)/(l1*l2);
return sqrt(cosalpha + 1.)/(min2(l1,l2)*(1.-cosalpha));
}
template<>
double SplineSeg3<3> :: MaxCurvature(void) const
{
Vec<3> v1 = p1-p2;
Vec<3> v2 = p3-p2;
double l1 = v1.Length();
double l2 = v2.Length();
double cosalpha = v1*v2/(l1*l2);
return sqrt(cosalpha + 1.)/(min2(l1,l2)*(1.-cosalpha));
}
}