netgen/libsrc/meshing/delaunay.cpp

1677 lines
36 KiB
C++
Raw Normal View History

2009-01-13 04:40:13 +05:00
#include <mystdlib.h>
#include "meshing.hpp"
namespace netgen
{
static const int deltetfaces[][3] =
{ { 1, 2, 3 },
{ 2, 0, 3 },
{ 0, 1, 3 },
{ 1, 0, 2 } };
class DelaunayTet
{
PointIndex pnums[4];
int nb[4];
public:
DelaunayTet () { ; }
DelaunayTet (const DelaunayTet & el)
{
for (int i = 0; i < 4; i++)
pnums[i] = el[i];
}
DelaunayTet (const Element & el)
{
for (int i = 0; i < 4; i++)
pnums[i] = el[i];
}
PointIndex & operator[] (int i) { return pnums[i]; }
PointIndex operator[] (int i) const { return pnums[i]; }
int & NB1(int i) { return nb[i-1]; }
int NB1(int i) const { return nb[i-1]; }
int & NB(int i) { return nb[i]; }
int NB(int i) const { return nb[i]; }
int FaceNr (INDEX_3 & face) const // which face nr is it ?
{
for (int i = 0; i < 3; i++)
if (pnums[i] != face.I1() &&
pnums[i] != face.I2() &&
pnums[i] != face.I3())
return i;
return 3;
}
void GetFace1 (int i, INDEX_3 & face) const
{
face.I(1) = pnums[deltetfaces[i-1][0]];
face.I(2) = pnums[deltetfaces[i-1][1]];
face.I(3) = pnums[deltetfaces[i-1][2]];
}
void GetFace (int i, INDEX_3 & face) const
{
face.I(1) = pnums[deltetfaces[i][0]];
face.I(2) = pnums[deltetfaces[i][1]];
face.I(3) = pnums[deltetfaces[i][2]];
}
INDEX_3 GetFace1 (int i) const
{
return INDEX_3 (pnums[deltetfaces[i-1][0]],
pnums[deltetfaces[i-1][1]],
pnums[deltetfaces[i-1][2]]);
}
INDEX_3 GetFace (int i) const
{
return INDEX_3 (pnums[deltetfaces[i][0]],
pnums[deltetfaces[i][1]],
pnums[deltetfaces[i][2]]);
}
void GetFace1 (int i, Element2d & face) const
{
// face.SetType(TRIG);
face[0] = pnums[deltetfaces[i-1][0]];
face[1] = pnums[deltetfaces[i-1][1]];
face[2] = pnums[deltetfaces[i-1][2]];
}
};
/*
Table to maintain neighbour elements
*/
class MeshNB
{
// face nodes -> one element
INDEX_3_CLOSED_HASHTABLE<int> faces;
//
ARRAY<DelaunayTet> & tets;
public:
// estimated number of points
MeshNB (ARRAY<DelaunayTet> & atets, int np)
: faces(200), tets(atets)
{ ; }
// add element with 4 nodes
void Add (int elnr);
// delete element with 4 nodes
void Delete (int elnr)
{
DelaunayTet & el = tets.Elem(elnr);
for (int i = 0; i < 4; i++)
faces.Set (el.GetFace(i).Sort(), el.NB(i));
}
// get neighbour of element elnr in direction fnr
int GetNB (int elnr, int fnr)
{
return tets.Get(elnr).NB1(fnr);
}
//
void ResetFaceHT (int size)
{
faces.SetSize (size);
}
};
void MeshNB :: Add (int elnr)
{
DelaunayTet & el = tets.Elem(elnr);
for (int i = 0; i < 4; i++)
{
INDEX_3 i3 = INDEX_3::Sort (el.GetFace(i));
int posnr;
if (!faces.PositionCreate (i3, posnr))
{
// face already in use
int othertet = faces.GetData (posnr);
el.NB(i) = othertet;
if (othertet)
{
int fnr = tets.Get(othertet).FaceNr (i3);
tets.Elem(othertet).NB(fnr) = elnr;
}
}
else
{
faces.SetData (posnr, elnr);
el.NB(i) = 0;
}
}
}
/*
connected lists of cosphereical elements
*/
class SphereList
{
ARRAY<int> links;
public:
SphereList ()
{ ; }
void AddElement (int elnr)
{
if (elnr > links.Size())
links.Append (1);
links.Elem(elnr) = elnr;
}
void DeleteElement (int elnr)
{
links.Elem(elnr) = 0;
}
void ConnectElement (int eli, int toi)
{
links.Elem (eli) = links.Get (toi);
links.Elem (toi) = eli;
}
void GetList (int eli, ARRAY<int> & linked) const;
};
void SphereList :: GetList (int eli, ARRAY<int> & linked) const
{
linked.SetSize (0);
int pi = eli;
do
{
if (pi <= 0 || pi > links.Size())
{
cerr << "link, error " << endl;
cerr << "pi = " << pi << " linked.s = " << linked.Size() << endl;
exit(1);
}
if (linked.Size() > links.Size())
{
cerr << "links have loop" << endl;
exit(1);
}
linked.Append (pi);
pi = links.Get(pi);
}
while (pi != eli);
}
void AddDelaunayPoint (PointIndex newpi, const Point3d & newp,
ARRAY<DelaunayTet> & tempels,
Mesh & mesh,
Box3dTree & tettree,
MeshNB & meshnb,
ARRAY<Point<3> > & centers, ARRAY<double> & radi2,
ARRAY<int> & connected, ARRAY<int> & treesearch,
ARRAY<int> & freelist, SphereList & list,
IndexSet & insphere, IndexSet & closesphere)
{
/*
find any sphere, such that newp is contained in
*/
DelaunayTet el;
int cfelind = -1;
const Point<3> * pp[4];
Point<3> pc;
double r2;
Point3d tpmin, tpmax;
tettree.GetIntersecting (newp, newp, treesearch);
double quot,minquot(1e20);
for (int j = 0; j < treesearch.Size(); j++)
{
int jjj = treesearch[j];
quot = Dist2 (centers.Get(jjj), newp) / radi2.Get(jjj);
if((cfelind == -1 || quot < 0.99*minquot) && quot < 1)
{
minquot = quot;
el = tempels.Get(jjj);
cfelind = jjj;
if(minquot < 0.917632)
break;
}
}
/*
int i, j, k, l;
if (!felind)
{
cerr << "not in any sphere, 1" << endl;
// old, non tree search
double mindist = 1e10;
for (j = 1; j <= tempels.Size(); j++)
{
if (tempels.Get(j).PNum(1))
{
double toofar =
Dist2 (centers.Get(j), newp) - radi2.Get(j);
if (toofar < mindist || toofar < 1e-7)
{
mindist = toofar;
cout << " dist2 = " << Dist2 (centers.Get(j), newp)
<< " radi2 = " << radi2.Get(j) << endl;
}
if (toofar < 0)
{
el = tempels.Get(j);
felind = j;
cout << "sphere found !" << endl;
break;
}
}
}
cout << "point is too far from sheres: " << mindist << endl;
}
*/
if (cfelind == -1)
{
PrintWarning ("Delaunay, point not in any sphere");
return;
}
/*
insphere: point is in sphere -> delete element
closesphere: point is close to sphere -> considered for same center
*/
// save overestimate
insphere.SetMaxIndex (2 * tempels.Size() + 5 * mesh.GetNP());
closesphere.SetMaxIndex (2 * tempels.Size() + 5 * mesh.GetNP());
insphere.Clear();
closesphere.Clear();
insphere.Add (cfelind);
int changed = 1;
int nstarti = 1, starti;
while (changed)
{
changed = 0;
starti = nstarti;
nstarti = insphere.Array().Size()+1;
// if point in sphere, then it is also closesphere
for (int j = starti; j < nstarti; j++)
{
int helind = insphere.Array().Get(j);
if (!closesphere.IsIn (helind))
closesphere.Add (helind);
}
// add connected spheres to insphere - list
for (int j = starti; j < nstarti; j++)
{
list.GetList (insphere.Array().Get(j), connected);
for (int k = 0; k < connected.Size(); k++)
{
int celind = connected[k];
if (tempels.Get(celind)[0] != -1 &&
!insphere.IsIn (celind))
{
changed = 1;
insphere.Add (celind);
}
}
}
// check neighbour-tets
for (int j = starti; j < nstarti; j++)
for (int k = 1; k <= 4; k++)
{
int helind = insphere.Array().Get(j);
int nbind = meshnb.GetNB (helind, k);
if (nbind && !insphere.IsIn (nbind) )
{
//changed
//int prec = testout->precision();
//testout->precision(12);
//(*testout) << "val1 " << Dist2 (centers.Get(nbind), newp)
// << " val2 " << radi2.Get(nbind) * (1+1e-8)
// << " val3 " << radi2.Get(nbind)
// << " val1 / val3 " << Dist2 (centers.Get(nbind), newp)/radi2.Get(nbind) << endl;
//testout->precision(prec);
if (Dist2 (centers.Get(nbind), newp)
< radi2.Get(nbind) * (1+1e-8) )
closesphere.Add (nbind);
if (Dist2 (centers.Get(nbind), newp)
< radi2.Get(nbind) * (1 + 1e-12))
{
// point is in sphere -> remove tet
insphere.Add (nbind);
changed = 1;
}
else
{
/*
Element2d face;
tempels.Get(helind).GetFace (k, face);
const Point3d & p1 = mesh.Point (face.PNum(1));
const Point3d & p2 = mesh.Point (face[1]);
const Point3d & p3 = mesh.Point (face[2]);
*/
INDEX_3 i3 = tempels.Get(helind).GetFace (k-1);
const Point3d & p1 = mesh.Point ( PointIndex (i3.I1()));
const Point3d & p2 = mesh.Point ( PointIndex (i3.I2()));
const Point3d & p3 = mesh.Point ( PointIndex (i3.I3()));
Vec3d v1(p1, p2);
Vec3d v2(p1, p3);
Vec3d n = Cross (v1, v2);
n /= n.Length();
if (n * Vec3d (p1, mesh.Point (tempels.Get(helind)[k-1])) > 0)
n *= -1;
double dist = n * Vec3d (p1, newp);
if (dist > -1e-10) // 1e-10
{
insphere.Add (nbind);
changed = 1;
}
}
}
}
} // while (changed)
// (*testout) << "newels: " << endl;
ARRAY<Element> newels;
Element2d face(TRIG);
for (int j = 1; j <= insphere.Array().Size(); j++)
for (int k = 1; k <= 4; k++)
{
// int elind = insphere.Array().Get(j);
int celind = insphere.Array().Get(j);
int nbind = meshnb.GetNB (celind, k);
if (!nbind || !insphere.IsIn (nbind))
{
tempels.Get (celind).GetFace1 (k, face);
Element newel(TET);
for (int l = 0; l < 3; l++)
newel[l] = face[l];
newel[3] = newpi;
newels.Append (newel);
Vec<3> v1 = mesh[face[1]] - mesh[face[0]];
Vec<3> v2 = mesh[face[2]] - mesh[face[0]];
Vec<3> n = Cross (v1, v2);
n.Normalize();
if (n * Vec3d(mesh.Point (face[0]),
mesh.Point (tempels.Get(insphere.Array().Get(j))[k-1]))
> 0)
n *= -1;
double hval = n * ( newp - mesh[face[0]]);
if (hval > -1e-12)
{
cerr << "vec to outer" << endl;
(*testout) << "vec to outer, hval = " << hval << endl;
(*testout) << "v1 x v2 = " << Cross (v1, v2) << endl;
(*testout) << "facep: "
<< mesh.Point (face[0]) << " "
<< mesh.Point (face[1]) << " "
<< mesh.Point (face[2]) << endl;
}
}
}
meshnb.ResetFaceHT (10*insphere.Array().Size()+1);
for (int j = 1; j <= insphere.Array().Size(); j++)
{
// int elind =
int celind = insphere.Array().Get(j);
meshnb.Delete (celind);
list.DeleteElement (celind);
for (int k = 0; k < 4; k++)
tempels.Elem(celind)[k] = -1;
((ADTree6&)tettree.Tree()).DeleteElement (celind);
freelist.Append (celind);
}
int hasclose = 0;
for (int j = 1; j <= closesphere.Array().Size(); j++)
{
int ind = closesphere.Array().Get(j);
if (!insphere.IsIn(ind) &&
fabs (Dist2 (centers.Get (ind), newp) - radi2.Get(ind)) < 1e-8 )
hasclose = 1;
}
for (int j = 1; j <= newels.Size(); j++)
{
int nelind;
if (!freelist.Size())
{
tempels.Append (newels.Get(j));
nelind = tempels.Size();
}
else
{
nelind = freelist.Last();
freelist.DeleteLast();
tempels.Elem(nelind) = newels.Get(j);
}
meshnb.Add (nelind);
list.AddElement (nelind);
for (int k = 0; k < 4; k++)
pp[k] = &mesh.Point (newels.Get(j)[k]);
if (CalcSphereCenter (&pp[0], pc) )
{
PrintSysError ("Delaunay: New tet is flat");
(*testout) << "new tet is flat" << endl;
for (int k = 1; k <= 4; k++)
(*testout) << newels.Get(j).PNum(k) << " ";
(*testout) << endl;
for (int k = 1; k <= 4; k++)
(*testout) << *pp[k-1] << " ";
(*testout) << endl;
}
r2 = Dist2 (*pp[0], pc);
if (hasclose)
for (int k = 1; k <= closesphere.Array().Size(); k++)
{
int csameind = closesphere.Array().Get(k);
if (!insphere.IsIn(csameind) &&
fabs (r2 - radi2.Get(csameind)) < 1e-10 &&
Dist (pc, centers.Get(csameind)) < 1e-10)
{
pc = centers.Get(csameind);
r2 = radi2.Get(csameind);
list.ConnectElement (nelind, csameind);
break;
}
}
if (centers.Size() < nelind)
{
centers.Append (pc);
radi2.Append (r2);
}
else
{
centers.Elem(nelind) = pc;
radi2.Elem(nelind) = r2;
}
closesphere.Add (nelind);
tpmax = tpmin = *pp[0];
for (int k = 1; k <= 3; k++)
{
tpmin.SetToMin (*pp[k]);
tpmax.SetToMax (*pp[k]);
}
tpmax = tpmax + 0.01 * (tpmax - tpmin);
tettree.Insert (tpmin, tpmax, nelind);
}
}
void Delaunay1 (Mesh & mesh, const MeshingParameters & mp, AdFront3 * adfront,
ARRAY<DelaunayTet> & tempels,
int oldnp, DelaunayTet & startel, Point3d & pmin, Point3d & pmax)
{
int i, j, k;
const Point<3> * pp[4];
ARRAY<Point<3> > centers;
ARRAY<double> radi2;
Point3d tpmin, tpmax;
// new: local box
mesh.GetBox (pmax, pmin); // lower bound for pmax, upper for pmin
for (i = 1; i <= adfront->GetNF(); i++)
{
const MiniElement2d & face = adfront->GetFace(i);
for (j = 0; j < face.GetNP(); j++)
{
pmin.SetToMin (mesh.Point (face[j]));
pmax.SetToMax (mesh.Point (face[j]));
}
}
for (i = 0; i < mesh.LockedPoints().Size(); i++)
{
pmin.SetToMin (mesh.Point (mesh.LockedPoints()[i]));
pmax.SetToMax (mesh.Point (mesh.LockedPoints()[i]));
}
Vec3d vdiag(pmin, pmax);
// double r1 = vdiag.Length();
double r1 = sqrt (3.0) * max3(vdiag.X(), vdiag.Y(), vdiag.Z());
vdiag = Vec3d (r1, r1, r1);
//double r2;
Point3d pmin2 = pmin - 8 * vdiag;
Point3d pmax2 = pmax + 8 * vdiag;
Point3d cp1(pmin2), cp2(pmax2), cp3(pmax2), cp4(pmax2);
cp2.X() = pmin2.X();
cp3.Y() = pmin2.Y();
cp4.Z() = pmin2.Z();
int np = mesh.GetNP();
startel[0] = mesh.AddPoint (cp1);
startel[1] = mesh.AddPoint (cp2);
startel[2] = mesh.AddPoint (cp3);
startel[3] = mesh.AddPoint (cp4);
// flag points to use for Delaunay:
BitArrayChar<PointIndex::BASE> usep(np);
usep.Clear();
for (i = 1; i <= adfront->GetNF(); i++)
{
const MiniElement2d & face = adfront->GetFace(i);
for (j = 0; j < face.GetNP(); j++)
usep.Set (face[j]);
}
for (i = oldnp + PointIndex::BASE;
i < np + PointIndex::BASE; i++)
usep.Set (i);
for (i = 0; i < mesh.LockedPoints().Size(); i++)
usep.Set (mesh.LockedPoints()[i]);
ARRAY<int> freelist;
int cntp = 0;
MeshNB meshnb (tempels, mesh.GetNP() + 5);
SphereList list;
pmin2 = pmin2 + 0.1 * (pmin2 - pmax2);
pmax2 = pmax2 + 0.1 * (pmax2 - pmin2);
Box3dTree tettree(pmin2, pmax2);
tempels.Append (startel);
meshnb.Add (1);
list.AddElement (1);
ARRAY<int> connected, treesearch;
tpmin = tpmax = mesh.Point(startel[0]);
for (k = 1; k < 4; k++)
{
tpmin.SetToMin (mesh.Point (startel[k]));
tpmax.SetToMax (mesh.Point (startel[k]));
}
tpmax = tpmax + 0.01 * (tpmax - tpmin);
tettree.Insert (tpmin, tpmax, 1);
Point<3> pc;
for (k = 0; k < 4; k++)
{
pp[k] = &mesh.Point (startel[k]);
}
CalcSphereCenter (&pp[0], pc);
centers.Append (pc);
radi2.Append (Dist2 (*pp[0], pc));
IndexSet insphere(mesh.GetNP());
IndexSet closesphere(mesh.GetNP());
// "random" reordering of points (speeds a factor 3 - 5 !!!)
ARRAY<int> mixed(np);
int prims[] = { 11, 13, 17, 19, 23, 29, 31, 37 };
int prim;
i = 0;
while (np % prims[i] == 0) i++;
prim = prims[i];
for (i = 1; i <= np; i++)
mixed.Elem(i) = (prim * i) % np + PointIndex::BASE;
for (i = 1; i <= np; i++)
{
if (i % 1000 == 0)
{
if (i % 10000 == 0)
PrintDot ('+');
else
PrintDot ('.');
}
multithread.percent = 100.0 * i / np;
if (multithread.terminate)
break;
PointIndex newpi = mixed.Get(i);
if (!usep.Test(newpi))
continue;
cntp++;
const Point3d & newp = mesh.Point(newpi);
AddDelaunayPoint (newpi, newp, tempels, mesh,
tettree, meshnb, centers, radi2,
connected, treesearch, freelist, list, insphere, closesphere);
}
for (i = tempels.Size(); i >= 1; i--)
if (tempels.Get(i)[0] <= 0)
tempels.DeleteElement (i);
PrintDot ('\n');
PrintMessage (3, "Points: ", cntp);
PrintMessage (3, "Elements: ", tempels.Size());
// (*mycout) << cntp << " / " << tempels.Size() << " points/elements" << endl;
/*
cout << "tempels: ";
tempels.PrintMemInfo(cout);
cout << "Searchtree: ";
tettree.Tree().PrintMemInfo(cout);
cout << "MeshNB: ";
meshnb.PrintMemInfo(cout);
*/
}
void Meshing3 :: Delaunay (Mesh & mesh, int domainnr, const MeshingParameters & mp)
{
int np, ne;
PrintMessage (1, "Delaunay meshing");
PrintMessage (3, "number of points: ", mesh.GetNP());
PushStatus ("Delaunay meshing");
ARRAY<DelaunayTet> tempels;
Point3d pmin, pmax;
DelaunayTet startel;
int oldnp = mesh.GetNP();
if (mp.blockfill)
{
BlockFillLocalH (mesh, mp);
PrintMessage (3, "number of points: ", mesh.GetNP());
}
np = mesh.GetNP();
Delaunay1 (mesh, mp, adfront, tempels, oldnp, startel, pmin, pmax);
{
// improve delaunay - mesh by swapping !!!!
Mesh tempmesh;
for (PointIndex pi = PointIndex::BASE; pi < mesh.GetNP()+PointIndex::BASE; pi++)
tempmesh.AddPoint (mesh[pi]);
for (int i = 1; i <= tempels.Size(); i++)
{
Element el(4);
for (int j = 0; j < 4; j++)
el[j] = tempels.Elem(i)[j];
el.SetIndex (1);
const Point3d & lp1 = mesh.Point (el[0]);
const Point3d & lp2 = mesh.Point (el[1]);
const Point3d & lp3 = mesh.Point (el[2]);
const Point3d & lp4 = mesh.Point (el[3]);
Vec3d v1(lp1, lp2);
Vec3d v2(lp1, lp3);
Vec3d v3(lp1, lp4);
Vec3d n = Cross (v1, v2);
double vol = n * v3;
if (vol > 0) swap (el[2], el[3]);
tempmesh.AddVolumeElement (el);
}
MeshQuality3d (tempmesh);
tempmesh.AddFaceDescriptor (FaceDescriptor (1, 1, 0, 0));
tempmesh.AddFaceDescriptor (FaceDescriptor (2, 1, 0, 0));
for (int i = 1; i <= mesh.GetNOpenElements(); i++)
{
Element2d sel = mesh.OpenElement(i);
sel.SetIndex(1);
tempmesh.AddSurfaceElement (sel);
swap (sel[1], sel[2]);
tempmesh.AddSurfaceElement (sel);
}
for (int i = 1; i <= 4; i++)
{
Element2d self(TRIG);
self.SetIndex (1);
startel.GetFace1 (i, self);
tempmesh.AddSurfaceElement (self);
}
// for (i = mesh.GetNP() - 3; i <= mesh.GetNP(); i++)
// tempmesh.AddLockedPoint (i);
for (PointIndex pi = PointIndex::BASE;
pi < tempmesh.GetNP() + PointIndex::BASE; pi++)
tempmesh.AddLockedPoint (pi);
// tempmesh.PrintMemInfo(cout);
// tempmesh.Save ("tempmesh.vol");
for (int i = 1; i <= 2; i++)
{
tempmesh.FindOpenElements ();
PrintMessage (5, "Num open: ", tempmesh.GetNOpenElements());
tempmesh.CalcSurfacesOfNode ();
tempmesh.FreeOpenElementsEnvironment (1);
MeshOptimize3d meshopt;
// tempmesh.CalcSurfacesOfNode();
meshopt.SwapImprove(tempmesh, OPT_CONFORM);
}
MeshQuality3d (tempmesh);
tempels.SetSize(0);
for (int i = 1; i <= tempmesh.GetNE(); i++)
tempels.Append (tempmesh.VolumeElement(i));
}
// remove degenerated
BitArray badnode(mesh.GetNP());
badnode.Clear();
int ndeg = 0;
for (int i = 1; i <= tempels.Size(); i++)
{
Element el(4);
for (int j = 0; j < 4; j++)
el[j] = tempels.Elem(i)[j];
// Element & el = tempels.Elem(i);
const Point3d & lp1 = mesh.Point (el[0]);
const Point3d & lp2 = mesh.Point (el[1]);
const Point3d & lp3 = mesh.Point (el[2]);
const Point3d & lp4 = mesh.Point (el[3]);
Vec3d v1(lp1, lp2);
Vec3d v2(lp1, lp3);
Vec3d v3(lp1, lp4);
Vec3d n = Cross (v1, v2);
double vol = n * v3;
double h = v1.Length() + v2.Length() + v3.Length();
if (fabs (vol) < 1e-8 * (h * h * h) &&
(el[0] <= np && el[1] <= np &&
el[2] <= np && el[3] <= np) ) // old: 1e-12
{
badnode.Set(el[0]);
badnode.Set(el[1]);
badnode.Set(el[2]);
badnode.Set(el[3]);
ndeg++;
(*testout) << "vol = " << vol << " h = " << h << endl;
}
if (vol > 0)
Swap (el[2], el[3]);
}
ne = tempels.Size();
for (int i = ne; i >= 1; i--)
{
const DelaunayTet & el = tempels.Get(i);
if (badnode.Test(el[0]) ||
badnode.Test(el[1]) ||
badnode.Test(el[2]) ||
badnode.Test(el[3]) )
tempels.DeleteElement(i);
}
PrintMessage (3, ndeg, " degenerated elements removed");
// find surface triangles which are no face of any tet
INDEX_3_HASHTABLE<int> openeltab(mesh.GetNOpenElements()+3);
ARRAY<int> openels;
for (int i = 1; i <= mesh.GetNOpenElements(); i++)
{
const Element2d & tri = mesh.OpenElement(i);
INDEX_3 i3(tri[0], tri[1], tri[2]);
i3.Sort();
openeltab.Set (i3, i);
}
for (int i = 1; i <= tempels.Size(); i++)
{
for (int j = 0; j < 4; j++)
{
INDEX_3 i3 = tempels.Get(i).GetFace (j);
i3.Sort();
if (openeltab.Used(i3))
openeltab.Set (i3, 0);
}
}
// and store them in openels
for (int i = 1; i <= openeltab.GetNBags(); i++)
for (int j = 1; j <= openeltab.GetBagSize(i); j++)
{
INDEX_3 i3;
int fnr;
openeltab.GetData (i, j, i3, fnr);
if (fnr)
openels.Append (fnr);
}
// find open triangle with close edge (from halfening of surface squares)
INDEX_2_HASHTABLE<INDEX_2> twotrias(mesh.GetNOpenElements()+5);
// for (i = 1; i <= mesh.GetNOpenElements(); i++)
for (int ii = 1; ii <= openels.Size(); ii++)
{
int i = openels.Get(ii);
const Element2d & el = mesh.OpenElement(i);
for (int j = 1; j <= 3; j++)
{
INDEX_2 hi2 (el.PNumMod (j), el.PNumMod(j+1));
hi2.Sort();
if (twotrias.Used(hi2))
{
INDEX_2 hi3;
hi3 = twotrias.Get (hi2);
hi3.I2() = el.PNumMod (j+2);
twotrias.Set (hi2, hi3);
}
else
{
INDEX_2 hi3(el.PNumMod (j+2), 0);
twotrias.Set (hi2, hi3);
}
}
}
INDEX_2_HASHTABLE<int> tetedges(tempels.Size() + 5);
for (int i = 1; i <= tempels.Size(); i++)
{
const DelaunayTet & el = tempels.Get(i);
INDEX_2 i2;
for (int j = 1; j <= 6; j++)
{
switch (j)
{
case 1: i2.I1()=el[0]; i2.I2()=el[1]; break;
case 2: i2.I1()=el[0]; i2.I2()=el[2]; break;
case 3: i2.I1()=el[0]; i2.I2()=el[3]; break;
case 4: i2.I1()=el[1]; i2.I2()=el[2]; break;
case 5: i2.I1()=el[1]; i2.I2()=el[3]; break;
case 6: i2.I1()=el[2]; i2.I2()=el[3]; break;
default: i2.I1()=i2.I2()=0; break;
}
i2.Sort();
tetedges.Set (i2, 1);
}
}
// cout << "tetedges:";
// tetedges.PrintMemInfo (cout);
for (INDEX_2_HASHTABLE<INDEX_2>::Iterator it = twotrias.Begin();
it != twotrias.End(); it++)
{
INDEX_2 hi2, hi3;
twotrias.GetData (it, hi2, hi3);
hi3.Sort();
if (tetedges.Used (hi3))
{
const Point3d & p1 = mesh.Point ( PointIndex (hi2.I1()));
const Point3d & p2 = mesh.Point ( PointIndex (hi2.I2()));
const Point3d & p3 = mesh.Point ( PointIndex (hi3.I1()));
const Point3d & p4 = mesh.Point ( PointIndex (hi3.I2()));
Vec3d v1(p1, p2);
Vec3d v2(p1, p3);
Vec3d v3(p1, p4);
Vec3d n = Cross (v1, v2);
double vol = n * v3;
double h = v1.Length() + v2.Length() + v3.Length();
if (fabs (vol) < 1e-4 * (h * h * h)) // old: 1e-12
{
badnode.Set(hi3.I1());
badnode.Set(hi3.I2());
}
}
}
/*
for (i = 1; i <= twotrias.GetNBags(); i++)
for (j = 1; j <= twotrias.GetBagSize (i); j++)
{
INDEX_2 hi2, hi3;
twotrias.GetData (i, j, hi2, hi3);
hi3.Sort();
if (tetedges.Used (hi3))
{
const Point3d & p1 = mesh.Point (hi2.I1());
const Point3d & p2 = mesh.Point (hi2.I2());
const Point3d & p3 = mesh.Point (hi3.I1());
const Point3d & p4 = mesh.Point (hi3.I2());
Vec3d v1(p1, p2);
Vec3d v2(p1, p3);
Vec3d v3(p1, p4);
Vec3d n = Cross (v1, v2);
double vol = n * v3;
double h = v1.Length() + v2.Length() + v3.Length();
if (fabs (vol) < 1e-4 * (h * h * h)) // old: 1e-12
{
badnode.Set(hi3.I1());
badnode.Set(hi3.I2());
}
}
}
*/
ne = tempels.Size();
for (int i = ne; i >= 1; i--)
{
const DelaunayTet & el = tempels.Get(i);
if (badnode.Test(el[0]) ||
badnode.Test(el[1]) ||
badnode.Test(el[2]) ||
badnode.Test(el[3]) )
tempels.DeleteElement(i);
}
// find intersecting:
PrintMessage (3, "Remove intersecting");
if (openels.Size())
{
Box3dTree setree(pmin, pmax);
/*
cout << "open elements in search tree: " << openels.Size() << endl;
cout << "pmin, pmax = " << pmin << " - " << pmax << endl;
*/
for (int i = 1; i <= openels.Size(); i++)
{
int fnr;
fnr = openels.Get(i);
if (fnr)
{
const Element2d & tri = mesh.OpenElement(fnr);
Point3d ltpmin (mesh.Point(tri[0]));
Point3d ltpmax (ltpmin);
for (int k = 2; k <= 3; k++)
{
ltpmin.SetToMin (mesh.Point (tri.PNum(k)));
ltpmax.SetToMax (mesh.Point (tri.PNum(k)));
}
setree.Insert (ltpmin, ltpmax, fnr);
}
}
ARRAY<int> neartrias;
for (int i = 1; i <= tempels.Size(); i++)
{
const Point<3> *pp[4];
int tetpi[4];
DelaunayTet & el = tempels.Elem(i);
int intersect = 0;
for (int j = 0; j < 4; j++)
{
pp[j] = &mesh.Point(el[j]);
tetpi[j] = el[j];
}
Point3d tetpmin(*pp[0]);
Point3d tetpmax(tetpmin);
for (int j = 1; j < 4; j++)
{
tetpmin.SetToMin (*pp[j]);
tetpmax.SetToMax (*pp[j]);
}
tetpmin = tetpmin + 0.01 * (tetpmin - tetpmax);
tetpmax = tetpmax + 0.01 * (tetpmax - tetpmin);
setree.GetIntersecting (tetpmin, tetpmax, neartrias);
// for (j = 1; j <= mesh.GetNSE(); j++)
// {
for (int jj = 1; jj <= neartrias.Size(); jj++)
{
int j = neartrias.Get(jj);
const Element2d & tri = mesh.OpenElement(j);
const Point<3> *tripp[3];
int tripi[3];
for (int k = 1; k <= 3; k++)
{
tripp[k-1] = &mesh.Point (tri.PNum(k));
tripi[k-1] = tri.PNum(k);
}
if (IntersectTetTriangle (&pp[0], &tripp[0], tetpi, tripi))
{
/*
int il1, il2;
(*testout) << "intersect !" << endl;
(*testout) << "triind: ";
for (il1 = 0; il1 < 3; il1++)
(*testout) << " " << tripi[il1];
(*testout) << endl;
(*testout) << "tetind: ";
for (il2 = 0; il2 < 4; il2++)
(*testout) << " " << tetpi[il2];
(*testout) << endl;
(*testout) << "trip: ";
for (il1 = 0; il1 < 3; il1++)
(*testout) << " " << *tripp[il1];
(*testout) << endl;
(*testout) << "tetp: ";
for (il2 = 0; il2 < 4; il2++)
(*testout) << " " << *pp[il2];
(*testout) << endl;
*/
intersect = 1;
break;
}
}
if (intersect)
{
tempels.DeleteElement(i);
i--;
}
}
}
PrintMessage (3, "Remove outer");
// find connected tets (with no face between, and no hole due
// to removed intersecting tets.
// INDEX_3_HASHTABLE<INDEX_2> innerfaces(np);
INDEX_3_HASHTABLE<int> boundaryfaces(mesh.GetNOpenElements()/3+1);
for (int i = 1; i <= mesh.GetNOpenElements(); i++)
{
const Element2d & tri = mesh.OpenElement(i);
INDEX_3 i3 (tri[0], tri[1], tri[2]);
i3.Sort();
boundaryfaces.PrepareSet (i3);
}
boundaryfaces.AllocateElements();
for (int i = 1; i <= mesh.GetNOpenElements(); i++)
{
const Element2d & tri = mesh.OpenElement(i);
INDEX_3 i3 (tri[0], tri[1], tri[2]);
i3.Sort();
boundaryfaces.Set (i3, 1);
}
for (int i = 0; i < tempels.Size(); i++)
for (int j = 0; j < 4; j++)
tempels[i].NB(j) = 0;
TABLE<int,PointIndex::BASE> elsonpoint(mesh.GetNP());
for (int i = 0; i < tempels.Size(); i++)
{
const DelaunayTet & el = tempels[i];
INDEX_4 i4(el[0], el[1], el[2], el[3]);
i4.Sort();
elsonpoint.IncSizePrepare (i4.I1());
elsonpoint.IncSizePrepare (i4.I2());
}
elsonpoint.AllocateElementsOneBlock();
for (int i = 0; i < tempels.Size(); i++)
{
const DelaunayTet & el = tempels[i];
INDEX_4 i4(el[0], el[1], el[2], el[3]);
i4.Sort();
elsonpoint.Add (i4.I1(), i+1);
elsonpoint.Add (i4.I2(), i+1);
}
// cout << "elsonpoint mem: ";
// elsonpoint.PrintMemInfo(cout);
INDEX_3_CLOSED_HASHTABLE<INDEX_2> faceht(100);
Element2d hel(TRIG);
for (PointIndex pi = PointIndex::BASE;
pi < mesh.GetNP()+PointIndex::BASE; pi++)
{
faceht.SetSize (4 * elsonpoint[pi].Size());
for (int ii = 0; ii < elsonpoint[pi].Size(); ii++)
{
int i = elsonpoint[pi][ii];
const DelaunayTet & el = tempels.Get(i);
for (int j = 1; j <= 4; j++)
{
el.GetFace1 (j, hel);
hel.Invert();
hel.NormalizeNumbering();
if (hel[0] == pi)
{
INDEX_3 i3(hel[0], hel[1], hel[2]);
if (!boundaryfaces.Used (i3))
{
if (faceht.Used (i3))
{
INDEX_2 i2 = faceht.Get(i3);
tempels.Elem(i).NB1(j) = i2.I1();
tempels.Elem(i2.I1()).NB1(i2.I2()) = i;
}
else
{
hel.Invert();
hel.NormalizeNumbering();
INDEX_3 i3i(hel[0], hel[1], hel[2]);
INDEX_2 i2(i, j);
faceht.Set (i3i, i2);
}
}
}
}
}
}
/*
for (i = 1; i <= tempels.Size(); i++)
{
const DelaunayTet & el = tempels.Get(i);
for (j = 1; j <= 4; j++)
{
INDEX_3 i3;
Element2d face;
el.GetFace1 (j, face);
for (int kk = 1; kk <= 3; kk++)
i3.I(kk) = face.PNum(kk);
i3.Sort();
if (!boundaryfaces.Used (i3))
{
if (innerfaces.Used(i3))
{
INDEX_2 i2;
i2 = innerfaces.Get(i3);
i2.I2() = i;
innerfaces.Set (i3, i2);
}
else
{
INDEX_2 i2;
i2.I1() = i;
i2.I2() = 0;
innerfaces.Set (i3, i2);
}
}
}
}
*/
/*
(*testout) << "nb elements:" << endl;
for (i = 1; i <= tempels.Size(); i++)
{
(*testout) << i << " ";
for (j = 1; j <= 4; j++)
(*testout) << tempels.Get(i).NB1(j) << " ";
(*testout) << endl;
}
(*testout) << "pairs:" << endl;
for (i = 1; i <= innerfaces.GetNBags(); i++)
for (j = 1; j <= innerfaces.GetBagSize(i); j++)
{
INDEX_3 i3;
INDEX_2 i2;
innerfaces.GetData (i, j, i3, i2);
(*testout) << i2 << endl;
}
*/
/*
cout << "innerfaces: ";
innerfaces.PrintMemInfo (cout);
*/
// cout << "boundaryfaces: ";
// boundaryfaces.PrintMemInfo (cout);
PrintMessage (5, "tables filled");
ne = tempels.Size();
BitArray inner(ne), outer(ne);
inner.Clear();
outer.Clear();
ARRAY<int> elstack;
/*
int starti = 0;
for (i = 1; i <= ne; i++)
{
const Element & el = tempels.Get(i);
for (j = 1; j <= 4; j++)
for (k = 1; k <= 4; k++)
if (el.PNum(j) == startel.PNum(k))
{
outer.Set(i);
starti = i;
}
}
*/
while (1)
{
int inside;
bool done = 1;
int i;
for (i = 1; i <= ne; i++)
if (!inner.Test(i) && !outer.Test(i))
{
done = 0;
break;
}
if (done) break;
const DelaunayTet & el = tempels.Get(i);
const Point3d & p1 = mesh.Point (el[0]);
const Point3d & p2 = mesh.Point (el[1]);
const Point3d & p3 = mesh.Point (el[2]);
const Point3d & p4 = mesh.Point (el[3]);
Point3d ci = Center (p1, p2, p3, p4);
inside = adfront->Inside (ci);
/*
cout << "startel: " << i << endl;
cout << "inside = " << inside << endl;
cout << "ins2 = " << adfront->Inside (Center (ci, p1)) << endl;
cout << "ins3 = " << adfront->Inside (Center (ci, p2)) << endl;
*/
elstack.SetSize(0);
elstack.Append (i);
while (elstack.Size())
{
int ei = elstack.Last();
elstack.DeleteLast();
if (!inner.Test(ei) && !outer.Test(ei))
{
if (inside)
inner.Set(ei);
else
outer.Set(ei);
for (int j = 1; j <= 4; j++)
{
INDEX_3 i3 = tempels.Get(ei).GetFace1(j);
/*
Element2d face;
tempels.Get(ei).GetFace(j, face);
for (int kk = 1; kk <= 3; kk++)
i3.I(kk) = face.PNum(kk);
*/
i3.Sort();
if (tempels.Get(ei).NB1(j))
elstack.Append (tempels.Get(ei).NB1(j));
/*
if (innerfaces.Used(i3))
{
INDEX_2 i2 = innerfaces.Get(i3);
int other = i2.I1() + i2.I2() - ei;
if (other != tempels.Get(ei).NB1(j))
cerr << "different1 !!" << endl;
if (other)
{
elstack.Append (other);
}
}
else
if (tempels.Get(ei).NB1(j))
cerr << "different2 !!" << endl;
*/
}
}
}
}
// check outer elements
if (debugparam.slowchecks)
{
for (int i = 1; i <= ne; i++)
{
const DelaunayTet & el = tempels.Get(i);
const Point3d & p1 = mesh.Point (el[0]);
const Point3d & p2 = mesh.Point (el[1]);
const Point3d & p3 = mesh.Point (el[2]);
const Point3d & p4 = mesh.Point (el[3]);
Point3d ci = Center (p1, p2, p3, p4);
// if (adfront->Inside (ci) != adfront->Inside (Center (ci, p1)))
// cout << "ERROR: outer test unclear !!!" << endl;
if (inner.Test(i) != adfront->Inside (ci))
{
/*
cout << "ERROR: outer test wrong !!!"
<< "inner = " << int(inner.Test(i))
<< "outer = " << int(outer.Test(i))
<< endl;
cout << "Vol = " << Determinant(Vec3d(p1, p2),
Vec3d(p1, p3),
Vec3d(p1, p4)) << endl;
*/
for (int j = 1; j <= 4; j++)
{
Point3d hp;
switch (j)
{
case 1: hp = Center (ci, p1); break;
case 2: hp = Center (ci, p2); break;
case 3: hp = Center (ci, p3); break;
case 4: hp = Center (ci, p4); break;
}
// cout << "inside(" << hp << ") = " << adfront->Inside(hp) << endl;
}
}
if (adfront->Inside(ci))
outer.Clear(i);
else
outer.Set(i);
}
}
/*
// find bug in innerfaces
tempmesh.DeleteVolumeElements();
for (i = 1; i <= innerfaces.GetNBags(); i++)
for (j = 1; j <= innerfaces.GetBagSize(i); j++)
{
INDEX_3 i3;
INDEX_2 i2;
innerfaces.GetData (i, j, i3, i2);
if (i2.I2())
{
if (outer.Test(i2.I1()) != outer.Test(i2.I2()))
{
tempmesh.AddVolumeElement (tempels.Get(i2.I1()));
tempmesh.AddVolumeElement (tempels.Get(i2.I2()));
cerr << "outer flag different for connected els" << endl;
}
}
}
cout << "Check intersectiong once more" << endl;
for (i = 1; i <= openels.Size(); i++)
{
tempmesh.SurfaceElement(2*openels.Get(i)).SetIndex(2);
tempmesh.SurfaceElement(2*openels.Get(i)-1).SetIndex(2);
}
// for (i = 1; i <= tempmesh.GetNE(); i++)
// for (j = 1; j <= tempmesh.GetNSE(); j++)
i = 6; j = 403;
if (i <= tempmesh.GetNE() && j <= tempmesh.GetNSE())
if (tempmesh.SurfaceElement(j).GetIndex()==2)
{
const Element & el = tempmesh.VolumeElement(i);
const Element2d & sel = tempmesh.SurfaceElement(j);
const Point3d *tripp[3];
const Point3d *pp[4];
int tetpi[4], tripi[3];
for (k = 1; k <= 4; k++)
{
pp[k-1] = &tempmesh.Point(el.PNum(k));
tetpi[k-1] = el.PNum(k);
}
for (k = 1; k <= 3; k++)
{
tripp[k-1] = &tempmesh.Point (sel.PNum(k));
tripi[k-1] = sel.PNum(k);
}
(*testout) << "Check Triangle " << j << ":";
for (k = 1; k <= 3; k++)
(*testout) << " " << sel.PNum(k);
for (k = 1; k <= 3; k++)
(*testout) << " " << tempmesh.Point(sel.PNum(k));
(*testout) << endl;
(*testout) << "Check Tet " << i << ":";
for (k = 1; k <= 4; k++)
(*testout) << " " << el.PNum(k);
for (k = 1; k <= 4; k++)
(*testout) << " " << tempmesh.Point(el.PNum(k));
(*testout) << endl;
if (IntersectTetTriangle (&pp[0], &tripp[0], tetpi, tripi))
{
cout << "Intesection detected !!" << endl;
}
}
tempmesh.Save ("temp.vol");
// end bug search
*/
for (int i = ne; i >= 1; i--)
{
if (outer.Test(i))
tempels.DeleteElement(i);
}
// mesh.points.SetSize(mesh.points.Size()-4);
for (int i = 0; i < tempels.Size(); i++)
{
Element el(4);
for (int j = 0; j < 4; j++)
el[j] = tempels[i][j];
mesh.AddVolumeElement (el);
}
PrintMessage (5, "outer removed");
mesh.FindOpenElements(domainnr);
mesh.Compress();
PopStatus ();
}
}