mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-12 22:20:35 +05:00
191 lines
4.1 KiB
C++
191 lines
4.1 KiB
C++
|
#ifndef FILE_TRANSFORM3D
|
||
|
#define FILE_TRANSFORM3D
|
||
|
|
||
|
/* *************************************************************************/
|
||
|
/* File: transform3d.hh */
|
||
|
/* Author: Joachim Schoeberl */
|
||
|
/* Date: 22. Mar. 98 */
|
||
|
/* *************************************************************************/
|
||
|
|
||
|
/*
|
||
|
Affine - Linear mapping in 3D space
|
||
|
*/
|
||
|
|
||
|
class Transformation3d;
|
||
|
ostream & operator<< (ostream & ost, Transformation3d & trans);
|
||
|
|
||
|
class Transformation3d
|
||
|
{
|
||
|
double lin[3][3];
|
||
|
double offset[3];
|
||
|
public:
|
||
|
///
|
||
|
Transformation3d ();
|
||
|
/// Unit tet is mapped to tet descibed by pp
|
||
|
Transformation3d (const Point3d ** pp);
|
||
|
/// Unit tet is mapped to tet descibed by pp
|
||
|
Transformation3d (const Point3d pp[]);
|
||
|
/// translation
|
||
|
Transformation3d (const Vec3d & translate);
|
||
|
/// rotation with ...
|
||
|
Transformation3d (const Point3d & c, double alpha, double beta, double gamma);
|
||
|
///
|
||
|
void CalcInverse (Transformation3d & inv) const;
|
||
|
/// this = ta x tb
|
||
|
void Combine (const Transformation3d & ta, const Transformation3d & tb);
|
||
|
/// dir = 1..3 (== x..z)
|
||
|
void SetAxisRotation (int dir, double alpha);
|
||
|
///
|
||
|
void Transform (const Point3d & from, Point3d & to) const
|
||
|
{
|
||
|
for (int i = 1; i <= 3; i++)
|
||
|
{
|
||
|
to.X(i) = offset[i-1] + lin[i-1][0] * from.X(1) +
|
||
|
lin[i-1][1] * from.X(2) + lin[i-1][2] * from.X(3);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
///
|
||
|
void Transform (Point3d & p) const
|
||
|
{
|
||
|
Point3d hp;
|
||
|
Transform (p, hp);
|
||
|
p = hp;
|
||
|
}
|
||
|
|
||
|
/// transform vector, apply only linear part, not offset
|
||
|
void Transform (const Vec3d & from, Vec3d & to) const
|
||
|
{
|
||
|
for (int i = 1; i <= 3; i++)
|
||
|
{
|
||
|
to.X(i) = lin[i-1][0] * from.X(1) +
|
||
|
lin[i-1][1] * from.X(2) + lin[i-1][2] * from.X(3);
|
||
|
}
|
||
|
}
|
||
|
friend ostream & operator<< (ostream & ost, Transformation3d & trans);
|
||
|
};
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
template <int D>
|
||
|
class Transformation
|
||
|
{
|
||
|
Mat<D> m;
|
||
|
Vec<D> v;
|
||
|
public:
|
||
|
///
|
||
|
Transformation () { m = 0; v = 0; }
|
||
|
|
||
|
/// Unit tet is mapped to tet descibed by pp
|
||
|
Transformation (const Point<D> * pp);
|
||
|
|
||
|
/// translation
|
||
|
Transformation (const Vec<D> & translate)
|
||
|
{
|
||
|
v = translate;
|
||
|
m = 0;
|
||
|
for (int i = 0; i < D; i++)
|
||
|
m(i,i) = 1;
|
||
|
}
|
||
|
|
||
|
// rotation with ...
|
||
|
Transformation (const Point<D> & c, double alpha, double beta, double gamma)
|
||
|
{
|
||
|
// total = T_c x Rot_0 x T_c^{-1}
|
||
|
// Use Euler angles, see many books from tech mech, e.g.
|
||
|
// Shabana "multibody systems"
|
||
|
|
||
|
Vec<D> vc(c);
|
||
|
Transformation<D> tc(vc);
|
||
|
Transformation<D> tcinv(-vc);
|
||
|
// tc.CalcInverse (tcinv);
|
||
|
|
||
|
Transformation<D> r1, r2, r3, ht, ht2;
|
||
|
r1.SetAxisRotation (3, alpha);
|
||
|
r2.SetAxisRotation (1, beta);
|
||
|
r3.SetAxisRotation (3, gamma);
|
||
|
|
||
|
ht.Combine (tc, r3);
|
||
|
ht2.Combine (ht, r2);
|
||
|
ht.Combine (ht2, r1);
|
||
|
Combine (ht, tcinv);
|
||
|
|
||
|
// cout << "Rotation - Transformation:" << (*this) << endl;
|
||
|
// (*testout) << "Rotation - Transformation:" << (*this) << endl;
|
||
|
}
|
||
|
|
||
|
///
|
||
|
void CalcInverse (Transformation & inv) const;
|
||
|
|
||
|
/// this = ta x tb
|
||
|
void Combine (const Transformation & ta, const Transformation & tb)
|
||
|
{
|
||
|
v = ta.v + ta.m * tb.v;
|
||
|
m = ta.m * tb.m;
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/// dir = 1..3 (== x..z)
|
||
|
void SetAxisRotation (int dir, double alpha)
|
||
|
{
|
||
|
double co = cos(alpha);
|
||
|
double si = sin(alpha);
|
||
|
dir--;
|
||
|
int pos1 = (dir+1) % 3;
|
||
|
int pos2 = (dir+2) % 3;
|
||
|
|
||
|
int i, j;
|
||
|
for (i = 0; i <= 2; i++)
|
||
|
{
|
||
|
v(i) = 0;
|
||
|
for (j = 0; j <= 2; j++)
|
||
|
m(i,j) = 0;
|
||
|
}
|
||
|
|
||
|
m(dir,dir) = 1;
|
||
|
m(pos1, pos1) = co;
|
||
|
m(pos2, pos2) = co;
|
||
|
m(pos1, pos2) = si;
|
||
|
m(pos2, pos1) = -si;
|
||
|
}
|
||
|
|
||
|
///
|
||
|
void Transform (const Point<D> & from, Point<D> & to) const
|
||
|
{
|
||
|
to = Point<D> (v + m * Vec<D>(from));
|
||
|
}
|
||
|
|
||
|
void Transform (Point<D> & p) const
|
||
|
{
|
||
|
p = Point<D> (v + m * Vec<D>(p));
|
||
|
}
|
||
|
|
||
|
|
||
|
|
||
|
/// transform vector, apply only linear part, not offset
|
||
|
void Transform (const Vec<D> & from, Vec<D> & to) const
|
||
|
{
|
||
|
to = m * from;
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <int D>
|
||
|
ostream & operator<< (ostream & ost, Transformation<D> & trans);
|
||
|
|
||
|
|
||
|
|
||
|
|
||
|
#endif
|