mirror of
https://github.com/NGSolve/netgen.git
synced 2024-12-26 22:00:33 +05:00
336 lines
9.2 KiB
C
336 lines
9.2 KiB
C
|
/* $XConsortium: CmapAlloc.c,v 1.9 94/04/17 20:15:52 rws Exp $ */
|
||
|
|
||
|
/*
|
||
|
|
||
|
Copyright (c) 1989, 1994 X Consortium
|
||
|
|
||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||
|
of this software and associated documentation files (the "Software"), to deal
|
||
|
in the Software without restriction, including without limitation the rights
|
||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||
|
copies of the Software, and to permit persons to whom the Software is
|
||
|
furnished to do so, subject to the following conditions:
|
||
|
|
||
|
The above copyright notice and this permission notice shall be included in
|
||
|
all copies or substantial portions of the Software.
|
||
|
|
||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||
|
X CONSORTIUM BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
|
||
|
AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
|
||
|
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
|
||
|
|
||
|
Except as contained in this notice, the name of the X Consortium shall not be
|
||
|
used in advertising or otherwise to promote the sale, use or other dealings
|
||
|
in this Software without prior written authorization from the X Consortium.
|
||
|
|
||
|
*/
|
||
|
|
||
|
/*
|
||
|
* Author: Donna Converse, MIT X Consortium
|
||
|
*/
|
||
|
|
||
|
#include <X11/Xlib.h>
|
||
|
#include <X11/Xatom.h>
|
||
|
#include <X11/Xutil.h>
|
||
|
#include <stdio.h>
|
||
|
|
||
|
#define lowbit(x) ((x) & (~(x) + 1))
|
||
|
|
||
|
static int default_allocation();
|
||
|
static void best_allocation();
|
||
|
static void gray_allocation();
|
||
|
static int icbrt();
|
||
|
static int icbrt_with_bits();
|
||
|
static int icbrt_with_guess();
|
||
|
|
||
|
/* To determine the best allocation of reds, greens, and blues in a
|
||
|
* standard colormap, use XmuGetColormapAllocation.
|
||
|
* vinfo specifies visual information for a chosen visual
|
||
|
* property specifies one of the standard colormap property names
|
||
|
* red_max returns maximum red value
|
||
|
* green_max returns maximum green value
|
||
|
* blue_max returns maximum blue value
|
||
|
*
|
||
|
* XmuGetColormapAllocation returns 0 on failure, non-zero on success.
|
||
|
* It is assumed that the visual is appropriate for the colormap property.
|
||
|
*/
|
||
|
|
||
|
Status XmuGetColormapAllocation(vinfo, property, red_max, green_max, blue_max)
|
||
|
XVisualInfo *vinfo;
|
||
|
Atom property;
|
||
|
unsigned long *red_max, *green_max, *blue_max;
|
||
|
{
|
||
|
Status status = 1;
|
||
|
|
||
|
if (vinfo->colormap_size <= 2)
|
||
|
return 0;
|
||
|
|
||
|
switch (property)
|
||
|
{
|
||
|
case XA_RGB_DEFAULT_MAP:
|
||
|
status = default_allocation(vinfo, red_max, green_max, blue_max);
|
||
|
break;
|
||
|
case XA_RGB_BEST_MAP:
|
||
|
best_allocation(vinfo, red_max, green_max, blue_max);
|
||
|
break;
|
||
|
case XA_RGB_GRAY_MAP:
|
||
|
gray_allocation(vinfo->colormap_size, red_max, green_max, blue_max);
|
||
|
break;
|
||
|
case XA_RGB_RED_MAP:
|
||
|
*red_max = vinfo->colormap_size - 1;
|
||
|
*green_max = *blue_max = 0;
|
||
|
break;
|
||
|
case XA_RGB_GREEN_MAP:
|
||
|
*green_max = vinfo->colormap_size - 1;
|
||
|
*red_max = *blue_max = 0;
|
||
|
break;
|
||
|
case XA_RGB_BLUE_MAP:
|
||
|
*blue_max = vinfo->colormap_size - 1;
|
||
|
*red_max = *green_max = 0;
|
||
|
break;
|
||
|
default:
|
||
|
status = 0;
|
||
|
}
|
||
|
return status;
|
||
|
}
|
||
|
|
||
|
/****************************************************************************/
|
||
|
/* Determine the appropriate color allocations of a gray scale.
|
||
|
*
|
||
|
* Keith Packard, MIT X Consortium
|
||
|
*/
|
||
|
|
||
|
static void gray_allocation(n, red_max, green_max, blue_max)
|
||
|
int n; /* the number of cells of the gray scale */
|
||
|
unsigned long *red_max, *green_max, *blue_max;
|
||
|
{
|
||
|
*red_max = (n * 30) / 100;
|
||
|
*green_max = (n * 59) / 100;
|
||
|
*blue_max = (n * 11) / 100;
|
||
|
*green_max += ((n - 1) - (*red_max + *green_max + *blue_max));
|
||
|
}
|
||
|
|
||
|
/****************************************************************************/
|
||
|
/* Determine an appropriate color allocation for the RGB_DEFAULT_MAP.
|
||
|
* If a map has less than a minimum number of definable entries, we do not
|
||
|
* produce an allocation for an RGB_DEFAULT_MAP.
|
||
|
*
|
||
|
* For 16 planes, the default colormap will have 27 each RGB; for 12 planes,
|
||
|
* 12 each. For 8 planes, let n = the number of colormap entries, which may
|
||
|
* be 256 or 254. Then, maximum red value = floor(cube_root(n - 125)) - 1.
|
||
|
* Maximum green and maximum blue values are identical to maximum red.
|
||
|
* This leaves at least 125 cells which clients can allocate.
|
||
|
*
|
||
|
* Return 0 if an allocation has been determined, non-zero otherwise.
|
||
|
*/
|
||
|
|
||
|
static int default_allocation(vinfo, red, green, blue)
|
||
|
XVisualInfo *vinfo;
|
||
|
unsigned long *red, *green, *blue;
|
||
|
{
|
||
|
int ngrays; /* number of gray cells */
|
||
|
|
||
|
switch (vinfo->class) {
|
||
|
case PseudoColor:
|
||
|
|
||
|
if (vinfo->colormap_size > 65000)
|
||
|
/* intended for displays with 16 planes */
|
||
|
*red = *green = *blue = (unsigned long) 27;
|
||
|
else if (vinfo->colormap_size > 4000)
|
||
|
/* intended for displays with 12 planes */
|
||
|
*red = *green = *blue = (unsigned long) 12;
|
||
|
else if (vinfo->colormap_size < 250)
|
||
|
return 0;
|
||
|
else
|
||
|
/* intended for displays with 8 planes */
|
||
|
*red = *green = *blue = (unsigned long)
|
||
|
(icbrt(vinfo->colormap_size - 125) - 1);
|
||
|
break;
|
||
|
|
||
|
case DirectColor:
|
||
|
|
||
|
if (vinfo->colormap_size < 10)
|
||
|
return 0;
|
||
|
*red = *green = *blue = vinfo->colormap_size / 2 - 1;
|
||
|
break;
|
||
|
|
||
|
case TrueColor:
|
||
|
|
||
|
*red = vinfo->red_mask / lowbit(vinfo->red_mask);
|
||
|
*green = vinfo->green_mask / lowbit(vinfo->green_mask);
|
||
|
*blue = vinfo->blue_mask / lowbit(vinfo->blue_mask);
|
||
|
break;
|
||
|
|
||
|
case GrayScale:
|
||
|
|
||
|
if (vinfo->colormap_size > 65000)
|
||
|
ngrays = 4096;
|
||
|
else if (vinfo->colormap_size > 4000)
|
||
|
ngrays = 512;
|
||
|
else if (vinfo->colormap_size < 250)
|
||
|
return 0;
|
||
|
else
|
||
|
ngrays = 12;
|
||
|
gray_allocation(ngrays, red, green, blue);
|
||
|
break;
|
||
|
|
||
|
default:
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
/****************************************************************************/
|
||
|
/* Determine an appropriate color allocation for the RGB_BEST_MAP.
|
||
|
*
|
||
|
* For a DirectColor or TrueColor visual, the allocation is determined
|
||
|
* by the red_mask, green_mask, and blue_mask members of the visual info.
|
||
|
*
|
||
|
* Otherwise, if the colormap size is an integral power of 2, determine
|
||
|
* the allocation according to the number of bits given to each color,
|
||
|
* with green getting more than red, and red more than blue, if there
|
||
|
* are to be inequities in the distribution. If the colormap size is
|
||
|
* not an integral power of 2, let n = the number of colormap entries.
|
||
|
* Then maximum red value = floor(cube_root(n)) - 1;
|
||
|
* maximum blue value = floor(cube_root(n)) - 1;
|
||
|
* maximum green value = n / ((# red values) * (# blue values)) - 1;
|
||
|
* Which, on a GPX, allows for 252 entries in the best map, out of 254
|
||
|
* defineable colormap entries.
|
||
|
*/
|
||
|
|
||
|
static void best_allocation(vinfo, red, green, blue)
|
||
|
XVisualInfo *vinfo;
|
||
|
unsigned long *red, *green, *blue;
|
||
|
{
|
||
|
|
||
|
if (vinfo->class == DirectColor || vinfo->class == TrueColor)
|
||
|
{
|
||
|
*red = vinfo->red_mask;
|
||
|
while ((*red & 01) == 0)
|
||
|
*red >>= 1;
|
||
|
*green = vinfo->green_mask;
|
||
|
while ((*green & 01) == 0)
|
||
|
*green >>=1;
|
||
|
*blue = vinfo->blue_mask;
|
||
|
while ((*blue & 01) == 0)
|
||
|
*blue >>= 1;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
register int bits, n;
|
||
|
|
||
|
/* Determine n such that n is the least integral power of 2 which is
|
||
|
* greater than or equal to the number of entries in the colormap.
|
||
|
*/
|
||
|
n = 1;
|
||
|
bits = 0;
|
||
|
while (vinfo->colormap_size > n)
|
||
|
{
|
||
|
n = n << 1;
|
||
|
bits++;
|
||
|
}
|
||
|
|
||
|
/* If the number of entries in the colormap is a power of 2, determine
|
||
|
* the allocation by "dealing" the bits, first to green, then red, then
|
||
|
* blue. If not, find the maximum integral red, green, and blue values
|
||
|
* which, when multiplied together, do not exceed the number of
|
||
|
|
||
|
* colormap entries.
|
||
|
*/
|
||
|
if (n == vinfo->colormap_size)
|
||
|
{
|
||
|
register int r, g, b;
|
||
|
b = bits / 3;
|
||
|
g = b + ((bits % 3) ? 1 : 0);
|
||
|
r = b + (((bits % 3) == 2) ? 1 : 0);
|
||
|
*red = 1 << r;
|
||
|
*green = 1 << g;
|
||
|
*blue = 1 << b;
|
||
|
}
|
||
|
else
|
||
|
{
|
||
|
*red = icbrt_with_bits(vinfo->colormap_size, bits);
|
||
|
*blue = *red;
|
||
|
*green = (vinfo->colormap_size / ((*red) * (*blue)));
|
||
|
}
|
||
|
(*red)--;
|
||
|
(*green)--;
|
||
|
(*blue)--;
|
||
|
}
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* integer cube roots by Newton's method
|
||
|
*
|
||
|
* Stephen Gildea, MIT X Consortium, July 1991
|
||
|
*/
|
||
|
|
||
|
static int icbrt(a) /* integer cube root */
|
||
|
int a;
|
||
|
{
|
||
|
register int bits = 0;
|
||
|
register unsigned n = a;
|
||
|
|
||
|
while (n)
|
||
|
{
|
||
|
bits++;
|
||
|
n >>= 1;
|
||
|
}
|
||
|
return icbrt_with_bits(a, bits);
|
||
|
}
|
||
|
|
||
|
|
||
|
static int icbrt_with_bits(a, bits)
|
||
|
int a;
|
||
|
int bits; /* log 2 of a */
|
||
|
{
|
||
|
return icbrt_with_guess(a, a>>2*bits/3);
|
||
|
}
|
||
|
|
||
|
#ifdef _X_ROOT_STATS
|
||
|
int icbrt_loopcount;
|
||
|
#endif
|
||
|
|
||
|
/* Newton's Method: x_n+1 = x_n - ( f(x_n) / f'(x_n) ) */
|
||
|
|
||
|
/* for cube roots, x^3 - a = 0, x_new = x - 1/3 (x - a/x^2) */
|
||
|
|
||
|
/*
|
||
|
* Quick and dirty cube roots. Nothing fancy here, just Newton's method.
|
||
|
* Only works for positive integers (since that's all we need).
|
||
|
* We actually return floor(cbrt(a)) because that's what we need here, too.
|
||
|
*/
|
||
|
|
||
|
static int icbrt_with_guess(a, guess)
|
||
|
int a, guess;
|
||
|
{
|
||
|
register int delta;
|
||
|
|
||
|
#ifdef _X_ROOT_STATS
|
||
|
icbrt_loopcount = 0;
|
||
|
#endif
|
||
|
if (a <= 0)
|
||
|
return 0;
|
||
|
if (guess < 1)
|
||
|
guess = 1;
|
||
|
|
||
|
do {
|
||
|
#ifdef _X_ROOT_STATS
|
||
|
icbrt_loopcount++;
|
||
|
#endif
|
||
|
delta = (guess - a/(guess*guess))/3;
|
||
|
#ifdef DEBUG
|
||
|
printf("pass %d: guess=%d, delta=%d\n", icbrt_loopcount, guess, delta);
|
||
|
#endif
|
||
|
guess -= delta;
|
||
|
} while (delta != 0);
|
||
|
|
||
|
if (guess*guess*guess > a)
|
||
|
guess--;
|
||
|
|
||
|
return guess;
|
||
|
}
|