diff --git a/libsrc/geom2d/csg2d.cpp b/libsrc/geom2d/csg2d.cpp index f489f6fe..99a45b65 100644 --- a/libsrc/geom2d/csg2d.cpp +++ b/libsrc/geom2d/csg2d.cpp @@ -150,7 +150,6 @@ IntersectionType ClassifyNonOverlappingIntersection( double alpha, double beta ) if (alpha_is_0 && beta_is_0) return (V_INTERSECTION); - cout << alpha << ',' << beta << ',' << alpha_is_0 << ',' << beta_is_0 << endl; return NO_INTERSECTION; } @@ -274,7 +273,6 @@ IntersectionType IntersectSplineSegment( const Spline & s, const Point<2> & r0, int dim = fabs(vr[0]) > fabs(vr[1]) ? 0 : 1; beta = 1.0/vr[dim] * (s.GetPoint(t)[dim] - r0[dim]); - cout << "intersect splinesegment " << alpha << ',' << beta << ',' << ClassifyNonOverlappingIntersection(alpha, beta) << endl; return ClassifyNonOverlappingIntersection(alpha, beta); } @@ -295,8 +293,11 @@ IntersectionType IntersectSplineSegment1( const Spline & s, const Point<2> & r0, double c_ = a0; double det = b_*b_ - 4*a_*c_; - if(det<0.0) - return NO_INTERSECTION; + if(det<-EPSILON) + return NO_INTERSECTION; + + if(det & r0, alpha = valpha[choice]; beta = vbeta[choice]; - cout << "intersect splinesegment1 " << alpha << ',' << beta << ',' << vtype[choice] << endl; return vtype[choice]; } @@ -721,7 +721,6 @@ void AddIntersectionPoint(Edge edgeP, Edge edgeQ, IntersectionType i, double alp I_P = edgeP.v0->Insert(I, alpha); I_Q = edgeQ.v0->Insert(I, beta); I_P->Link(I_Q); - cout << "Add X Intersection " << *I_P << alpha << ',' << beta << endl; break; case X_OVERLAP: @@ -730,28 +729,23 @@ void AddIntersectionPoint(Edge edgeP, Edge edgeQ, IntersectionType i, double alp I_P = edgeP.v0->Insert(*Q1, alpha); I_P->Link( Q1); - cout << "Add X Overlap " << *I_P << alpha << ',' << beta << endl; break; case T_INTERSECTION_Q: case T_OVERLAP_Q: I_Q = edgeQ.v0->Insert(*P1, beta); P1->Link( I_Q); - cout << "Add T int/overlap Q " << *P1 << alpha << ',' << beta << endl; break; case T_INTERSECTION_P: case T_OVERLAP_P: I_P = edgeP.v0->Insert(*Q1, alpha); I_P->Link( Q1); - cout << "Add T int/overlap P " << *I_P << alpha << ',' << beta << endl; break; case V_INTERSECTION: case V_OVERLAP: P1->Link(Q1); - cout << "Add V int/overlap " << *P1 << alpha << ',' << beta << endl; - cout << *P1 << *P1->next << *Q1 << *Q1->next << endl; break; default: break; @@ -810,8 +804,8 @@ void ComputeIntersections(Edge edgeP , Loop & l2) { for (Edge edgeQ : l2.Edges(SOURCE)) { - double alpha = 0.0; - double beta = 0.0; + double alpha = -1; + double beta = -1; IntersectionType i = intersect(edgeP, edgeQ, alpha, beta); AddIntersectionPoint(edgeP, edgeQ, i, alpha, beta); if(i==X_INTERSECTION && (edgeP.v0->spline || edgeQ.v0->spline)) @@ -821,7 +815,6 @@ void ComputeIntersections(Edge edgeP , Loop & l2) // search for possible second intersection i = intersect(edgeP, edgeQ, alpha1, beta1); - cout << "second intersection " << i << ',' << alpha1 << ',' << beta1 << ',' << alpha1-alpha << ',' << beta1-beta << endl; if(i!=NO_INTERSECTION && alpha+EPSILON q; - if(prev) - { - Q = P2->neighbour->prev; - q = *Q; - if(Q->spline) - q = Q->spline->TangentPoint(); - } - else - { - Q = P2->neighbour->next; - q = *Q; - if(P2->neighbour->spline) - q = P2->neighbour->spline->TangentPoint(); - } - - // is Q linked to P1 ? - if ( P1->is_intersection && (P1->neighbour == Q) ) - return(IS_P_m); - - // is Q linked to P2 ? - if ( P3->is_intersection && (P3->neighbour == Q) ) - return(IS_P_p); - - Point<2> p1 = *P1; - Point<2> p2 = *P2; - Point<2> p3 = *P3; - - double s1, s2, s3; - - if(P1->spline) - { - s1 = IsLeft(*P1->spline, q) ? 1 : -1; - p1 = P1->spline->TangentPoint(); - } - else - s1 = Area( q, p1, p2); - - if(P2->spline) - { - s2 = IsLeft(*P2->spline, q) ? 1 : -1; - p2 = P2->spline->TangentPoint(); - } - else - s2 = Area( q, p2, p3); - - // check relative position of Q with respect to chain (P1,P2,P3) - s3 = Area( p1, p2, p3); - - cout << "Points for oracle " << q << p1 << p2 << p3 << endl; - cout << "areas " << s1 << ',' << s2 << ',' << s3 << endl; - if (s3 > 0) { // chain makes a left turn @@ -959,14 +899,139 @@ RelativePositionType oracle(bool prev, Vertex* P1, Vertex* P2, Vertex* P3) } } +// no splines involved here +// decides if Point q is left or right of chain (p1,p2,p3) +RelativePositionType oracle_simple(Point<2> q, Point<2> p1, Point<2> p2, Point<2> p3) +{ + double s1 = Area( q, p1, p2); + double s2 = Area( q, p2, p3); + double s3 = Area( p1, p2, p3); + + // check relative position of q with respect to chain (p1,p2,p3) + return oracle_decide(s1, s2, s3); +} + +// (p1,p2) or (p2,p3) is a spline segment, compare with tangent (p1t,p2) instead of Segment (p1,p2) +// BUT take care if tangent is collinear with (q,p2) (then use the segment (p1,p2) again) +RelativePositionType oracle_spline_p(Point<2> q, Point<2> p1, Point<2> p1t, Point<2> p2, Point<2> p3, Point<2> p3t) +{ + double s1 = Area( q, p1t, p2); + double s2 = Area( q, p2, p3t); + + if(fabs(s1) < EPSILON) + { + p1t = p1; + s1 = Area( q, p1t, p2 ); + } + + if(fabs(s2) < EPSILON) + { + p3t = p3; + s2 = Area( q, p2, p3t ); + } + + double s3 = Area( p1t, p2, p3t); + + return oracle_decide(s1, s2, s3); +} + +// (q,p2) is a spline segment, compare with tangent (qt,p2) instead of Segment (q,p2) +// BUT take care if tangent at p2 is collinear with eiter (p1,p2) or (p2,p3) (then use the segment (q,p2) again) +RelativePositionType oracle_spline_q(Point<2> q, Point<2> qt, Point<2> p1, Point<2> p2, Point<2> p3) +{ + double s1 = Area( qt, p1, p2); + double s2 = Area( qt, p2, p3); + double s3 = Area( p1, p2, p3); + + if(fabs(s1) < EPSILON) + s1 = Area( q, p1, p2 ); + + if(fabs(s2) < EPSILON) + s2 = Area( q, p2, p3 ); + + return oracle_decide(s1, s2, s3); +} + +// splines at (Q,P2) and either (P1,P2) or (P2,P3) +// first use tangents to decide local orientation +// if tangents of two splines match, use IsLeft(spline, other end point) +// if tangent of spline and segment match, use simple methond (just end points) +RelativePositionType oracle_spline(bool prev, Vertex *Q, Vertex *P1, Vertex *P2, Vertex *P3) +{ + Point<2> p1t = *P1; + Point<2> p3t = *P3; + + auto sq = prev ? Q->spline : Q->prev->spline; + auto qt = sq->TangentPoint(); + if(P1->spline) p1t = P1->spline->TangentPoint(); + if(P2->spline) p3t = P2->spline->TangentPoint(); + + // Check using tangent directions first + double s1 = Area( qt, p1t, *P2 ); + double s2 = Area( qt, *P2 , p3t); + double s3 = Area( p1t, *P2, p3t); + + // tangents are facing in same direction + if(fabs(s1) < EPSILON) + { + if(P1->spline) + s1 = IsLeft(*P1->spline, *Q) ? 1 : -1; + else + s1 = Area( *Q, *P1, *P2 ); + } + + // tangents are facing in same direction + if(fabs(s2) < EPSILON) + { + if(P2->spline) + s2 = IsLeft(*P2->spline, *Q) ? 1 : -1; + else + s2 = Area( *Q, *P2, *P3 ); + } + + return oracle_decide(s1, s2, s3); +} + + RelativePositionType oracle(bool prev, Vertex* P2) { + auto Q = prev ? P2->neighbour->prev : P2->neighbour->next; + auto sq = prev ? Q->spline : Q->prev->spline; Vertex* P1 = P2->prev; Vertex* P3 = P2->next; - return oracle(prev, P1, P2, P3); + // is Q linked to P1 ? + if ( P1->is_intersection && (P1->neighbour == Q) ) + return(IS_P_m); + + // is Q linked to P2 ? + if ( P3->is_intersection && (P3->neighbour == Q) ) + return(IS_P_p); + + // no splines -> simple variant + if(!P1->spline && !P2->spline && !Q->spline) + return oracle_simple(*Q, *P1, *P2, *P3); + + Point<2> qt=*Q, p1t=*P1, p3t=*P3; + + // splines -> also consider tangent points + if( sq) qt = Q->spline->TangentPoint(); + if(P1->spline) p1t = P1->spline->TangentPoint(); + if(P2->spline) p3t = P2->spline->TangentPoint(); + + // only spline at Q + if(!P1->spline && !P2->spline && Q->spline) + return oracle_spline_q(*Q, qt, *P1, *P2, *P3); + + // only spline at P + if((P1->spline || !P2->spline) && !Q->spline) + return oracle_spline_p(*Q, *P1, p1t, *P2, *P3, p3t); + + // spline at Q and P1 or P2 + return oracle_spline(prev, Q, P1, P2, P3); } + void LabelIntersections(Solid2d & sp, Solid2d & sq, Solid2d & sr, bool UNION) { auto & PP = sp.polys; @@ -1016,7 +1081,6 @@ void LabelIntersections(Solid2d & sp, Solid2d & sq, Solid2d & sr, bool UNION) if ( ( (Q_m_type == IS_P_m) && (Q_p_type == LEFT) ) || ( (Q_p_type == IS_P_m) && (Q_m_type == LEFT) ) ) I->label = ON_RIGHT; - cout << "label " << *I << " = " << I->label << endl; } // 2) classify intersection chains @@ -1028,7 +1092,6 @@ void LabelIntersections(Solid2d & sp, Solid2d & sq, Solid2d & sr, bool UNION) if (I->label == LEFT_ON || I->label == RIGHT_ON) { - cout << "intersection chain " << *I << endl; // remember status of the first chain vertex and vertex itself RelativePositionType x;