Merge remote-tracking branch 'origin/master' into test_refactoring_meshing_design

This commit is contained in:
Matthias Hochsteger 2019-10-18 11:53:05 +02:00
commit 17dfd45609
22 changed files with 1835 additions and 1648 deletions

View File

@ -167,6 +167,11 @@ namespace ngcore
static void ngcore_signal_handler(int sig)
{
static bool first_call = true;
if(!first_call)
exit(1); // avoid endless recursions if signals are caused by this handler
first_call = false;
switch(sig)
{
case SIGABRT:

View File

@ -15,7 +15,7 @@ namespace ngcore
{
std::ostream* testout = new std::ostream(nullptr); // NOLINT
level::level_enum Logger::global_level;
level::level_enum Logger::global_level = level::warn;
void Logger::log(level::level_enum level, std::string && s)
{

View File

@ -15,6 +15,7 @@
#include "array.hpp"
#include "paje_trace.hpp"
#include "profiler.hpp"
namespace ngcore
{
@ -1059,6 +1060,7 @@ public:
template <typename Tmask>
int ComputeColoring( FlatArray<int> colors, size_t ndofs, Tmask const & getDofs)
{
static Timer timer("ComputeColoring - "+Demangle(typeid(Tmask).name())); RegionTimer rt(timer);
static_assert(sizeof(unsigned int)==4, "Adapt type of mask array");
auto n = colors.Size();

View File

@ -15,10 +15,22 @@ namespace ngcore
// windows does demangling in typeid(T).name()
NGCORE_API std::string Demangle(const char* typeinfo) { return typeinfo; }
#else
NGCORE_API std::string Demangle(const char* typeinfo) { int status; return abi::__cxa_demangle(typeinfo,
nullptr,
nullptr,
&status); }
NGCORE_API std::string Demangle(const char* typeinfo)
{
int status=0;
try
{
char *s = abi::__cxa_demangle(typeinfo, nullptr, nullptr, &status);
std::string result{s};
free(s);
return result;
}
catch( const std::exception & e )
{
GetLogger("utils")->warn("{}:{} cannot demangle {}, status: {}, error:{}", __FILE__, __LINE__, typeinfo, status, e.what());
}
return typeinfo;
}
#endif
double seconds_per_tick = [] () noexcept

View File

@ -96,12 +96,6 @@ void ParallelFor( int first, int next, const TFunc & f )
template<typename T>
inline atomic<T> & AsAtomic (T & d)
{
return reinterpret_cast<atomic<T>&> (d);
}
typedef void (*TaskManager)(std::function<void(int,int)>);
typedef void (*Tracer)(string, bool); // false .. start, true .. stop

View File

@ -1,9 +1,289 @@
#include <mystdlib.h>
#include "meshing.hpp"
namespace netgen
{
template<int dim, typename T=INDEX, typename TSCAL=double>
class DelaunayTree
{
public:
// Number of entries per leaf
static constexpr int N = 100;
struct Node;
struct Leaf
{
Point<2*dim, TSCAL> p[N];
T index[N];
int n_elements;
int nr;
Leaf() : n_elements(0)
{ }
void Add( Array<Leaf*> &leaves, Array<T> &leaf_index, const Point<2*dim> &ap, T aindex )
{
p[n_elements] = ap;
index[n_elements] = aindex;
n_elements++;
if(leaf_index.Size()<aindex+1)
leaf_index.SetSize(aindex+1);
leaf_index[aindex] = nr;
}
};
struct Node
{
union
{
Node *children[2];
Leaf *leaf;
};
double sep;
int level;
Node()
: children{nullptr,nullptr}
{ }
~Node()
{ }
Leaf *GetLeaf() const
{
return children[1] ? nullptr : leaf;
}
};
private:
Node root;
Array<Leaf*> leaves;
Array<T> leaf_index;
Point<dim> global_min, global_max;
double tol;
size_t n_leaves;
size_t n_nodes;
BlockAllocator ball_nodes;
BlockAllocator ball_leaves;
public:
DelaunayTree (const Point<dim> & pmin, const Point<dim> & pmax)
: global_min(pmin), global_max(pmax), n_leaves(1), n_nodes(1), ball_nodes(sizeof(Node)), ball_leaves(sizeof(Leaf))
{
root.leaf = (Leaf*) ball_leaves.Alloc(); new (root.leaf) Leaf();
root.leaf->nr = 0;
leaves.Append(root.leaf);
root.level = 0;
tol = 1e-7 * Dist(pmax, pmin);
}
DelaunayTree (const Box<dim> & box)
: DelaunayTree(box.PMin(), box.PMax())
{ }
size_t GetNLeaves()
{
return n_leaves;
}
size_t GetNNodes()
{
return n_nodes;
}
template<typename TFunc>
void GetFirstIntersecting (const Point<dim> & pmin, const Point<dim> & pmax,
TFunc func=[](auto pi){return false;}) const
{
// static Timer timer("DelaunayTree::GetIntersecting"); RegionTimer rt(timer);
// static Timer timer1("DelaunayTree::GetIntersecting-LinearSearch");
ArrayMem<const Node*, 100> stack;
ArrayMem<int, 100> dir_stack;
Point<2*dim> tpmin, tpmax;
for (size_t i : IntRange(dim))
{
tpmin(i) = global_min(i);
tpmax(i) = pmax(i)+tol;
tpmin(i+dim) = pmin(i)-tol;
tpmax(i+dim) = global_max(i);
}
stack.SetSize(0);
stack.Append(&root);
dir_stack.SetSize(0);
dir_stack.Append(0);
while(stack.Size())
{
const Node *node = stack.Last();
stack.DeleteLast();
int dir = dir_stack.Last();
dir_stack.DeleteLast();
if(Leaf *leaf = node->GetLeaf())
{
// RegionTimer rt1(timer1);
for (auto i : IntRange(leaf->n_elements))
{
bool intersect = true;
const auto p = leaf->p[i];
for (int d = 0; d < dim; d++)
if (p[d] > tpmax[d])
intersect = false;
for (int d = dim; d < 2*dim; d++)
if (p[d] < tpmin[d])
intersect = false;
if(intersect)
if(func(leaf->index[i])) return;
}
}
else
{
int newdir = dir+1;
if(newdir==2*dim) newdir = 0;
if (tpmin[dir] <= node->sep)
{
stack.Append(node->children[0]);
dir_stack.Append(newdir);
}
if (tpmax[dir] >= node->sep)
{
stack.Append(node->children[1]);
dir_stack.Append(newdir);
}
}
}
}
void GetIntersecting (const Point<dim> & pmin, const Point<dim> & pmax,
NgArray<T> & pis) const
{
pis.SetSize(0);
GetFirstIntersecting(pmin, pmax, [&pis](auto pi) { pis.Append(pi); return false;});
}
void Insert (const Box<dim> & box, T pi)
{
Insert (box.PMin(), box.PMax(), pi);
}
void Insert (const Point<dim> & pmin, const Point<dim> & pmax, T pi)
{
// static Timer timer("DelaunayTree::Insert"); RegionTimer rt(timer);
int dir = 0;
Point<2*dim> p;
for (auto i : IntRange(dim))
{
p(i) = pmin[i];
p(i+dim) = pmax[i];
}
Node * node = &root;
Leaf * leaf = node->GetLeaf();
// search correct leaf to add point
while(!leaf)
{
node = p[dir] < node->sep ? node->children[0] : node->children[1];
dir++;
if(dir==2*dim) dir = 0;
leaf = node->GetLeaf();
}
// add point to leaf
if(leaf->n_elements < N)
leaf->Add(leaves, leaf_index, p,pi);
else // assume leaf->n_elements == N
{
// add two new nodes and one new leaf
int n_elements = leaf->n_elements;
ArrayMem<TSCAL, N> coords(n_elements);
ArrayMem<int, N> order(n_elements);
// separate points in two halves, first sort all coordinates in direction dir
for (auto i : IntRange(n_elements))
{
order[i] = i;
coords[i] = leaf->p[i][dir];
}
QuickSortI(coords, order);
int isplit = N/2;
Leaf *leaf1 = (Leaf*) ball_leaves.Alloc(); new (leaf1) Leaf();
Leaf *leaf2 = (Leaf*) ball_leaves.Alloc(); new (leaf2) Leaf();
leaf1->nr = leaf->nr;
leaf2->nr = leaves.Size();
leaves.Append(leaf2);
leaves[leaf1->nr] = leaf1;
for (auto i : order.Range(isplit))
leaf1->Add(leaves, leaf_index, leaf->p[i], leaf->index[i] );
for (auto i : order.Range(isplit, N))
leaf2->Add(leaves, leaf_index, leaf->p[i], leaf->index[i] );
Node *node1 = (Node*) ball_nodes.Alloc(); new (node1) Node();
node1->leaf = leaf1;
node1->level = node->level+1;
Node *node2 = (Node*) ball_nodes.Alloc(); new (node2) Node();
node2->leaf = leaf2;
node2->level = node->level+1;
node->children[0] = node1;
node->children[1] = node2;
node->sep = 0.5 * (leaf->p[order[isplit-1]][dir] + leaf->p[order[isplit]][dir]);
// add new point to one of the new leaves
if (p[dir] < node->sep)
leaf1->Add( leaves, leaf_index, p, pi );
else
leaf2->Add( leaves, leaf_index, p, pi );
ball_leaves.Free(leaf);
n_leaves++;
n_nodes+=2;
}
}
void DeleteElement (T pi)
{
// static Timer timer("DelaunayTree::DeleteElement"); RegionTimer rt(timer);
Leaf *leaf = leaves[leaf_index[pi]];
leaf_index[pi] = -1;
auto & n_elements = leaf->n_elements;
auto & index = leaf->index;
auto & p = leaf->p;
for (auto i : IntRange(n_elements))
{
if(index[i] == pi)
{
n_elements--;
if(i!=n_elements)
{
index[i] = index[n_elements];
p[i] = p[n_elements];
}
return;
}
}
}
};
// typedef BoxTree<3> DTREE;
typedef DelaunayTree<3> DTREE;
static const int deltetfaces[][3] =
{ { 1, 2, 3 },
@ -227,14 +507,14 @@ namespace netgen
void AddDelaunayPoint (PointIndex newpi, const Point3d & newp,
NgArray<DelaunayTet> & tempels,
Mesh & mesh,
BoxTree<3> & tettree,
DTREE & tettree,
MeshNB & meshnb,
NgArray<Point<3> > & centers, NgArray<double> & radi2,
NgArray<int> & connected, NgArray<int> & treesearch,
NgArray<int> & freelist, SphereList & list,
IndexSet & insphere, IndexSet & closesphere)
{
static Timer t("Meshing3::AddDelaunayPoint"); RegionTimer reg(t);
static Timer t("Meshing3::AddDelaunayPoint");// RegionTimer reg(t);
// static Timer tsearch("addpoint, search");
// static Timer tinsert("addpoint, insert");
@ -635,7 +915,7 @@ namespace netgen
pmin2 = pmin2 + 0.1 * (pmin2 - pmax2);
pmax2 = pmax2 + 0.1 * (pmax2 - pmin2);
BoxTree<3> tettree(pmin2, pmax2);
DTREE tettree(pmin2, pmax2);
tempels.Append (startel);
@ -798,6 +1078,7 @@ namespace netgen
tempmesh.AddVolumeElement (el);
}
tempels.DeleteAll();
MeshQuality3d (tempmesh);
@ -852,6 +1133,7 @@ namespace netgen
MeshQuality3d (tempmesh);
tempels.SetSize(tempmesh.GetNE());
tempels.SetSize(0);
for (auto & el : tempmesh.VolumeElements())
tempels.Append (el);

View File

@ -7,24 +7,6 @@
namespace netgen
{
class Neighbour
{
int nr[3];
int orient[3];
public:
Neighbour () { ; }
void SetNr (int side, int anr) { nr[side] = anr; }
int GetNr (int side) { return nr[side]; }
void SetOrientation (int side, int aorient) { orient[side] = aorient; }
int GetOrientation (int side) { return orient[side]; }
};
class trionedge
{
public:
@ -37,239 +19,25 @@ namespace netgen
};
void MeshOptimize2d :: EdgeSwapping (int usemetric)
{
static Timer timer("EdgeSwapping (2D)"); RegionTimer reg(timer);
if (!faceindex)
{
if (usemetric)
PrintMessage (3, "Edgeswapping, metric");
else
PrintMessage (3, "Edgeswapping, topological");
for (faceindex = 1; faceindex <= mesh.GetNFD(); faceindex++)
{
EdgeSwapping (usemetric);
if (multithread.terminate)
throw NgException ("Meshing stopped");
}
faceindex = 0;
mesh.CalcSurfacesOfNode();
return;
}
static int timerstart = NgProfiler::CreateTimer ("EdgeSwapping 2D start");
NgProfiler::StartTimer (timerstart);
Array<SurfaceElementIndex> seia;
mesh.GetSurfaceElementsOfFace (faceindex, seia);
/*
for (int i = 0; i < seia.Size(); i++)
if (mesh[seia[i]].GetNP() != 3)
{
GenericImprove (mesh);
return;
}
*/
for (SurfaceElementIndex sei : seia)
if (mesh[sei].GetNP() != 3)
{
GenericImprove();
return;
}
int surfnr = mesh.GetFaceDescriptor (faceindex).SurfNr();
Array<Neighbour> neighbors(mesh.GetNSE());
INDEX_2_HASHTABLE<trionedge> other(2*seia.Size() + 2);
Array<bool> swapped(mesh.GetNSE());
NgArray<int,PointIndex::BASE> pdef(mesh.GetNP());
NgArray<double,PointIndex::BASE> pangle(mesh.GetNP());
// int e;
// double d;
// Vec3d nv1, nv2;
// double loch(-1);
static const double minangle[] = { 0, 1.481, 2.565, 3.627, 4.683, 5.736, 7, 9 };
for (int i = 0; i < seia.Size(); i++)
{
const Element2d & sel = mesh[seia[i]];
for (int j = 0; j < 3; j++)
pangle[sel[j]] = 0.0;
}
// pangle = 0;
for (int i = 0; i < seia.Size(); i++)
{
const Element2d & sel = mesh[seia[i]];
for (int j = 0; j < 3; j++)
{
POINTTYPE typ = mesh[sel[j]].Type();
if (typ == FIXEDPOINT || typ == EDGEPOINT)
{
pangle[sel[j]] +=
Angle (mesh[sel[(j+1)%3]] - mesh[sel[j]],
mesh[sel[(j+2)%3]] - mesh[sel[j]]);
}
}
}
// for (PointIndex pi = PointIndex::BASE;
// pi < mesh.GetNP()+PointIndex::BASE; pi++)
// pdef = 0;
for (int i = 0; i < seia.Size(); i++)
{
const Element2d & sel = mesh[seia[i]];
for (int j = 0; j < 3; j++)
{
PointIndex pi = sel[j];
if (mesh[pi].Type() == INNERPOINT || mesh[pi].Type() == SURFACEPOINT)
pdef[pi] = -6;
else
for (int j = 0; j < 8; j++)
if (pangle[pi] >= minangle[j])
pdef[pi] = -1-j;
}
}
/*
for (int i = 0; i < seia.Size(); i++)
{
const Element2d & sel = mesh[seia[i]];
for (int j = 0; j < 3; j++)
pdef[sel[j]]++;
}
*/
for (SurfaceElementIndex sei : seia)
for (PointIndex pi : mesh[sei].PNums<3>())
pdef[pi]++;
// for (int i = 0; i < seia.Size(); i++)
for (SurfaceElementIndex sei : seia)
for (int j = 0; j < 3; j++)
{
neighbors[sei].SetNr (j, -1);
neighbors[sei].SetOrientation (j, 0);
}
/*
NgArray<Vec3d> normals(mesh.GetNP());
for (i = 1; i <= mesh.GetNSE(); i++)
{
Element2d & hel = mesh.SurfaceElement(i);
if (hel.GetIndex() == faceindex)
for (k = 1; k <= 3; k++)
{
int pi = hel.PNum(k);
SelectSurfaceOfPoint (mesh.Point(pi), hel.GeomInfoPi(k));
int surfi = mesh.GetFaceDescriptor(faceindex).SurfNr();
GetNormalVector (surfi, mesh.Point(pi), normals.Elem(pi));
normals.Elem(pi) /= normals.Elem(pi).Length();
}
}
*/
/*
for (int i = 0; i < seia.Size(); i++)
{
const Element2d & sel = mesh[seia[i]];
*/
for (SurfaceElementIndex sei : seia)
{
const Element2d & sel = mesh[sei];
for (int j = 0; j < 3; j++)
{
PointIndex pi1 = sel.PNumMod(j+2);
PointIndex pi2 = sel.PNumMod(j+3);
// double loch = mesh.GetH(mesh[pi1]);
// INDEX_2 edge(pi1, pi2);
// edge.Sort();
if (mesh.IsSegment (pi1, pi2))
continue;
/*
if (segments.Used (edge))
continue;
*/
INDEX_2 ii2 (pi1, pi2);
if (other.Used (ii2))
{
// INDEX_2 i2s(ii2);
// i2s.Sort();
/*
int i2 = other.Get(ii2).tnr;
int j2 = other.Get(ii2).sidenr;
*/
auto othertrig = other.Get(ii2);
SurfaceElementIndex i2 = othertrig.tnr;
int j2 = othertrig.sidenr;
neighbors[sei].SetNr (j, i2);
neighbors[sei].SetOrientation (j, j2);
neighbors[i2].SetNr (j2, sei);
neighbors[i2].SetOrientation (j2, j);
}
else
{
other.Set (INDEX_2 (pi2, pi1), trionedge (sei, j));
}
}
}
for (SurfaceElementIndex sei : seia)
swapped[sei] = false;
NgProfiler::StopTimer (timerstart);
int t = 4;
bool done = false;
while (!done && t >= 2)
{
for (int i = 0; i < seia.Size(); i++)
{
SurfaceElementIndex t1 = seia[i];
if (mesh[t1].IsDeleted())
continue;
if (mesh[t1].GetIndex() != faceindex)
continue;
if (multithread.terminate)
throw NgException ("Meshing stopped");
for (int o1 = 0; o1 < 3; o1++)
bool MeshOptimize2d :: EdgeSwapping (const int usemetric,
Array<Neighbour> &neighbors,
Array<bool> &swapped,
const SurfaceElementIndex t1, const int o1,
const int t,
Array<int,PointIndex> &pdef,
const bool check_only)
{
bool should;
bool do_swap = false;
SurfaceElementIndex t2 = neighbors[t1].GetNr (o1);
int o2 = neighbors[t1].GetOrientation (o1);
if (t2 == -1) continue;
if (swapped[t1] || swapped[t2]) continue;
if (t2 == -1) return false;
if (swapped[t1] || swapped[t2]) return false;
const int faceindex = mesh[t1].GetIndex();
const int surfnr = mesh.GetFaceDescriptor (faceindex).SurfNr();
PointIndex pi1 = mesh[t1].PNumMod(o1+1+1);
PointIndex pi2 = mesh[t1].PNumMod(o1+1+2);
@ -289,7 +57,7 @@ namespace netgen
allowswap = allowswap && fabs(1.-(auxvec1*auxvec2)/(auxvec1.Length()*auxvec2.Length())) > 1e-4;
if(!allowswap)
continue;
return false;
// normal of new
Vec<3> nv1 = Cross (auxvec1, auxvec2);
@ -300,7 +68,7 @@ namespace netgen
if(!allowswap)
continue;
return false;
Vec<3> nv2 = Cross (auxvec1, auxvec2);
@ -317,12 +85,10 @@ namespace netgen
nv1.Normalize();
nv2.Normalize();
// SelectSurfaceOfPoint (mesh.Point(pi3), gi3);
auto nvp3 = geo.GetNormal (surfnr, mesh.Point(pi3), gi3);
nvp3.Normalize();
// SelectSurfaceOfPoint (mesh.Point(pi4), gi4);
auto nvp4 = geo.GetNormal (surfnr, mesh.Point(pi4), gi4);
nvp4.Normalize();
@ -380,24 +146,11 @@ namespace netgen
if (legal2 < legal1) should = false;
}
if (should)
do_swap = should;
if (should && !check_only)
{
// do swapping !
done = true;
/*
mesh[t1] = { pi1, pi4, pi3 };
mesh[t2] = { pi2, pi3, pi4 };
mesh[t1].GeomInfoPi(1) = gi1;
mesh[t1].GeomInfoPi(2) = gi4;
mesh[t1].GeomInfoPi(3) = gi3;
mesh[t2].GeomInfoPi(1) = gi2;
mesh[t2].GeomInfoPi(2) = gi3;
mesh[t2].GeomInfoPi(3) = gi4;
*/
mesh[t1] = { { pi1, gi1 }, { pi4, gi4 }, { pi3, gi3 } };
mesh[t2] = { { pi2, gi2 }, { pi3, gi3 }, { pi4, gi4 } };
@ -410,8 +163,187 @@ namespace netgen
swapped[t2] = true;
}
}
return do_swap;
}
void MeshOptimize2d :: EdgeSwapping (int usemetric)
{
static Timer timer("EdgeSwapping (2D)"); RegionTimer reg(timer);
static Timer timer_nb("EdgeSwapping-Find neighbors");
if (usemetric)
PrintMessage (3, "Edgeswapping, metric");
else
PrintMessage (3, "Edgeswapping, topological");
static Timer timerstart("EdgeSwapping 2D start");
timerstart.Start();
Array<SurfaceElementIndex> seia;
bool mixed = false;
if(faceindex==0)
{
seia.SetSize(mesh.GetNSE());
ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE
{
SurfaceElementIndex sei(i);
seia[i] = sei;
if (mesh[sei].GetNP() != 3)
mixed = true;
});
}
else
{
mesh.GetSurfaceElementsOfFace (faceindex, seia);
for (SurfaceElementIndex sei : seia)
if (mesh[sei].GetNP() != 3)
mixed = true;
}
if(mixed)
return GenericImprove();
Array<Neighbour> neighbors(mesh.GetNSE());
auto elements_on_node = mesh.CreatePoint2SurfaceElementTable(faceindex);
Array<bool> swapped(mesh.GetNSE());
Array<int,PointIndex> pdef(mesh.GetNP());
Array<double,PointIndex> pangle(mesh.GetNP());
static const double minangle[] = { 0, 1.481, 2.565, 3.627, 4.683, 5.736, 7, 9 };
if(faceindex == 0)
{
ParallelFor( Range(pangle), [&] (auto i) NETGEN_LAMBDA_INLINE
{
pangle[i] = 0.0;
});
}
else
{
ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE
{
const Element2d & sel = mesh[seia[i]];
for (int j = 0; j < 3; j++)
pangle[sel[j]] = 0.0;
});
}
ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE
{
const Element2d & sel = mesh[seia[i]];
for (int j = 0; j < 3; j++)
{
POINTTYPE typ = mesh[sel[j]].Type();
if (typ == FIXEDPOINT || typ == EDGEPOINT)
{
AtomicAdd(pangle[sel[j]],
Angle (mesh[sel[(j+1)%3]] - mesh[sel[j]],
mesh[sel[(j+2)%3]] - mesh[sel[j]]));
}
}
});
ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE
{
const Element2d & sel = mesh[seia[i]];
for (int j = 0; j < 3; j++)
{
PointIndex pi = sel[j];
if (mesh[pi].Type() == INNERPOINT || mesh[pi].Type() == SURFACEPOINT)
pdef[pi] = -6;
else
for (int j = 0; j < 8; j++)
if (pangle[pi] >= minangle[j])
pdef[pi] = -1-j;
}
});
ParallelFor( Range(seia), [this, &pdef, &neighbors, &seia, &elements_on_node] (auto i) NETGEN_LAMBDA_INLINE
{
auto sei = seia[i];
for (PointIndex pi : mesh[sei].template PNums<3>())
AsAtomic(pdef[pi])++;
for (int j = 0; j < 3; j++)
{
neighbors[sei].SetNr (j, -1);
neighbors[sei].SetOrientation (j, 0);
}
const auto sel = mesh[sei];
for (int j = 0; j < 3; j++)
{
PointIndex pi1 = sel.PNumMod(j+2);
PointIndex pi2 = sel.PNumMod(j+3);
for (auto sei_other : elements_on_node[pi1])
{
if(sei_other==sei) continue;
const auto & other = mesh[sei_other];
int pi1_other = -1;
int pi2_other = -1;
bool common_edge = false;
for (int k = 0; k < 3; k++)
{
if(other[k] == pi1)
pi1_other = k;
if(other[k] == pi2)
{
pi2_other = k;
common_edge = true;
}
}
if(common_edge)
{
neighbors[sei].SetNr (j, sei_other);
neighbors[sei].SetOrientation (j, 3-pi1_other-pi2_other);
}
}
}
});
for (SurfaceElementIndex sei : seia)
swapped[sei] = false;
timerstart.Stop();
Array<std::pair<SurfaceElementIndex,int>> improvement_candidates(3*seia.Size());
atomic<int> cnt(0);
int t = 4;
bool done = false;
while (!done && t >= 2)
{
cnt = 0;
ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE
{
SurfaceElementIndex t1 = seia[i];
if (mesh[t1].IsDeleted())
return;
if (mesh[t1].GetIndex() != faceindex)
return;
if (multithread.terminate)
throw NgException ("Meshing stopped");
for (int o1 = 0; o1 < 3; o1++)
if(EdgeSwapping(usemetric, neighbors, swapped, t1, o1, t, pdef, true))
improvement_candidates[cnt++]= std::make_pair(t1,o1);
});
auto elements_with_improvement = improvement_candidates.Range(cnt.load());
QuickSort(elements_with_improvement);
for (auto [t1,o1] : elements_with_improvement)
done |= EdgeSwapping(usemetric, neighbors, swapped, t1, o1, t, pdef, false);
t--;
}
@ -421,160 +353,31 @@ namespace netgen
void MeshOptimize2d :: CombineImprove()
double CombineImproveEdge( Mesh & mesh,
const Table<SurfaceElementIndex, PointIndex> & elementsonnode,
Array<Vec<3>, PointIndex> & normals,
Array<bool, PointIndex> & fixed,
PointIndex pi1, PointIndex pi2,
bool check_only = true)
{
if (!faceindex)
{
SplitImprove();
PrintMessage (3, "Combine improve");
for (faceindex = 1; faceindex <= mesh.GetNFD(); faceindex++)
{
CombineImprove();
if (multithread.terminate)
throw NgException ("Meshing stopped");
}
faceindex = 0;
return;
}
static int timer = NgProfiler::CreateTimer ("Combineimprove 2D");
NgProfiler::RegionTimer reg (timer);
static int timerstart = NgProfiler::CreateTimer ("Combineimprove 2D start");
NgProfiler::StartTimer (timerstart);
static int timerstart1 = NgProfiler::CreateTimer ("Combineimprove 2D start1");
NgProfiler::StartTimer (timerstart1);
Array<SurfaceElementIndex> seia;
mesh.GetSurfaceElementsOfFace (faceindex, seia);
for (SurfaceElementIndex sei : seia)
if (mesh[sei].GetNP() != 3)
return;
int surfnr = 0;
if (faceindex)
surfnr = mesh.GetFaceDescriptor (faceindex).SurfNr();
Vec<3> nv;
ArrayMem<SurfaceElementIndex, 20> hasonepi, hasbothpi;
int np = mesh.GetNP();
TABLE<SurfaceElementIndex,PointIndex::BASE> elementsonnode(np);
Array<SurfaceElementIndex> hasonepi, hasbothpi;
for (SurfaceElementIndex sei : seia)
for (PointIndex pi : mesh[sei].PNums<3>())
elementsonnode.Add (pi, sei);
Array<bool,PointIndex> fixed(np);
fixed = false;
NgProfiler::StopTimer (timerstart1);
/*
for (SegmentIndex si = 0; si < mesh.GetNSeg(); si++)
{
INDEX_2 i2(mesh[si][0], mesh[si][1]);
fixed[i2.I1()] = true;
fixed[i2.I2()] = true;
}
*/
for (SurfaceElementIndex sei : seia)
{
Element2d & sel = mesh[sei];
for (int j = 0; j < sel.GetNP(); j++)
{
PointIndex pi1 = sel.PNumMod(j+2);
PointIndex pi2 = sel.PNumMod(j+3);
if (mesh.IsSegment (pi1, pi2))
{
fixed[pi1] = true;
fixed[pi2] = true;
}
}
}
/*
for(int i = 0; i < mesh.LockedPoints().Size(); i++)
fixed[mesh.LockedPoints()[i]] = true;
*/
for (PointIndex pi : mesh.LockedPoints())
fixed[pi] = true;
Array<Vec<3>,PointIndex> normals(np);
// for (PointIndex pi = mesh.Points().Begin(); pi < mesh.Points().End(); pi++)
for (PointIndex pi : mesh.Points().Range())
{
if (elementsonnode[pi].Size())
{
Element2d & hel = mesh[elementsonnode[pi][0]];
for (int k = 0; k < 3; k++)
if (hel[k] == pi)
{
// SelectSurfaceOfPoint (mesh[pi], hel.GeomInfoPi(k+1));
normals[pi] = geo.GetNormal(surfnr, mesh[pi], hel.GeomInfoPi(k+1));
break;
}
}
}
NgProfiler::StopTimer (timerstart);
for (int i = 0; i < seia.Size(); i++)
{
SurfaceElementIndex sei = seia[i];
Element2d & elem = mesh[sei];
for (int j = 0; j < 3; j++)
{
if (elem.IsDeleted()) continue;
PointIndex pi1 = elem[j];
PointIndex pi2 = elem[(j+1) % 3];
/*
if (pi1 < PointIndex::BASE ||
pi2 < PointIndex::BASE)
continue;
*/
if (!pi1.IsValid() || !pi2.IsValid())
continue;
/*
INDEX_2 i2(pi1, pi2);
i2.Sort();
if (segmentht.Used(i2))
continue;
*/
return 0.0;
bool debugflag = 0;
if (debugflag)
{
(*testout) << "Combineimprove, face = " << faceindex
(*testout) << "Combineimprove "
<< "pi1 = " << pi1 << " pi2 = " << pi2 << endl;
}
/*
// save version:
if (fixed.Get(pi1) || fixed.Get(pi2))
continue;
return 0.0;
if (pi2 < pi1) swap (pi1, pi2);
*/
@ -583,23 +386,10 @@ namespace netgen
Swap (pi1, pi2);
if (fixed[pi2])
continue;
return 0.0;
double loch = mesh.GetH (mesh[pi1]);
// INDEX_2 si2 (pi1, pi2);
// si2.Sort();
/*
if (edgetested.Used (si2))
continue;
edgetested.Set (si2, 1);
*/
hasonepi.SetSize(0);
hasbothpi.SetSize(0);
// for (int k = 0; k < elementsonnode[pi1].Size(); k++)
for (SurfaceElementIndex sei2 : elementsonnode[pi1])
{
const Element2d & el2 = mesh[sei2];
@ -618,18 +408,11 @@ namespace netgen
}
}
if(hasbothpi.Size()==0)
return 0.0;
Element2d & hel = mesh[hasbothpi[0]];
for (int k = 0; k < 3; k++)
if (hel[k] == pi1)
{
// SelectSurfaceOfPoint (mesh[pi1],
// hel.GeomInfoPi(k+1));
nv = geo.GetNormal(surfnr, mesh[pi1], hel.GeomInfoPi(k+1));
break;
}
// nv = normals.Get(pi1);
nv = normals[pi1];
for (SurfaceElementIndex sei2 : elementsonnode[pi2])
@ -667,17 +450,14 @@ namespace netgen
}
bad1 /= (hasonepi.Size()+hasbothpi.Size());
MeshPoint p1 = mesh[pi1];
MeshPoint p2 = mesh[pi2];
MeshPoint pnew = p1;
mesh[pi1] = pnew;
mesh[pi2] = pnew;
double bad2 = 0;
for (int k = 0; k < hasonepi.Size(); k++)
{
Element2d & el = mesh[hasonepi[k]];
Element2d el = mesh[hasonepi[k]];
for (auto i : Range(3))
if(el[i]==pi2)
el[i] = pi1;
double err =
CalcTriangleBadness (mesh[el[0]], mesh[el[1]], mesh[el[2]],
nv, -1, loch);
@ -691,32 +471,31 @@ namespace netgen
bad2 += 1e10;
for (int l = 0; l < 3; l++)
{
if ( (normals[el[l]] * nv) < 0.5)
bad2 += 1e10;
}
Element2d el1 = el;
for (auto i : Range(3))
if(el1[i]==pi2)
el1[i] = pi1;
illegal2 += 1-mesh.LegalTrig(el1);
illegal2 += 1-mesh.LegalTrig(el);
}
bad2 /= hasonepi.Size();
mesh[pi1] = p1;
mesh[pi2] = p2;
if (debugflag)
{
(*testout) << "bad1 = " << bad1 << ", bad2 = " << bad2 << endl;
}
bool should = (bad2 < bad1 && bad2 < 1e4);
if (bad2 < 1e4)
bool should = (illegal2<=illegal1 && bad2 < bad1 && bad2 < 1e4);
if(illegal2 < illegal1)
{
if (illegal1 > illegal2) should = true;
if (illegal2 > illegal1) should = false;
should = true;
bad1 += 1e4;
}
double d_badness = should * (bad2-bad1);
if(check_only)
return d_badness;
if (should)
{
@ -727,7 +506,6 @@ namespace netgen
(*testout) << "loch = " << loch << endl;
*/
mesh[pi1] = pnew;
PointGeomInfo gi;
// bool gi_set(false);
@ -760,7 +538,6 @@ namespace netgen
}
// (*testout) << "Connect point " << pi2 << " to " << pi1 << "\n";
// for (int k = 0; k < elementsonnode[pi2].Size(); k++)
for (SurfaceElementIndex sei2 : elementsonnode[pi2])
@ -769,8 +546,6 @@ namespace netgen
if (el.IsDeleted()) continue;
if (el.PNums().Contains(pi1)) continue;
elementsonnode.Add (pi1, sei2);
for (auto l : Range(el.GetNP()))
{
if (el[l] == pi2)
@ -785,8 +560,121 @@ namespace netgen
for (auto sei : hasbothpi)
mesh[sei].Delete();
}
return d_badness;
}
void MeshOptimize2d :: CombineImprove ()
{
SplitImprove();
PrintMessage (3, "Combine improve");
if (multithread.terminate)
throw NgException ("Meshing stopped");
static Timer timer ("Combineimprove 2D");
RegionTimer reg (timer);
static Timer timerstart ("Combineimprove 2D start");
timerstart.Start();
static Timer timerstart1 ("Combineimprove 2D start1");
timerstart1.Start();
Array<SurfaceElementIndex> seia;
if(faceindex)
mesh.GetSurfaceElementsOfFace (faceindex, seia);
else
{
seia.SetSize(mesh.GetNSE());
ParallelFor( IntRange(mesh.GetNSE()), [&seia] (auto i) NETGEN_LAMBDA_INLINE
{ seia[i] = i; });
}
bool mixed = false;
ParallelFor( Range(seia), [&] (auto i) NETGEN_LAMBDA_INLINE
{
if (mesh[seia[i]].GetNP() != 3)
mixed = true;
});
if(mixed)
return;
int np = mesh.GetNP();
auto elementsonnode = mesh.CreatePoint2SurfaceElementTable(faceindex);
int ntasks = ngcore::TaskManager::GetMaxThreads();
Array<std::tuple<PointIndex, PointIndex>> edges;
BuildEdgeList( mesh, elementsonnode, edges );
Array<bool,PointIndex> fixed(np);
ParallelFor( fixed.Range(), [&fixed] (auto i) NETGEN_LAMBDA_INLINE
{ fixed[i] = false; });
ParallelFor( edges.Range(), [&] (auto i) NETGEN_LAMBDA_INLINE
{
auto [pi0, pi1] = edges[i];
if (mesh.IsSegment (pi0, pi1))
{
fixed[pi0] = true;
fixed[pi1] = true;
}
});
timerstart1.Stop();
ParallelFor( mesh.LockedPoints().Range(), [&] (auto i) NETGEN_LAMBDA_INLINE
{
fixed[mesh.LockedPoints()[i]] = true;
});
Array<Vec<3>,PointIndex> normals(np);
ParallelFor( mesh.Points().Range(), [&] (auto pi) NETGEN_LAMBDA_INLINE
{
if (elementsonnode[pi].Size())
{
Element2d & hel = mesh[elementsonnode[pi][0]];
for (int k = 0; k < 3; k++)
if (hel[k] == pi)
{
const int faceindex = hel.GetIndex();
const int surfnr = mesh.GetFaceDescriptor (faceindex).SurfNr();
normals[pi] = geo.GetNormal (surfnr, mesh[pi], hel.GeomInfoPi(k+1));
break;
}
}
}, TasksPerThread(4));
timerstart.Stop();
// Find edges with improvement
Array<std::tuple<double, int>> candidate_edges(edges.Size());
std::atomic<int> improvement_counter(0);
ParallelFor( Range(edges), [&] (auto i) NETGEN_LAMBDA_INLINE
{
auto [pi1, pi2] = edges[i];
double d_badness = CombineImproveEdge(mesh, elementsonnode, normals, fixed, pi1, pi2, true);
if(d_badness < 0.0)
candidate_edges[improvement_counter++] = make_tuple(d_badness, i);
}, TasksPerThread(4));
auto edges_with_improvement = candidate_edges.Part(0, improvement_counter.load());
QuickSort(edges_with_improvement);
for(auto [d_badness, ei] : edges_with_improvement)
{
auto [pi1, pi2] = edges[ei];
CombineImproveEdge(mesh, elementsonnode, normals, fixed, pi1, pi2, false);
}
// mesh.Compress();

View File

@ -1,7 +1,76 @@
#ifndef FILE_IMPROVE2
#define FILE_IMPROVE2
template<typename TINDEX>
void BuildEdgeList( const Mesh & mesh, const Table<TINDEX, PointIndex> & elementsonnode, Array<std::tuple<PointIndex, PointIndex>> & edges )
{
static Timer tbuild_edges("Build edges"); RegionTimer reg(tbuild_edges);
static constexpr int tetedges[6][2] =
{ { 0, 1 }, { 0, 2 }, { 0, 3 },
{ 1, 2 }, { 1, 3 }, { 2, 3 } };
int ntasks = 2*ngcore::TaskManager::GetMaxThreads();
Array<Array<std::tuple<PointIndex,PointIndex>>> task_edges(ntasks);
ParallelFor(IntRange(ntasks), [&] (int ti)
{
auto myrange = mesh.Points().Range().Split(ti, ntasks);
ArrayMem<std::tuple<PointIndex,PointIndex>, 100> local_edges;
for (auto pi : myrange)
{
local_edges.SetSize(0);
for(auto ei : elementsonnode[pi])
{
const auto & elem = mesh[ei];
if (elem.IsDeleted()) continue;
for (int j = 0; j < 6; j++)
{
PointIndex pi0 = elem[tetedges[j][0]];
PointIndex pi1 = elem[tetedges[j][1]];
if (pi1 < pi0) Swap(pi0, pi1);
if(pi0==pi)
local_edges.Append(std::make_tuple(pi0, pi1));
}
}
QuickSort(local_edges);
auto edge_prev = std::make_tuple<PointIndex, PointIndex>(-1,-1);
for(auto edge : local_edges)
if(edge != edge_prev)
{
task_edges[ti].Append(edge);
edge_prev = edge;
}
}
}, ntasks);
int num_edges = 0;
for (auto & edg : task_edges)
num_edges += edg.Size();
edges.SetAllocSize(num_edges);
for (auto & edg : task_edges)
edges.Append(edg);
}
class Neighbour
{
int nr[3];
int orient[3];
public:
Neighbour () { ; }
void SetNr (int side, int anr) { nr[side] = anr; }
int GetNr (int side) { return nr[side]; }
void SetOrientation (int side, int aorient) { orient[side] = aorient; }
int GetOrientation (int side) { return orient[side]; }
};
///
class MeshOptimize2d
@ -24,6 +93,8 @@ public:
void ProjectBoundaryPoints(NgArray<int> & surfaceindex,
const NgArray<Point<3>* > & from, NgArray<Point<3>* > & dest);
bool EdgeSwapping (const int usemetric, Array<Neighbour> &neighbors, Array<bool> &swapped,
const SurfaceElementIndex t1, const int edge, const int t, Array<int,PointIndex> &pdef, const bool check_only=false);
void EdgeSwapping (int usemetric);
void CombineImprove ();
void SplitImprove ();

View File

@ -21,6 +21,7 @@ namespace netgen
void MeshOptimize2d :: GenericImprove ()
{
static Timer timer("MeshOptimize2d::GenericImprove"); RegionTimer reg(timer);
if (!faceindex)
{
if (writestatus)

View File

@ -409,60 +409,6 @@ void MeshOptimize3d :: CombineImproveSequential (Mesh & mesh,
multithread.task = savetask;
}
void MeshOptimize3d :: BuildEdgeList( const Mesh & mesh, const Table<ElementIndex, PointIndex> & elementsonnode, Array<std::tuple<PointIndex, PointIndex>> & edges )
{
static Timer tbuild_edges("Build edges"); RegionTimer reg(tbuild_edges);
static constexpr int tetedges[6][2] =
{ { 0, 1 }, { 0, 2 }, { 0, 3 },
{ 1, 2 }, { 1, 3 }, { 2, 3 } };
int ntasks = 2*ngcore::TaskManager::GetMaxThreads();
Array<Array<std::tuple<PointIndex,PointIndex>>> task_edges(ntasks);
ParallelFor(IntRange(ntasks), [&] (int ti)
{
auto myrange = mesh.Points().Range().Split(ti, ntasks);
ArrayMem<std::tuple<PointIndex,PointIndex>, 100> local_edges;
for (auto pi : myrange)
{
local_edges.SetSize(0);
for(auto ei : elementsonnode[pi])
{
const Element & elem = mesh[ei];
if (elem.IsDeleted()) continue;
for (int j = 0; j < 6; j++)
{
PointIndex pi0 = elem[tetedges[j][0]];
PointIndex pi1 = elem[tetedges[j][1]];
if (pi1 < pi0) Swap(pi0, pi1);
if(pi0==pi)
local_edges.Append(std::make_tuple(pi0, pi1));
}
}
QuickSort(local_edges);
auto edge_prev = std::make_tuple<PointIndex, PointIndex>(-1,-1);
for(auto edge : local_edges)
if(edge != edge_prev)
{
task_edges[ti].Append(edge);
edge_prev = edge;
}
}
}, ntasks);
int num_edges = 0;
for (auto & edg : task_edges)
num_edges += edg.Size();
edges.SetAllocSize(num_edges);
for (auto & edg : task_edges)
edges.Append(edg);
}
void MeshOptimize3d :: CombineImprove (Mesh & mesh,
OPTIMIZEGOAL goal)
{

View File

@ -12,8 +12,6 @@ class MeshOptimize3d
{
const MeshingParameters & mp;
void BuildEdgeList( const Mesh & mesh, const Table<ElementIndex, PointIndex> & elementsonnode, Array<std::tuple<PointIndex, PointIndex>> & edges );
public:
MeshOptimize3d (const MeshingParameters & amp) : mp(amp) { ; }

View File

@ -6205,14 +6205,19 @@ namespace netgen
{
for (PointIndex pi : myrange)
QuickSort(elementsonnode[pi]);
});
}, ngcore::TasksPerThread(4));
return move(elementsonnode);
}
Table<SurfaceElementIndex, PointIndex> Mesh :: CreatePoint2SurfaceElementTable() const
Table<SurfaceElementIndex, PointIndex> Mesh :: CreatePoint2SurfaceElementTable( int faceindex ) const
{
static Timer timer("Mesh::CreatePoint2SurfaceElementTable"); RegionTimer rt(timer);
TableCreator<SurfaceElementIndex, PointIndex> creator(GetNP());
if(faceindex==0)
{
for ( ; !creator.Done(); creator++)
ngcore::ParallelForRange
(Range(surfelements), [&] (auto myrange)
@ -6220,7 +6225,21 @@ namespace netgen
for (SurfaceElementIndex ei : myrange)
for (PointIndex pi : (*this)[ei].PNums())
creator.Add (pi, ei);
});
}, ngcore::TasksPerThread(4));
}
else
{
Array<SurfaceElementIndex> face_els;
GetSurfaceElementsOfFace(faceindex, face_els);
for ( ; !creator.Done(); creator++)
ngcore::ParallelForRange
(Range(face_els), [&] (auto myrange)
{
for (auto i : myrange)
for (PointIndex pi : (*this)[face_els[i]].PNums())
creator.Add (pi, face_els[i]);
}, ngcore::TasksPerThread(4));
}
auto elementsonnode = creator.MoveTable();
ngcore::ParallelForRange

View File

@ -762,7 +762,7 @@ namespace netgen
Table<ElementIndex, PointIndex> CreatePoint2ElementTable() const;
Table<SurfaceElementIndex, PointIndex> CreatePoint2SurfaceElementTable() const;
Table<SurfaceElementIndex, PointIndex> CreatePoint2SurfaceElementTable( int faceindex=0 ) const;
DLL_HEADER bool PureTrigMesh (int faceindex = 0) const;
DLL_HEADER bool PureTetMesh () const;

View File

@ -3,7 +3,7 @@
namespace netgen
{
int printmessage_importance = 5;
int printmessage_importance = 3;
int printwarnings = 1;
int printerrors = 1;
int printdots = 1;

View File

@ -690,35 +690,23 @@ namespace netgen
void MeshOptimize2d :: ImproveMesh (const MeshingParameters & mp)
{
if (!faceindex)
{
static Timer timer("MeshSmoothing 2D"); RegionTimer reg (timer);
PrintMessage (3, "Smoothing");
for (faceindex = 1; faceindex <= mesh.GetNFD(); faceindex++)
{
ImproveMesh (mp);
if (multithread.terminate)
throw NgException ("Meshing stopped");
}
faceindex = 0;
return;
}
static Timer timer("MeshSmoothing 2D");
// static int timer1 = NgProfiler::CreateTimer ("MeshSmoothing 2D start");
// static int timer2 = NgProfiler::CreateTimer ("MeshSmoothing 2D - BFGS");
RegionTimer reg (timer);
// NgProfiler::StartTimer (timer1);
CheckMeshApproximation (mesh);
Opti2dLocalData ld;
int ncolors;
Array<int> colors;
bool mixed = false;
auto elementsonpoint = mesh.CreatePoint2SurfaceElementTable( faceindex );
NgArray<MeshPoint, PointIndex::BASE> savepoints(mesh.GetNP());
Table<PointIndex> color_table;
if(faceindex)
{
Array<SurfaceElementIndex> seia;
mesh.GetSurfaceElementsOfFace (faceindex, seia);
bool mixed = 0;
for (auto sei : seia)
if (mesh[sei].GetNP() != 3)
{
@ -726,13 +714,7 @@ namespace netgen
break;
}
Vector x(2);
NgArray<MeshPoint, PointIndex::BASE> savepoints(mesh.GetNP());
ld.uselocalh = mp.uselocalh;
NgArray<int, PointIndex::BASE> compress(mesh.GetNP());
Array<int, PointIndex> compress(mesh.GetNP());
NgArray<PointIndex> icompress;
for (int i = 0; i < seia.Size(); i++)
{
@ -750,58 +732,52 @@ namespace netgen
icompress.Append(el[j]);
}
}
NgArray<int> cnta(icompress.Size());
cnta = 0;
for (int i = 0; i < seia.Size(); i++)
const auto & getDofs = [&] (int i)
{
const Element2d & el = mesh[seia[i]];
for (int j = 0; j < el.GetNP(); j++)
cnta[compress[el[j]]]++;
}
TABLE<SurfaceElementIndex> elementsonpoint(cnta);
for (int i = 0; i < seia.Size(); i++)
return elementsonpoint[icompress[i]];
};
colors.SetSize(icompress.Size());
ncolors = ngcore::ComputeColoring( colors, mesh.GetNSE(), getDofs );
TableCreator<PointIndex> creator(ncolors);
for ( ; !creator.Done(); creator++)
ParallelForRange( Range(colors), [&](auto myrange)
{
const Element2d & el = mesh[seia[i]];
for (int j = 0; j < el.GetNP(); j++)
elementsonpoint.Add (compress[el[j]], seia[i]);
for(auto i : myrange)
creator.Add(colors[i], icompress[i]);
});
color_table = creator.MoveTable();
}
/*
NgArray<int, PointIndex::BASE> nelementsonpoint(mesh.GetNP());
nelementsonpoint = 0;
for (int i = 0; i < seia.Size(); i++)
else
{
const Element2d & el = mesh[seia[i]];
for (int j = 0; j < el.GetNP(); j++)
nelementsonpoint[el[j]]++;
}
TABLE<SurfaceElementIndex,PointIndex::BASE> elementsonpoint(nelementsonpoint);
for (int i = 0; i < seia.Size(); i++)
for (auto & se : mesh.SurfaceElements())
if (se.GetNP() != 3)
{
const Element2d & el = mesh[seia[i]];
for (int j = 0; j < el.GetNP(); j++)
elementsonpoint.Add (el[j], seia[i]);
mixed = true;
break;
}
*/
const auto & getDofs = [&] (int i)
{
return elementsonpoint[i+PointIndex::BASE];
};
colors.SetSize(mesh.GetNP());
ncolors = ngcore::ComputeColoring( colors, mesh.GetNSE(), getDofs );
TableCreator<PointIndex> creator(ncolors);
for ( ; !creator.Done(); creator++)
ParallelForRange( Range(colors), [&](auto myrange)
{
for(auto i : myrange)
creator.Add(colors[i], PointIndex(i+PointIndex::BASE));
});
ld.loch = mp.maxh;
ld.locmetricweight = metricweight;
ld.meshthis = this;
Opti2SurfaceMinFunction surfminf(mesh, ld);
Opti2EdgeMinFunction edgeminf(mesh, ld);
Opti2SurfaceMinFunctionJacobian surfminfj(mesh, ld);
OptiParameters par;
par.maxit_linsearch = 8;
par.maxit_bfgs = 5;
color_table = creator.MoveTable();
}
/*
int i, j, k;
@ -872,27 +848,6 @@ namespace netgen
*/
bool printeddot = 0;
char plotchar = '.';
int modplot = 1;
if (mesh.GetNP() > 1000)
{
plotchar = '+';
modplot = 100;
}
if (mesh.GetNP() > 10000)
{
plotchar = 'o';
modplot = 1000;
}
if (mesh.GetNP() > 100000)
{
plotchar = 'O';
modplot = 10000;
}
int cnt = 0;
// NgProfiler::StopTimer (timer1);
/*
@ -902,28 +857,39 @@ namespace netgen
static Timer tloop("MeshSmooting 2D - loop");
tloop.Start();
for (int hi = 0; hi < icompress.Size(); hi++)
for (auto icolor : Range(color_table))
{
PointIndex pi = icompress[hi];
if (multithread.terminate)
break;
ParallelForRange( Range(color_table[icolor].Size()), [&](auto myrange)
{
Opti2dLocalData ld;
ld.uselocalh = mp.uselocalh;
ld.loch = mp.maxh;
ld.locmetricweight = metricweight;
ld.meshthis = this;
Opti2SurfaceMinFunction surfminf(mesh, ld);
Opti2SurfaceMinFunctionJacobian surfminfj(mesh, ld);
MinFunction & minfunc = mixed ? static_cast<MinFunction&>(surfminfj) : surfminf;
OptiParameters par;
par.maxit_linsearch = 8;
par.maxit_bfgs = 5;
for (auto i : myrange)
{
PointIndex pi = color_table[icolor][i];
if (mesh[pi].Type() == SURFACEPOINT)
{
if (multithread.terminate)
throw NgException ("Meshing stopped");
return;
cnt++;
if (cnt % modplot == 0 && writestatus)
{
printeddot = 1;
PrintDot (plotchar);
}
// if (elementsonpoint[pi].Size() == 0) continue;
if (elementsonpoint[hi].Size() == 0) continue;
if (elementsonpoint[pi].Size() == 0) continue;
ld.sp1 = mesh[pi];
// Element2d & hel = mesh[elementsonpoint[pi][0]];
Element2d & hel = mesh[elementsonpoint[hi][0]];
Element2d & hel = mesh[elementsonpoint[pi][0]];
int hpi = 0;
for (int j = 1; j <= hel.GetNP(); j++)
@ -942,9 +908,9 @@ namespace netgen
ld.loc_pnts2.SetSize (0);
ld.loc_pnts3.SetSize (0);
for (int j = 0; j < elementsonpoint[hi].Size(); j++)
for (int j = 0; j < elementsonpoint[pi].Size(); j++)
{
SurfaceElementIndex sei = elementsonpoint[hi][j];
SurfaceElementIndex sei = elementsonpoint[pi][j];
const Element2d & bel = mesh[sei];
ld.surfi = mesh.GetFaceDescriptor(bel.GetIndex()).SurfNr();
@ -971,7 +937,9 @@ namespace netgen
ld.t1 = ld.normal.GetNormal ();
ld.t2 = Cross (ld.normal, ld.t1);
// save points, and project to tangential plane
if(mixed)
{
// save points, and project to tangential plane (only for optimization with Opti2SurfaceMinFunctionJacobian in mixed element meshes)
for (int j = 0; j < ld.locelements.Size(); j++)
{
const Element2d & el = mesh[ld.locelements[j]];
@ -989,20 +957,15 @@ namespace netgen
mesh[hhpi] -= lam * ld.normal;
}
}
}
Vector x(2);
x = 0;
par.typx = 0.3*ld.lochs[0];
// NgProfiler::StartTimer (timer2);
if (mixed)
{
BFGS (x, surfminfj, par, 1e-6);
}
else
{
BFGS (x, surfminf, par, 1e-6);
}
BFGS (x, minfunc, par, 1e-6);
// NgProfiler::StopTimer (timer2);
@ -1011,6 +974,8 @@ namespace netgen
double fact = 1;
int moveisok = 0;
if(mixed)
{
// restore other points
for (int j = 0; j < ld.locelements.Size(); j++)
{
@ -1021,6 +986,7 @@ namespace netgen
if (hhpi != pi) mesh[hhpi] = savepoints[hhpi];
}
}
}
//optimizer loop (if whole distance is not possible, move only a bit!!!!)
@ -1061,11 +1027,10 @@ namespace netgen
}
}
}
}, mixed ? 1 : ngcore::TasksPerThread(4)); // mixed element smoothing not parallel yet
}
tloop.Stop();
if (printeddot)
PrintDot ('\n');
CheckMeshApproximation (mesh);
mesh.SetNextTimeStamp();
}

View File

@ -371,6 +371,7 @@ namespace netgen
void OCCSurface :: Project (Point<3> & ap, PointGeomInfo & gi)
{
static Timer t("OccSurface::Project"); RegionTimer reg(t);
static Timer t2("OccSurface::Project actural");
// try Newton's method ...
@ -475,7 +476,10 @@ namespace netgen
Handle( ShapeAnalysis_Surface ) su = new ShapeAnalysis_Surface( occface );
auto toltool = BRep_Tool::Tolerance( topods_face );
gp_Pnt2d suval = su->ValueOfUV ( pnt, toltool);
// gp_Pnt2d suval = su->ValueOfUV ( pnt, toltool);
t2.Start();
gp_Pnt2d suval = su->NextValueOfUV (gp_Pnt2d(u,v), pnt, toltool);
t2.Stop();
suval.Coord( u, v);
pnt = occface->Value( u, v );

View File

@ -306,7 +306,6 @@ int STLSurfaceMeshing (STLGeometry & geom, class Mesh & mesh, const MeshingParam
mesh.CalcSurfacesOfNode();
optmesh.EdgeSwapping (0);
mesh.CalcSurfacesOfNode();
optmesh.ImproveMesh (mparam);
}

View File

@ -1029,6 +1029,9 @@ namespace netgen
else
glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, matcol);
static Point<3> xa[129];
static Vec<3> na[129];
for (int hi = 0; hi < seia.Size(); hi++)
@ -1058,8 +1061,6 @@ namespace netgen
if (curv.IsHighOrder()) // && curv.IsSurfaceElementCurved(sei))
{
if (hoplotn > 128) hoplotn = 128;
Point<3> xa[129];
Vec<3> na[129];
for (int i = 0; i < hoplotn; i++)
{

View File

@ -29,6 +29,11 @@ namespace netgen
// vssolution.AddUserVisualizationObject (vis);
GetVSSolution().AddUserVisualizationObject (vis);
}
void DeleteUserVisualizationObject (UserVisualizationObject * vis)
{
// vssolution.AddUserVisualizationObject (vis);
GetVSSolution().DeleteUserVisualizationObject (vis);
}
VisualSceneSolution :: SolData :: SolData ()

View File

@ -233,7 +233,12 @@ public:
{
user_vis.Append (vis);
}
void DeleteUserVisualizationObject (UserVisualizationObject * vis)
{
int pos = user_vis.Pos(vis);
if (pos >= 0)
user_vis.Delete(pos);
}
private:
void GetClippingPlaneTrigs (NgArray<ClipPlaneTrig> & trigs, NgArray<ClipPlanePoint> & pts);

File diff suppressed because it is too large Load Diff

View File

@ -58,6 +58,10 @@ def getMeshingparameters(filename):
return standard[:3] # this gets too big for finer meshsizes
if filename == "screw.step":
return standard[3:] # coarser meshes don't work here
if filename == "cylsphere.geo":
return standard[0:2] + standard[3:] # coarse gives inconsistent reults (other mesh on MacOS)
if filename == "part1.stl":
return standard[0:1] + standard[2:] # very coarse does not work
return standard
_geofiles = [f for f in getFiles(".geo")] + [f for f in getFiles(".stl")]