diff --git a/tests/pytest/results.json b/tests/pytest/results.json new file mode 100644 index 00000000..7dba5add --- /dev/null +++ b/tests/pytest/results.json @@ -0,0 +1,1444 @@ +{ + "boundarycondition.geo": [ + { + "ne1d": 74, + "ne2d": 54, + "ne3d": 50, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 8, 13, 3, 9, 5, 0, 1, 1]", + "total_badness": 74.774553826 + }, + { + "ne1d": 59, + "ne2d": 37, + "ne3d": 22, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 4, 0, 0, 8, 0, 0, 0, 0]", + "total_badness": 35.161528768 + }, + { + "ne1d": 59, + "ne2d": 37, + "ne3d": 22, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 4, 0, 0, 8, 0, 0, 0, 0]", + "total_badness": 35.098288788 + }, + { + "ne1d": 74, + "ne2d": 54, + "ne3d": 50, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 8, 13, 3, 9, 5, 0, 1, 1]", + "total_badness": 74.77454941 + }, + { + "ne1d": 118, + "ne2d": 140, + "ne3d": 165, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 5, 13, 13, 25, 31, 25, 20, 17, 12, 1]", + "total_badness": 228.72078637 + }, + { + "ne1d": 181, + "ne2d": 323, + "ne3d": 507, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 20, 35, 56, 56, 81, 90, 83, 59, 15]", + "total_badness": 661.00817809 + } + ], + "boxcyl.geo": [ + { + "ne1d": 190, + "ne2d": 468, + "ne3d": 858, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 2, 31, 91, 73, 79, 87, 106, 114, 102, 89, 66, 18]", + "total_badness": 1232.0426735 + }, + { + "ne1d": 94, + "ne2d": 114, + "ne3d": 158, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 1, 7, 10, 16, 5, 8, 15, 13, 17, 13, 9, 25, 7, 11]", + "total_badness": 247.68310336 + }, + { + "ne1d": 136, + "ne2d": 222, + "ne3d": 384, + "quality_histogram": "[0, 0, 1, 0, 3, 3, 3, 6, 11, 17, 21, 28, 34, 44, 68, 64, 49, 19, 11, 2]", + "total_badness": 598.99833044 + }, + { + "ne1d": 190, + "ne2d": 468, + "ne3d": 850, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 2, 29, 87, 73, 75, 86, 106, 97, 112, 87, 75, 21]", + "total_badness": 1214.229893 + }, + { + "ne1d": 284, + "ne2d": 938, + "ne3d": 3761, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 20, 59, 118, 250, 456, 628, 751, 755, 564, 153]", + "total_badness": 4693.1208525 + }, + { + "ne1d": 456, + "ne2d": 2496, + "ne3d": 18969, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 5, 8, 15, 43, 130, 353, 876, 1713, 3018, 4122, 4317, 3271, 1098]", + "total_badness": 23072.833527 + } + ], + "circle_on_cube.geo": [ + { + "ne1d": 94, + "ne2d": 174, + "ne3d": 646, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 10, 23, 48, 81, 117, 100, 123, 86, 43, 10]", + "total_badness": 859.43881883 + }, + { + "ne1d": 40, + "ne2d": 38, + "ne3d": 46, + "quality_histogram": "[0, 0, 0, 0, 0, 2, 2, 4, 8, 8, 6, 7, 5, 1, 2, 1, 0, 0, 0, 0]", + "total_badness": 97.326231112 + }, + { + "ne1d": 62, + "ne2d": 94, + "ne3d": 182, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 14, 21, 35, 35, 33, 19, 9, 8, 0]", + "total_badness": 258.4064329 + }, + { + "ne1d": 94, + "ne2d": 174, + "ne3d": 621, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 11, 45, 59, 93, 114, 121, 104, 53, 14]", + "total_badness": 804.68562065 + }, + { + "ne1d": 138, + "ne2d": 382, + "ne3d": 2054, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 15, 57, 129, 210, 330, 426, 450, 321, 109]", + "total_badness": 2526.4427939 + }, + { + "ne1d": 224, + "ne2d": 944, + "ne3d": 11988, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 1, 2, 17, 33, 82, 226, 556, 1140, 1929, 2512, 2801, 2061, 628]", + "total_badness": 14608.275962 + } + ], + "cone.geo": [ + { + "ne1d": 64, + "ne2d": 722, + "ne3d": 1231, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 8, 22, 29, 50, 88, 118, 123, 158, 175, 140, 137, 111, 52, 19]", + "total_badness": 1853.3096959 + }, + { + "ne1d": 32, + "ne2d": 220, + "ne3d": 753, + "quality_histogram": "[0, 1, 28, 40, 63, 54, 61, 53, 61, 59, 67, 47, 38, 52, 39, 23, 27, 21, 16, 3]", + "total_badness": 2038.817175 + }, + { + "ne1d": 48, + "ne2d": 428, + "ne3d": 755, + "quality_histogram": "[1, 33, 42, 29, 32, 26, 29, 27, 64, 81, 73, 80, 67, 48, 55, 18, 23, 16, 11, 0]", + "total_badness": 2283.6586444 + }, + { + "ne1d": 64, + "ne2d": 722, + "ne3d": 1208, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 2, 15, 22, 47, 81, 110, 131, 144, 172, 150, 145, 112, 62, 14]", + "total_badness": 1783.4859474 + }, + { + "ne1d": 96, + "ne2d": 1660, + "ne3d": 4423, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 1, 4, 35, 88, 158, 276, 400, 584, 726, 802, 735, 464, 150]", + "total_badness": 5769.9946848 + }, + { + "ne1d": 160, + "ne2d": 4748, + "ne3d": 27126, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 3, 13, 31, 83, 303, 735, 1519, 2944, 4316, 5668, 5807, 4355, 1349]", + "total_badness": 33434.663911 + } + ], + "cube.geo": [ + { + "ne1d": 24, + "ne2d": 12, + "ne3d": 6, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0]", + "total_badness": 9.1401272869 + }, + { + "ne1d": 24, + "ne2d": 12, + "ne3d": 6, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0]", + "total_badness": 9.1401272869 + }, + { + "ne1d": 24, + "ne2d": 12, + "ne3d": 6, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0]", + "total_badness": 9.1401272869 + }, + { + "ne1d": 24, + "ne2d": 12, + "ne3d": 6, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0]", + "total_badness": 9.1401272869 + }, + { + "ne1d": 48, + "ne2d": 36, + "ne3d": 57, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 2, 12, 14, 4, 12, 2, 2, 3, 0]", + "total_badness": 84.416883473 + }, + { + "ne1d": 72, + "ne2d": 118, + "ne3d": 184, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 10, 7, 19, 18, 37, 33, 33, 14, 6]", + "total_badness": 241.24676972 + } + ], + "cubeandring.geo": [ + { + "ne1d": 262, + "ne2d": 722, + "ne3d": 2188, + "quality_histogram": "[1, 9, 25, 36, 90, 100, 108, 114, 90, 73, 63, 100, 149, 190, 251, 264, 241, 168, 96, 20]", + "total_badness": 4412.1941358 + }, + { + "ne1d": 134, + "ne2d": 162, + "ne3d": 252, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 1, 2, 1, 3, 8, 24, 28, 49, 38, 41, 29, 19, 7, 1]", + "total_badness": 365.81827351 + }, + { + "ne1d": 190, + "ne2d": 298, + "ne3d": 613, + "quality_histogram": "[0, 0, 0, 0, 2, 0, 0, 4, 3, 17, 49, 47, 61, 93, 110, 82, 52, 60, 28, 5]", + "total_badness": 897.54658869 + }, + { + "ne1d": 262, + "ne2d": 722, + "ne3d": 2054, + "quality_histogram": "[0, 3, 12, 28, 61, 84, 109, 97, 80, 55, 48, 68, 112, 166, 245, 277, 249, 212, 116, 32]", + "total_badness": 3795.4750393 + }, + { + "ne1d": 378, + "ne2d": 1412, + "ne3d": 7752, + "quality_histogram": "[0, 0, 0, 0, 0, 2, 1, 9, 13, 27, 56, 136, 281, 548, 921, 1256, 1534, 1557, 1091, 320]", + "total_badness": 9761.7065165 + }, + { + "ne1d": 624, + "ne2d": 3942, + "ne3d": 38282, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 3, 10, 28, 117, 334, 795, 2026, 3889, 5942, 8057, 8537, 6447, 2097]", + "total_badness": 46825.777983 + } + ], + "cubeandspheres.geo": [ + { + "ne1d": 144, + "ne2d": 148, + "ne3d": 98, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 3, 4, 18, 19, 13, 20, 2, 9, 1, 0]", + "total_badness": 145.83375109 + }, + { + "ne1d": 144, + "ne2d": 150, + "ne3d": 100, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 10, 16, 18, 15, 17, 6, 5, 4, 0]", + "total_badness": 146.646861 + }, + { + "ne1d": 144, + "ne2d": 148, + "ne3d": 98, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 6, 6, 19, 21, 12, 18, 5, 4, 4, 0]", + "total_badness": 145.14580662 + }, + { + "ne1d": 144, + "ne2d": 148, + "ne3d": 98, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 3, 4, 18, 19, 13, 20, 2, 9, 1, 0]", + "total_badness": 145.83375109 + }, + { + "ne1d": 264, + "ne2d": 386, + "ne3d": 365, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 2, 6, 24, 31, 43, 39, 53, 35, 44, 51, 28, 9, 0]", + "total_badness": 553.03362076 + }, + { + "ne1d": 428, + "ne2d": 930, + "ne3d": 1080, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 2, 19, 59, 37, 100, 136, 100, 123, 162, 160, 66, 65, 28, 22]", + "total_badness": 1684.1500639 + } + ], + "cubemcyl.geo": [ + { + "ne1d": 142, + "ne2d": 2488, + "ne3d": 20940, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 22, 78, 213, 367, 738, 1237, 1875, 2588, 3120, 3314, 3117, 2521, 1385, 365]", + "total_badness": 29036.424267 + }, + { + "ne1d": 64, + "ne2d": 642, + "ne3d": 3203, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 3, 12, 17, 66, 128, 250, 364, 425, 515, 512, 463, 282, 137, 29]", + "total_badness": 4539.3174908 + }, + { + "ne1d": 102, + "ne2d": 1404, + "ne3d": 8421, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 7, 30, 87, 181, 362, 596, 792, 1120, 1271, 1262, 1165, 892, 516, 140]", + "total_badness": 11848.69595 + }, + { + "ne1d": 142, + "ne2d": 2488, + "ne3d": 19608, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 2, 6, 40, 75, 246, 608, 1243, 2030, 2896, 3459, 3612, 2986, 1887, 518]", + "total_badness": 25605.226153 + }, + { + "ne1d": 210, + "ne2d": 5508, + "ne3d": 88843, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 23, 113, 364, 946, 2450, 5445, 10022, 14690, 18368, 18746, 13521, 4155]", + "total_badness": 109927.85826 + }, + { + "ne1d": 362, + "ne2d": 15120, + "ne3d": 521218, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 25, 119, 374, 1224, 3269, 9296, 24328, 50521, 82283, 109285, 119759, 91721, 29013]", + "total_badness": 633985.71695 + } + ], + "cubemsphere.geo": [ + { + "ne1d": 90, + "ne2d": 698, + "ne3d": 4877, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 6, 28, 55, 96, 194, 261, 445, 559, 740, 798, 698, 576, 333, 87]", + "total_badness": 6790.976699 + }, + { + "ne1d": 44, + "ne2d": 280, + "ne3d": 783, + "quality_histogram": "[0, 0, 0, 0, 1, 2, 6, 19, 38, 61, 70, 94, 100, 91, 104, 76, 58, 38, 24, 1]", + "total_badness": 1271.4564508 + }, + { + "ne1d": 68, + "ne2d": 402, + "ne3d": 1571, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 5, 12, 20, 68, 134, 170, 243, 246, 237, 214, 145, 59, 17]", + "total_badness": 2230.374452 + }, + { + "ne1d": 90, + "ne2d": 698, + "ne3d": 4583, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 4, 9, 25, 77, 128, 251, 516, 657, 826, 857, 685, 432, 116]", + "total_badness": 5995.4068967 + }, + { + "ne1d": 146, + "ne2d": 1490, + "ne3d": 17783, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 3, 11, 31, 90, 203, 496, 1110, 1957, 3109, 3695, 3723, 2641, 714]", + "total_badness": 22085.583903 + }, + { + "ne1d": 248, + "ne2d": 4356, + "ne3d": 113522, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 9, 35, 117, 341, 885, 2307, 5764, 11384, 18322, 23667, 25754, 19043, 5893]", + "total_badness": 138835.8933 + } + ], + "cylinder.geo": [ + { + "ne1d": 52, + "ne2d": 288, + "ne3d": 413, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 1, 2, 10, 18, 31, 43, 56, 76, 61, 45, 47, 18, 5]", + "total_badness": 584.63640908 + }, + { + "ne1d": 24, + "ne2d": 66, + "ne3d": 103, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 7, 15, 14, 21, 32, 10, 1]", + "total_badness": 127.27629078 + }, + { + "ne1d": 36, + "ne2d": 152, + "ne3d": 437, + "quality_histogram": "[0, 0, 14, 22, 37, 32, 30, 36, 31, 29, 34, 25, 27, 28, 22, 16, 33, 9, 9, 3]", + "total_badness": 1146.634165 + }, + { + "ne1d": 52, + "ne2d": 288, + "ne3d": 411, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 15, 29, 37, 61, 76, 59, 48, 52, 21, 3]", + "total_badness": 574.34537671 + }, + { + "ne1d": 76, + "ne2d": 636, + "ne3d": 1155, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 1, 3, 10, 16, 50, 99, 120, 164, 206, 224, 139, 105, 18]", + "total_badness": 1536.3995031 + }, + { + "ne1d": 124, + "ne2d": 1672, + "ne3d": 8102, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 13, 53, 167, 414, 787, 1233, 1788, 1856, 1334, 453]", + "total_badness": 9877.1010566 + } + ], + "cylsphere.geo": [ + { + "ne1d": 104, + "ne2d": 496, + "ne3d": 711, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 3, 10, 16, 35, 64, 89, 107, 102, 100, 57, 59, 50, 17, 2]", + "total_badness": 1105.7991926 + }, + { + "ne1d": 48, + "ne2d": 140, + "ne3d": 225, + "quality_histogram": "[0, 0, 1, 13, 20, 34, 20, 21, 7, 6, 2, 8, 13, 18, 10, 23, 13, 7, 9, 0]", + "total_badness": 584.42426831 + }, + { + "ne1d": 72, + "ne2d": 324, + "ne3d": 665, + "quality_histogram": "[0, 1, 9, 14, 21, 37, 57, 76, 63, 57, 53, 60, 32, 54, 23, 35, 39, 16, 13, 5]", + "total_badness": 1528.6973752 + }, + { + "ne1d": 104, + "ne2d": 496, + "ne3d": 709, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 3, 6, 15, 27, 62, 89, 110, 109, 90, 68, 66, 45, 15, 4]", + "total_badness": 1092.2233629 + }, + { + "ne1d": 152, + "ne2d": 1084, + "ne3d": 2865, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 3, 3, 28, 44, 88, 157, 276, 340, 471, 505, 493, 358, 99]", + "total_badness": 3710.287399 + }, + { + "ne1d": 248, + "ne2d": 2820, + "ne3d": 17765, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 6, 15, 48, 129, 362, 859, 1699, 2843, 3786, 4041, 3023, 954]", + "total_badness": 21668.180843 + } + ], + "ellipsoid.geo": [ + { + "ne1d": 0, + "ne2d": 704, + "ne3d": 1262, + "quality_histogram": "[0, 0, 0, 0, 1, 0, 8, 26, 39, 86, 118, 127, 178, 146, 148, 147, 107, 76, 43, 12]", + "total_badness": 1984.8094939 + }, + { + "ne1d": 0, + "ne2d": 192, + "ne3d": 942, + "quality_histogram": "[22, 148, 137, 126, 91, 56, 81, 69, 47, 36, 29, 32, 23, 13, 12, 9, 5, 5, 1, 0]", + "total_badness": 5747.5204438 + }, + { + "ne1d": 0, + "ne2d": 394, + "ne3d": 598, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 5, 15, 17, 44, 69, 81, 100, 91, 53, 54, 39, 20, 9]", + "total_badness": 903.65236615 + }, + { + "ne1d": 0, + "ne2d": 704, + "ne3d": 1256, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 18, 35, 52, 103, 128, 169, 173, 155, 154, 121, 81, 49, 18]", + "total_badness": 1908.051206 + }, + { + "ne1d": 0, + "ne2d": 1618, + "ne3d": 5592, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 3, 22, 74, 178, 307, 491, 711, 944, 1067, 921, 675, 199]", + "total_badness": 7199.7867843 + }, + { + "ne1d": 0, + "ne2d": 4236, + "ne3d": 41345, + "quality_histogram": "[0, 0, 0, 0, 3, 20, 108, 266, 403, 644, 1110, 1904, 2921, 4621, 6100, 6869, 6568, 5527, 3324, 957]", + "total_badness": 56476.648492 + } + ], + "ellipticcone.geo": [ + { + "ne1d": 174, + "ne2d": 1556, + "ne3d": 5213, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 7, 26, 47, 141, 216, 357, 555, 760, 902, 879, 712, 459, 151]", + "total_badness": 6957.997336 + }, + { + "ne1d": 86, + "ne2d": 380, + "ne3d": 587, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 3, 8, 8, 14, 33, 55, 67, 67, 76, 85, 69, 56, 32, 14]", + "total_badness": 853.7762584 + }, + { + "ne1d": 130, + "ne2d": 864, + "ne3d": 1780, + "quality_histogram": "[0, 0, 0, 1, 3, 4, 12, 22, 34, 43, 79, 96, 136, 191, 227, 251, 258, 253, 129, 41]", + "total_badness": 2537.0484182 + }, + { + "ne1d": 174, + "ne2d": 1556, + "ne3d": 4971, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 1, 3, 17, 53, 107, 248, 431, 665, 897, 978, 791, 593, 187]", + "total_badness": 6359.4493283 + }, + { + "ne1d": 258, + "ne2d": 3454, + "ne3d": 13441, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 8, 29, 62, 198, 341, 643, 1044, 1682, 2259, 2506, 2486, 1671, 511]", + "total_badness": 17201.441954 + }, + { + "ne1d": 432, + "ne2d": 9518, + "ne3d": 69596, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 5, 40, 121, 306, 826, 1862, 3802, 7575, 11204, 14503, 14913, 11126, 3312]", + "total_badness": 85930.227173 + } + ], + "ellipticcyl.geo": [ + { + "ne1d": 156, + "ne2d": 994, + "ne3d": 2275, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 10, 26, 44, 84, 125, 208, 263, 341, 376, 326, 261, 175, 35]", + "total_badness": 3156.3970605 + }, + { + "ne1d": 76, + "ne2d": 238, + "ne3d": 325, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 18, 28, 26, 37, 71, 54, 46, 27, 10, 2]", + "total_badness": 459.39040523 + }, + { + "ne1d": 116, + "ne2d": 596, + "ne3d": 1114, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 3, 10, 17, 41, 80, 144, 172, 205, 165, 155, 97, 25]", + "total_badness": 1483.3007518 + }, + { + "ne1d": 156, + "ne2d": 994, + "ne3d": 2199, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 2, 8, 35, 43, 95, 163, 238, 314, 377, 378, 307, 193, 45]", + "total_badness": 2944.2434449 + }, + { + "ne1d": 232, + "ne2d": 2198, + "ne3d": 8225, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 3, 5, 9, 46, 106, 269, 605, 988, 1459, 1629, 1655, 1138, 313]", + "total_badness": 10297.191925 + }, + { + "ne1d": 388, + "ne2d": 6124, + "ne3d": 55078, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 1, 10, 28, 97, 356, 939, 2483, 5114, 8528, 11618, 12908, 9908, 3088]", + "total_badness": 66822.93034 + } + ], + "fichera.geo": [ + { + "ne1d": 50, + "ne2d": 38, + "ne3d": 40, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 2, 1, 3, 2, 4, 3, 5, 7, 8, 2, 1, 0, 2]", + "total_badness": 62.361996883 + }, + { + "ne1d": 42, + "ne2d": 24, + "ne3d": 18, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 10, 6, 1, 0, 0, 0, 0]", + "total_badness": 26.546480075 + }, + { + "ne1d": 42, + "ne2d": 24, + "ne3d": 18, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 10, 6, 1, 0, 0, 0, 0]", + "total_badness": 26.546480075 + }, + { + "ne1d": 50, + "ne2d": 38, + "ne3d": 40, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 2, 1, 3, 2, 4, 3, 5, 7, 8, 2, 1, 0, 2]", + "total_badness": 62.361996883 + }, + { + "ne1d": 96, + "ne2d": 118, + "ne3d": 208, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 6, 10, 16, 24, 36, 33, 41, 30, 6]", + "total_badness": 266.1986561 + }, + { + "ne1d": 144, + "ne2d": 274, + "ne3d": 514, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 14, 32, 55, 87, 97, 91, 71, 52, 13]", + "total_badness": 666.67507269 + } + ], + "frame.step": [ + { + "ne1d": 12694, + "ne2d": 39776, + "ne3d": 220900, + "quality_histogram": "[2, 7, 7, 9, 9, 30, 241, 749, 1682, 3420, 6081, 10465, 17172, 25221, 31864, 35916, 35505, 29651, 18174, 4695]", + "total_badness": 300459.85413 + }, + { + "ne1d": 6026, + "ne2d": 11146, + "ne3d": 30128, + "quality_histogram": "[4, 4, 5, 11, 20, 39, 120, 286, 624, 1025, 1679, 2533, 3356, 4137, 4506, 4206, 3471, 2402, 1366, 334]", + "total_badness": 44746.768359 + }, + { + "ne1d": 9704, + "ne2d": 24660, + "ne3d": 85967, + "quality_histogram": "[1, 6, 3, 11, 7, 34, 76, 191, 485, 1084, 2525, 4810, 7803, 11031, 13503, 14079, 12909, 10074, 5899, 1436]", + "total_badness": 118291.03172 + } + ], + "hinge.stl": [ + { + "ne1d": 456, + "ne2d": 1230, + "ne3d": 1990, + "quality_histogram": "[0, 0, 0, 0, 1, 2, 3, 9, 21, 47, 69, 116, 164, 237, 326, 280, 298, 225, 151, 41]", + "total_badness": 2772.6154636 + }, + { + "ne1d": 398, + "ne2d": 1030, + "ne3d": 1389, + "quality_histogram": "[0, 0, 0, 0, 2, 5, 18, 35, 47, 74, 111, 126, 131, 179, 189, 185, 134, 93, 46, 14]", + "total_badness": 2178.5663259 + }, + { + "ne1d": 422, + "ne2d": 1094, + "ne3d": 1530, + "quality_histogram": "[0, 0, 0, 0, 0, 7, 14, 43, 46, 79, 94, 164, 155, 163, 212, 180, 180, 118, 61, 14]", + "total_badness": 2364.3186941 + }, + { + "ne1d": 456, + "ne2d": 1230, + "ne3d": 1988, + "quality_histogram": "[0, 0, 0, 0, 0, 2, 2, 5, 19, 39, 62, 112, 177, 236, 314, 304, 295, 236, 140, 45]", + "total_badness": 2747.770553 + }, + { + "ne1d": 498, + "ne2d": 1396, + "ne3d": 2903, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 3, 4, 13, 31, 64, 136, 221, 397, 484, 533, 504, 399, 114]", + "total_badness": 3701.6633824 + }, + { + "ne1d": 538, + "ne2d": 1670, + "ne3d": 4609, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 14, 45, 103, 220, 448, 693, 963, 1055, 803, 257]", + "total_badness": 5628.2514122 + } + ], + "lshape3d.geo": [ + { + "ne1d": 44, + "ne2d": 28, + "ne3d": 18, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 12, 0, 3, 0, 0, 0, 0]", + "total_badness": 27.289065401 + }, + { + "ne1d": 36, + "ne2d": 20, + "ne3d": 12, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 6, 1, 0, 0, 0, 0, 0]", + "total_badness": 18.961481515 + }, + { + "ne1d": 36, + "ne2d": 20, + "ne3d": 12, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 6, 1, 0, 0, 0, 0, 0]", + "total_badness": 18.961481515 + }, + { + "ne1d": 44, + "ne2d": 28, + "ne3d": 18, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 12, 0, 3, 0, 0, 0, 0]", + "total_badness": 27.289065401 + }, + { + "ne1d": 80, + "ne2d": 76, + "ne3d": 88, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 10, 9, 21, 23, 7, 6, 1, 4]", + "total_badness": 121.1271849 + }, + { + "ne1d": 122, + "ne2d": 204, + "ne3d": 331, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21, 26, 41, 39, 61, 57, 46, 24, 7]", + "total_badness": 443.95235947 + } + ], + "manyholes.geo": [ + { + "ne1d": 5886, + "ne2d": 48038, + "ne3d": 179405, + "quality_histogram": "[0, 0, 2, 1, 8, 27, 65, 207, 559, 1418, 3370, 7627, 12710, 20134, 27407, 30177, 29994, 24813, 16843, 4043]", + "total_badness": 238774.17579 + }, + { + "ne1d": 2746, + "ne2d": 13838, + "ne3d": 29184, + "quality_histogram": "[0, 0, 0, 1, 5, 26, 45, 181, 387, 817, 1524, 2280, 3331, 4394, 4120, 3700, 3202, 2567, 1880, 724]", + "total_badness": 42098.721268 + }, + { + "ne1d": 4106, + "ne2d": 27992, + "ne3d": 70789, + "quality_histogram": "[0, 0, 0, 2, 30, 78, 189, 443, 837, 1706, 2919, 4402, 7061, 9455, 10197, 10269, 9498, 7395, 4474, 1834]", + "total_badness": 100213.31676 + } + ], + "manyholes2.geo": [ + { + "ne1d": 10202, + "ne2d": 55340, + "ne3d": 128088, + "quality_histogram": "[0, 0, 0, 0, 7, 30, 95, 288, 823, 2105, 4573, 7847, 11840, 18008, 18739, 18350, 16782, 14747, 10264, 3590]", + "total_badness": 176960.02706 + } + ], + "matrix.geo": [ + { + "ne1d": 174, + "ne2d": 1194, + "ne3d": 5295, + "quality_histogram": "[0, 0, 32, 147, 135, 100, 130, 147, 177, 237, 361, 409, 554, 617, 583, 555, 457, 385, 212, 57]", + "total_badness": 9761.5954211 + }, + { + "ne1d": 106, + "ne2d": 600, + "ne3d": 2001, + "quality_histogram": "[0, 3, 20, 65, 122, 160, 137, 169, 184, 189, 172, 190, 184, 137, 89, 53, 45, 54, 20, 8]", + "total_badness": 4865.5803344 + }, + { + "ne1d": 132, + "ne2d": 828, + "ne3d": 2783, + "quality_histogram": "[0, 0, 13, 51, 108, 146, 173, 161, 225, 265, 333, 287, 211, 205, 173, 161, 117, 93, 45, 16]", + "total_badness": 5980.1022567 + }, + { + "ne1d": 174, + "ne2d": 1194, + "ne3d": 5105, + "quality_histogram": "[0, 0, 20, 134, 116, 78, 117, 149, 152, 188, 285, 371, 498, 547, 578, 611, 503, 441, 254, 63]", + "total_badness": 9068.0076408 + }, + { + "ne1d": 248, + "ne2d": 2324, + "ne3d": 16255, + "quality_histogram": "[0, 0, 0, 0, 0, 5, 24, 75, 128, 202, 346, 678, 1062, 1517, 2149, 2515, 2754, 2540, 1722, 538]", + "total_badness": 21663.043545 + }, + { + "ne1d": 418, + "ne2d": 5966, + "ne3d": 100388, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 6, 24, 71, 195, 503, 1186, 2824, 5989, 10497, 16251, 20497, 21258, 16049, 5037]", + "total_badness": 124129.95267 + } + ], + "ortho.geo": [ + { + "ne1d": 24, + "ne2d": 12, + "ne3d": 6, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0]", + "total_badness": 9.1401272869 + }, + { + "ne1d": 24, + "ne2d": 12, + "ne3d": 6, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0]", + "total_badness": 9.1401272869 + }, + { + "ne1d": 24, + "ne2d": 12, + "ne3d": 6, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0]", + "total_badness": 9.1401272869 + }, + { + "ne1d": 24, + "ne2d": 12, + "ne3d": 6, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0]", + "total_badness": 9.1401272869 + }, + { + "ne1d": 48, + "ne2d": 36, + "ne3d": 57, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 4, 8, 9, 8, 14, 5, 3, 1, 0]", + "total_badness": 83.060809673 + }, + { + "ne1d": 72, + "ne2d": 116, + "ne3d": 180, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 3, 14, 9, 27, 39, 31, 30, 17, 5]", + "total_badness": 233.34798934 + } + ], + "part1.stl": [ + { + "ne1d": 170, + "ne2d": 454, + "ne3d": 1228, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 5, 5, 20, 38, 51, 111, 128, 195, 211, 190, 152, 90, 31]", + "total_badness": 1672.6379358 + }, + { + "ne1d": 146, + "ne2d": 378, + "ne3d": 629, + "quality_histogram": "[0, 0, 0, 0, 1, 4, 13, 14, 23, 44, 56, 74, 86, 82, 70, 72, 36, 38, 10, 6]", + "total_badness": 1030.3136745 + }, + { + "ne1d": 156, + "ne2d": 394, + "ne3d": 758, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 3, 10, 24, 33, 62, 90, 103, 138, 113, 90, 60, 22, 10]", + "total_badness": 1097.0227588 + }, + { + "ne1d": 170, + "ne2d": 454, + "ne3d": 1180, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 3, 4, 12, 16, 43, 89, 116, 178, 208, 222, 153, 99, 37]", + "total_badness": 1563.8386897 + }, + { + "ne1d": 190, + "ne2d": 504, + "ne3d": 1516, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 20, 50, 73, 141, 210, 280, 272, 238, 170, 55]", + "total_badness": 1957.4591373 + }, + { + "ne1d": 230, + "ne2d": 698, + "ne3d": 3545, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 2, 6, 12, 20, 44, 109, 246, 424, 580, 665, 742, 515, 180]", + "total_badness": 4425.483014 + } + ], + "period.geo": [ + { + "ne1d": 344, + "ne2d": 1130, + "ne3d": 3294, + "quality_histogram": "[0, 0, 0, 0, 0, 11, 22, 35, 81, 112, 210, 253, 402, 409, 494, 439, 371, 274, 135, 46]", + "total_badness": 4918.0434035 + }, + { + "ne1d": 160, + "ne2d": 286, + "ne3d": 659, + "quality_histogram": "[0, 4, 8, 11, 15, 22, 23, 30, 40, 58, 66, 57, 66, 59, 57, 36, 43, 42, 16, 6]", + "total_badness": 1346.7559432 + }, + { + "ne1d": 232, + "ne2d": 590, + "ne3d": 1593, + "quality_histogram": "[0, 0, 21, 30, 45, 47, 61, 92, 104, 145, 141, 138, 146, 148, 134, 114, 107, 63, 46, 11]", + "total_badness": 3241.6735555 + }, + { + "ne1d": 344, + "ne2d": 1130, + "ne3d": 3209, + "quality_histogram": "[0, 0, 0, 0, 0, 4, 19, 29, 56, 85, 162, 229, 352, 413, 479, 468, 390, 320, 156, 47]", + "total_badness": 4660.4012194 + }, + { + "ne1d": 480, + "ne2d": 2260, + "ne3d": 11824, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 2, 15, 44, 152, 298, 546, 944, 1504, 2045, 2229, 2105, 1531, 408]", + "total_badness": 15109.078092 + }, + { + "ne1d": 820, + "ne2d": 6218, + "ne3d": 68383, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 2, 12, 37, 108, 252, 694, 1708, 3917, 7031, 11058, 14173, 14782, 11158, 3451]", + "total_badness": 84181.20294 + } + ], + "revolution.geo": [ + { + "ne1d": 320, + "ne2d": 3080, + "ne3d": 8493, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 14, 37, 141, 292, 516, 761, 908, 1113, 1149, 1153, 1021, 809, 454, 124]", + "total_badness": 12348.498749 + }, + { + "ne1d": 160, + "ne2d": 822, + "ne3d": 1275, + "quality_histogram": "[0, 0, 0, 0, 1, 13, 46, 79, 104, 128, 151, 162, 143, 122, 97, 67, 79, 44, 33, 6]", + "total_badness": 2301.511908 + }, + { + "ne1d": 240, + "ne2d": 1814, + "ne3d": 4263, + "quality_histogram": "[0, 0, 0, 1, 24, 48, 98, 178, 257, 329, 374, 485, 464, 451, 424, 377, 341, 236, 134, 42]", + "total_badness": 7266.9014253 + }, + { + "ne1d": 320, + "ne2d": 3080, + "ne3d": 8289, + "quality_histogram": "[0, 0, 0, 0, 0, 2, 6, 11, 68, 186, 384, 601, 825, 1052, 1157, 1179, 1159, 966, 521, 172]", + "total_badness": 11619.248926 + }, + { + "ne1d": 480, + "ne2d": 6802, + "ne3d": 32879, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 4, 12, 84, 271, 645, 1296, 2517, 4137, 5621, 6316, 6268, 4405, 1302]", + "total_badness": 41520.358013 + }, + { + "ne1d": 800, + "ne2d": 17838, + "ne3d": 201709, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 11, 55, 165, 539, 1581, 4149, 10238, 19945, 31707, 42528, 45753, 34593, 10445]", + "total_badness": 246377.26479 + } + ], + "screw.step": [ + { + "ne1d": 400, + "ne2d": 1416, + "ne3d": 2398, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 13, 88, 80, 176, 187, 220, 248, 278, 289, 245, 252, 182, 114, 25]", + "total_badness": 3755.3705458 + }, + { + "ne1d": 530, + "ne2d": 2688, + "ne3d": 7837, + "quality_histogram": "[0, 0, 0, 0, 1, 1, 5, 12, 27, 70, 147, 275, 499, 797, 1087, 1289, 1486, 1215, 709, 217]", + "total_badness": 10345.591253 + }, + { + "ne1d": 668, + "ne2d": 4906, + "ne3d": 31514, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 3, 2, 20, 64, 145, 345, 846, 1782, 3209, 5128, 6751, 6771, 4886, 1562]", + "total_badness": 38907.122664 + } + ], + "sculpture.geo": [ + { + "ne1d": 192, + "ne2d": 412, + "ne3d": 474, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 1, 1, 4, 16, 22, 41, 56, 66, 94, 93, 45, 22, 10, 2]", + "total_badness": 694.32501707 + }, + { + "ne1d": 102, + "ne2d": 144, + "ne3d": 138, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 11, 22, 22, 30, 28, 19, 1]", + "total_badness": 172.99655803 + }, + { + "ne1d": 144, + "ne2d": 248, + "ne3d": 259, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 7, 14, 25, 29, 47, 50, 46, 25, 7]", + "total_badness": 337.75654539 + }, + { + "ne1d": 192, + "ne2d": 412, + "ne3d": 473, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 1, 3, 16, 22, 41, 56, 67, 94, 93, 45, 22, 10, 2]", + "total_badness": 690.01007288 + }, + { + "ne1d": 288, + "ne2d": 962, + "ne3d": 1342, + "quality_histogram": "[0, 0, 0, 0, 1, 0, 8, 25, 55, 76, 126, 141, 130, 145, 122, 136, 146, 128, 84, 19]", + "total_badness": 2068.4211724 + }, + { + "ne1d": 480, + "ne2d": 2396, + "ne3d": 6759, + "quality_histogram": "[0, 0, 0, 0, 3, 7, 8, 20, 26, 48, 63, 134, 286, 497, 697, 1121, 1313, 1288, 944, 304]", + "total_badness": 8628.8134106 + } + ], + "shaft.geo": [ + { + "ne1d": 708, + "ne2d": 1726, + "ne3d": 2758, + "quality_histogram": "[5, 19, 22, 27, 27, 37, 60, 74, 82, 160, 296, 372, 295, 251, 231, 278, 234, 181, 86, 21]", + "total_badness": 5318.0297732 + }, + { + "ne1d": 410, + "ne2d": 604, + "ne3d": 951, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 6, 17, 32, 42, 65, 90, 111, 140, 137, 132, 103, 58, 17]", + "total_badness": 1354.4698007 + }, + { + "ne1d": 510, + "ne2d": 1012, + "ne3d": 2088, + "quality_histogram": "[20, 46, 76, 95, 111, 105, 97, 134, 91, 101, 96, 141, 150, 177, 193, 168, 177, 56, 41, 13]", + "total_badness": 6181.8600404 + }, + { + "ne1d": 708, + "ne2d": 1726, + "ne3d": 2749, + "quality_histogram": "[0, 2, 15, 16, 32, 30, 44, 71, 72, 143, 302, 400, 289, 259, 236, 273, 259, 196, 88, 22]", + "total_badness": 4725.048506 + }, + { + "ne1d": 1138, + "ne2d": 4220, + "ne3d": 11186, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 1, 3, 30, 80, 154, 350, 602, 945, 1409, 1830, 2160, 1870, 1352, 400]", + "total_badness": 14442.588212 + }, + { + "ne1d": 1792, + "ne2d": 10588, + "ne3d": 63583, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 1, 16, 57, 199, 505, 1317, 3246, 6239, 10147, 13375, 14218, 10750, 3513]", + "total_badness": 77700.722539 + } + ], + "sphere.geo": [ + { + "ne1d": 0, + "ne2d": 126, + "ne3d": 126, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 6, 28, 46, 29, 15, 0, 2, 0, 0, 0, 0, 0]", + "total_badness": 237.49105852 + }, + { + "ne1d": 0, + "ne2d": 56, + "ne3d": 56, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 14, 24, 11, 2, 0]", + "total_badness": 68.823759015 + }, + { + "ne1d": 0, + "ne2d": 80, + "ne3d": 80, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 12, 28, 24, 10, 4, 0, 0, 0]", + "total_badness": 114.85441614 + }, + { + "ne1d": 0, + "ne2d": 126, + "ne3d": 126, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 6, 28, 46, 29, 15, 0, 2, 0, 0, 0, 0, 0]", + "total_badness": 237.49105852 + }, + { + "ne1d": 0, + "ne2d": 258, + "ne3d": 365, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 8, 21, 36, 47, 55, 52, 32, 40, 28, 22, 15, 9]", + "total_badness": 557.72385462 + }, + { + "ne1d": 0, + "ne2d": 660, + "ne3d": 2315, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 30, 51, 141, 273, 396, 472, 471, 361, 111]", + "total_badness": 2861.2824595 + } + ], + "sphereincube.geo": [ + { + "ne1d": 46, + "ne2d": 202, + "ne3d": 495, + "quality_histogram": "[0, 0, 7, 60, 37, 29, 46, 41, 57, 46, 44, 16, 23, 10, 15, 12, 12, 24, 11, 5]", + "total_badness": 1405.0779325 + }, + { + "ne1d": 24, + "ne2d": 60, + "ne3d": 187, + "quality_histogram": "[0, 0, 4, 11, 14, 25, 27, 14, 4, 2, 2, 3, 7, 13, 19, 16, 11, 6, 6, 3]", + "total_badness": 493.44997215 + }, + { + "ne1d": 30, + "ne2d": 116, + "ne3d": 352, + "quality_histogram": "[0, 0, 7, 15, 30, 48, 31, 27, 35, 44, 27, 19, 22, 15, 9, 8, 6, 6, 3, 0]", + "total_badness": 970.12716912 + }, + { + "ne1d": 46, + "ne2d": 202, + "ne3d": 501, + "quality_histogram": "[0, 0, 4, 44, 27, 20, 51, 40, 68, 51, 51, 21, 20, 17, 17, 16, 15, 23, 11, 5]", + "total_badness": 1303.491863 + }, + { + "ne1d": 74, + "ne2d": 416, + "ne3d": 1711, + "quality_histogram": "[0, 0, 0, 0, 2, 3, 7, 15, 23, 28, 56, 85, 135, 188, 256, 270, 252, 194, 131, 66]", + "total_badness": 2380.2313828 + }, + { + "ne1d": 122, + "ne2d": 1080, + "ne3d": 13950, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 2, 2, 8, 27, 100, 220, 499, 870, 1449, 2270, 2791, 2947, 2086, 679]", + "total_badness": 17374.576935 + } + ], + "torus.geo": [ + { + "ne1d": 0, + "ne2d": 2534, + "ne3d": 5567, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 24, 44, 120, 251, 427, 577, 708, 736, 700, 671, 555, 393, 274, 86]", + "total_badness": 8384.3048813 + }, + { + "ne1d": 0, + "ne2d": 692, + "ne3d": 3145, + "quality_histogram": "[195, 700, 454, 360, 340, 221, 170, 157, 140, 91, 96, 60, 44, 31, 33, 26, 12, 7, 6, 2]", + "total_badness": 25137.501541 + }, + { + "ne1d": 0, + "ne2d": 1446, + "ne3d": 2727, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 2, 5, 12, 62, 161, 219, 352, 418, 401, 380, 266, 239, 155, 55]", + "total_badness": 3909.4618458 + }, + { + "ne1d": 0, + "ne2d": 2534, + "ne3d": 5419, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 4, 19, 42, 209, 332, 508, 665, 720, 748, 656, 613, 495, 305, 103]", + "total_badness": 7868.8410035 + }, + { + "ne1d": 0, + "ne2d": 5892, + "ne3d": 25297, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 4, 6, 57, 140, 381, 917, 1672, 2967, 4341, 5051, 5114, 3588, 1059]", + "total_badness": 31635.159095 + }, + { + "ne1d": 0, + "ne2d": 16286, + "ne3d": 175540, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 2, 23, 105, 378, 1086, 3067, 7730, 16270, 26910, 37673, 40911, 31553, 9832]", + "total_badness": 212959.87194 + } + ], + "trafo.geo": [ + { + "ne1d": 690, + "ne2d": 1684, + "ne3d": 5207, + "quality_histogram": "[0, 1, 2, 0, 8, 23, 26, 43, 130, 209, 256, 376, 434, 574, 672, 714, 598, 554, 460, 127]", + "total_badness": 7609.297723 + }, + { + "ne1d": 390, + "ne2d": 522, + "ne3d": 1348, + "quality_histogram": "[0, 2, 3, 17, 13, 39, 77, 130, 126, 139, 162, 128, 136, 115, 80, 88, 48, 32, 11, 2]", + "total_badness": 2770.7952646 + }, + { + "ne1d": 512, + "ne2d": 876, + "ne3d": 2390, + "quality_histogram": "[0, 0, 2, 1, 11, 17, 45, 82, 116, 145, 178, 211, 303, 386, 349, 231, 147, 96, 45, 25]", + "total_badness": 3971.1275129 + }, + { + "ne1d": 690, + "ne2d": 1684, + "ne3d": 5136, + "quality_histogram": "[0, 0, 0, 0, 3, 14, 20, 37, 122, 193, 254, 362, 416, 558, 664, 720, 625, 547, 463, 138]", + "total_badness": 7387.3184406 + }, + { + "ne1d": 1050, + "ne2d": 3816, + "ne3d": 17915, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 6, 26, 41, 68, 180, 504, 1428, 2170, 2266, 2730, 2780, 2666, 2365, 685]", + "total_badness": 23360.270089 + }, + { + "ne1d": 1722, + "ne2d": 10044, + "ne3d": 84569, + "quality_histogram": "[0, 0, 0, 0, 3, 8, 60, 1414, 732, 421, 765, 1392, 2637, 5659, 9077, 13242, 16177, 16531, 12448, 4003]", + "total_badness": 108711.84635 + } + ], + "twobricks.geo": [ + { + "ne1d": 72, + "ne2d": 50, + "ne3d": 41, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 1, 7, 3, 15, 4, 4, 0, 0, 0, 0]", + "total_badness": 68.929979132 + }, + { + "ne1d": 56, + "ne2d": 34, + "ne3d": 22, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 4, 0, 0, 8, 0, 0, 0, 0]", + "total_badness": 35.050418036 + }, + { + "ne1d": 56, + "ne2d": 34, + "ne3d": 22, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 2, 4, 0, 0, 8, 0, 0, 0, 0]", + "total_badness": 35.041320265 + }, + { + "ne1d": 72, + "ne2d": 50, + "ne3d": 41, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 1, 7, 3, 15, 4, 4, 0, 0, 0, 0]", + "total_badness": 68.929979132 + }, + { + "ne1d": 116, + "ne2d": 136, + "ne3d": 171, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 7, 10, 12, 40, 34, 23, 22, 13, 3]", + "total_badness": 228.1897295 + }, + { + "ne1d": 186, + "ne2d": 346, + "ne3d": 594, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 22, 29, 70, 88, 100, 109, 115, 43, 14]", + "total_badness": 771.14009171 + } + ], + "twocubes.geo": [ + { + "ne1d": 72, + "ne2d": 50, + "ne3d": 41, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 1, 7, 3, 15, 4, 4, 0, 0, 0, 0]", + "total_badness": 68.929979132 + }, + { + "ne1d": 56, + "ne2d": 34, + "ne3d": 22, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 4, 0, 0, 8, 0, 0, 0, 0]", + "total_badness": 35.050418036 + }, + { + "ne1d": 56, + "ne2d": 34, + "ne3d": 22, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 2, 4, 0, 0, 8, 0, 0, 0, 0]", + "total_badness": 35.041320265 + }, + { + "ne1d": 72, + "ne2d": 50, + "ne3d": 41, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 1, 7, 3, 15, 4, 4, 0, 0, 0, 0]", + "total_badness": 68.929979132 + }, + { + "ne1d": 116, + "ne2d": 136, + "ne3d": 171, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 7, 10, 12, 40, 34, 23, 22, 13, 3]", + "total_badness": 228.1897295 + }, + { + "ne1d": 186, + "ne2d": 346, + "ne3d": 594, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 22, 29, 70, 88, 100, 109, 115, 43, 14]", + "total_badness": 771.14009171 + } + ], + "twocyl.geo": [ + { + "ne1d": 144, + "ne2d": 408, + "ne3d": 572, + "quality_histogram": "[0, 0, 0, 0, 0, 1, 2, 7, 7, 17, 34, 51, 57, 89, 111, 75, 73, 35, 12, 1]", + "total_badness": 851.35923972 + }, + { + "ne1d": 68, + "ne2d": 100, + "ne3d": 209, + "quality_histogram": "[0, 0, 0, 1, 3, 6, 11, 2, 8, 5, 15, 18, 12, 28, 28, 27, 24, 17, 3, 1]", + "total_badness": 357.15502356 + }, + { + "ne1d": 102, + "ne2d": 236, + "ne3d": 551, + "quality_histogram": "[0, 29, 41, 30, 31, 36, 49, 40, 55, 27, 38, 32, 26, 26, 20, 13, 37, 16, 4, 1]", + "total_badness": 1900.92706 + }, + { + "ne1d": 144, + "ne2d": 408, + "ne3d": 568, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 3, 7, 16, 23, 51, 53, 95, 117, 69, 73, 43, 14, 4]", + "total_badness": 824.30043375 + }, + { + "ne1d": 214, + "ne2d": 910, + "ne3d": 1894, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 20, 72, 118, 190, 292, 365, 352, 262, 179, 40]", + "total_badness": 2477.4306124 + }, + { + "ne1d": 350, + "ne2d": 2374, + "ne3d": 13452, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 25, 83, 244, 626, 1288, 2202, 2860, 3100, 2290, 728]", + "total_badness": 16367.358392 + } + ] +} \ No newline at end of file diff --git a/tests/pytest/results.py b/tests/pytest/results.py deleted file mode 100644 index ea1a049b..00000000 --- a/tests/pytest/results.py +++ /dev/null @@ -1,108 +0,0 @@ -number_elements = {} -total_badness = {} -quality_histogram = {} -number_elements['boundarycondition.geo'] = (50,22,22,50,165,507) -total_badness['boundarycondition.geo'] = (74.77455382627932,35.1615287684931,35.09828878797806,74.77454941022566,228.72078637426984,661.0081780927665) -quality_histogram['boundarycondition.geo'] = ([0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 8, 13, 3, 9, 5, 0, 1, 1],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 4, 0, 0, 8, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 4, 0, 0, 8, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 5, 8, 13, 3, 9, 5, 0, 1, 1],[0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 5, 13, 13, 25, 31, 25, 20, 17, 12, 1],[0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 9, 20, 35, 56, 56, 81, 90, 83, 59, 15]) -number_elements['boxcyl.geo'] = (858,158,384,850,3761,18969) -total_badness['boxcyl.geo'] = (1232.0426735126875,247.68310335779472,598.9983304416592,1214.2298930472489,4693.120852548444,23072.83352747196) -quality_histogram['boxcyl.geo'] = ([0, 0, 0, 0, 0, 0, 0, 0, 2, 31, 91, 73, 79, 87, 106, 114, 102, 89, 66, 18],[0, 0, 0, 0, 0, 1, 1, 7, 10, 16, 5, 8, 15, 13, 17, 13, 9, 25, 7, 11],[0, 0, 1, 0, 3, 3, 3, 6, 11, 17, 21, 28, 34, 44, 68, 64, 49, 19, 11, 2],[0, 0, 0, 0, 0, 0, 0, 0, 2, 29, 87, 73, 75, 86, 106, 97, 112, 87, 75, 21],[0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 20, 59, 118, 250, 456, 628, 751, 755, 564, 153],[0, 0, 0, 0, 0, 0, 0, 5, 8, 15, 43, 130, 353, 876, 1713, 3018, 4122, 4317, 3271, 1098]) -number_elements['circle_on_cube.geo'] = (646,46,182,621,2054,11988) -total_badness['circle_on_cube.geo'] = (859.4388188262326,97.32623111178621,258.40643290234414,804.6856206512356,2526.4427939235775,14608.275961981739) -quality_histogram['circle_on_cube.geo'] = ([0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 10, 23, 48, 81, 117, 100, 123, 86, 43, 10],[0, 0, 0, 0, 0, 2, 2, 4, 8, 8, 6, 7, 5, 1, 2, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 14, 21, 35, 35, 33, 19, 9, 8, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 11, 45, 59, 93, 114, 121, 104, 53, 14],[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 15, 57, 129, 210, 330, 426, 450, 321, 109],[0, 0, 0, 0, 0, 0, 0, 1, 2, 17, 33, 82, 226, 556, 1140, 1929, 2512, 2801, 2061, 628]) -number_elements['cone.geo'] = (1231,753,755,1208,4423,27126) -total_badness['cone.geo'] = (1853.3096959109166,2038.8171749591982,2283.6586444340996,1783.4859473632036,5769.994684811694,33434.66391104773) -quality_histogram['cone.geo'] = ([0, 0, 0, 0, 0, 1, 8, 22, 29, 50, 88, 118, 123, 158, 175, 140, 137, 111, 52, 19],[0, 1, 28, 40, 63, 54, 61, 53, 61, 59, 67, 47, 38, 52, 39, 23, 27, 21, 16, 3],[1, 33, 42, 29, 32, 26, 29, 27, 64, 81, 73, 80, 67, 48, 55, 18, 23, 16, 11, 0],[0, 0, 0, 0, 0, 1, 2, 15, 22, 47, 81, 110, 131, 144, 172, 150, 145, 112, 62, 14],[0, 0, 0, 0, 0, 0, 0, 1, 4, 35, 88, 158, 276, 400, 584, 726, 802, 735, 464, 150],[0, 0, 0, 0, 0, 0, 0, 3, 13, 31, 83, 303, 735, 1519, 2944, 4316, 5668, 5807, 4355, 1349]) -number_elements['cube.geo'] = (6,6,6,6,57,184) -total_badness['cube.geo'] = (9.140127286902135,9.140127286902135,9.140127286902135,9.140127286902137,84.41688347277622,241.24676971944592) -quality_histogram['cube.geo'] = ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 3, 2, 12, 14, 4, 12, 2, 2, 3, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 10, 7, 19, 18, 37, 33, 33, 14, 6]) -number_elements['cubeandring.geo'] = (2188,252,613,2054,7752,38282) -total_badness['cubeandring.geo'] = (4412.194135842449,365.81827351160507,897.5465886947072,3795.4750392740707,9761.706516470002,46825.77798326433) -quality_histogram['cubeandring.geo'] = ([1, 9, 25, 36, 90, 100, 108, 114, 90, 73, 63, 100, 149, 190, 251, 264, 241, 168, 96, 20],[0, 0, 0, 0, 0, 1, 1, 2, 1, 3, 8, 24, 28, 49, 38, 41, 29, 19, 7, 1],[0, 0, 0, 0, 2, 0, 0, 4, 3, 17, 49, 47, 61, 93, 110, 82, 52, 60, 28, 5],[0, 3, 12, 28, 61, 84, 109, 97, 80, 55, 48, 68, 112, 166, 245, 277, 249, 212, 116, 32],[0, 0, 0, 0, 0, 2, 1, 9, 13, 27, 56, 136, 281, 548, 921, 1256, 1534, 1557, 1091, 320],[0, 0, 0, 0, 0, 0, 0, 3, 10, 28, 117, 334, 795, 2026, 3889, 5942, 8057, 8537, 6447, 2097]) -number_elements['cubeandspheres.geo'] = (98,100,98,98,365,1080) -total_badness['cubeandspheres.geo'] = (145.83375109036504,146.64686099828145,145.14580661611535,145.83375109036504,553.0336207649647,1684.1500639342994) -quality_histogram['cubeandspheres.geo'] = ([0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 3, 4, 18, 19, 13, 20, 2, 9, 1, 0],[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 7, 10, 16, 18, 15, 17, 6, 5, 4, 0],[0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 6, 6, 19, 21, 12, 18, 5, 4, 4, 0],[0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 3, 4, 18, 19, 13, 20, 2, 9, 1, 0],[0, 0, 0, 0, 0, 0, 0, 2, 6, 24, 31, 43, 39, 53, 35, 44, 51, 28, 9, 0],[0, 0, 0, 0, 0, 1, 2, 19, 59, 37, 100, 136, 100, 123, 162, 160, 66, 65, 28, 22]) -number_elements['cubemcyl.geo'] = (20940,3203,8421,19608,88843,521218) -total_badness['cubemcyl.geo'] = (29036.424266882583,4539.317490840601,11848.69595029201,25605.226152652813,109927.85825761271,633985.7169497084) -quality_histogram['cubemcyl.geo'] = ([0, 0, 0, 0, 0, 0, 22, 78, 213, 367, 738, 1237, 1875, 2588, 3120, 3314, 3117, 2521, 1385, 365],[0, 0, 0, 0, 0, 0, 3, 12, 17, 66, 128, 250, 364, 425, 515, 512, 463, 282, 137, 29],[0, 0, 0, 0, 0, 0, 7, 30, 87, 181, 362, 596, 792, 1120, 1271, 1262, 1165, 892, 516, 140],[0, 0, 0, 0, 0, 0, 2, 6, 40, 75, 246, 608, 1243, 2030, 2896, 3459, 3612, 2986, 1887, 518],[0, 0, 0, 0, 0, 0, 0, 0, 23, 113, 364, 946, 2450, 5445, 10022, 14690, 18368, 18746, 13521, 4155],[0, 0, 0, 0, 0, 0, 1, 25, 119, 374, 1224, 3269, 9296, 24328, 50521, 82283, 109285, 119759, 91721, 29013]) -number_elements['cubemsphere.geo'] = (4877,783,1571,4583,17783,113522) -total_badness['cubemsphere.geo'] = (6790.976698979519,1271.4564508216417,2230.3744520291,5995.40689674042,22085.583903145787,138835.89330335165) -quality_histogram['cubemsphere.geo'] = ([0, 0, 0, 0, 0, 1, 6, 28, 55, 96, 194, 261, 445, 559, 740, 798, 698, 576, 333, 87],[0, 0, 0, 0, 1, 2, 6, 19, 38, 61, 70, 94, 100, 91, 104, 76, 58, 38, 24, 1],[0, 0, 0, 0, 0, 0, 1, 5, 12, 20, 68, 134, 170, 243, 246, 237, 214, 145, 59, 17],[0, 0, 0, 0, 0, 0, 0, 4, 9, 25, 77, 128, 251, 516, 657, 826, 857, 685, 432, 116],[0, 0, 0, 0, 0, 0, 0, 3, 11, 31, 90, 203, 496, 1110, 1957, 3109, 3695, 3723, 2641, 714],[0, 0, 0, 0, 0, 0, 1, 9, 35, 117, 341, 885, 2307, 5764, 11384, 18322, 23667, 25754, 19043, 5893]) -number_elements['cylinder.geo'] = (413,103,437,411,1155,8102) -total_badness['cylinder.geo'] = (584.636409084562,127.27629078004027,1146.6341650071872,574.3453767078119,1536.3995031371464,9877.101056586194) -quality_histogram['cylinder.geo'] = ([0, 0, 0, 0, 0, 0, 0, 1, 2, 10, 18, 31, 43, 56, 76, 61, 45, 47, 18, 5],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 7, 15, 14, 21, 32, 10, 1],[0, 0, 14, 22, 37, 32, 30, 36, 31, 29, 34, 25, 27, 28, 22, 16, 33, 9, 9, 3],[0, 0, 0, 0, 0, 0, 0, 0, 1, 9, 15, 29, 37, 61, 76, 59, 48, 52, 21, 3],[0, 0, 0, 0, 0, 0, 0, 1, 3, 10, 16, 50, 99, 120, 164, 206, 224, 139, 105, 18],[0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 13, 53, 167, 414, 787, 1233, 1788, 1856, 1334, 453]) -number_elements['cylsphere.geo'] = (711,225,665,709,2865,17765) -total_badness['cylsphere.geo'] = (1105.79919259997,584.4242683103591,1528.697375188064,1092.2233628961833,3710.2873989997815,21668.18084327247) -quality_histogram['cylsphere.geo'] = ([0, 0, 0, 0, 0, 0, 3, 10, 16, 35, 64, 89, 107, 102, 100, 57, 59, 50, 17, 2],[0, 0, 1, 13, 20, 34, 20, 21, 7, 6, 2, 8, 13, 18, 10, 23, 13, 7, 9, 0],[0, 1, 9, 14, 21, 37, 57, 76, 63, 57, 53, 60, 32, 54, 23, 35, 39, 16, 13, 5],[0, 0, 0, 0, 0, 0, 3, 6, 15, 27, 62, 89, 110, 109, 90, 68, 66, 45, 15, 4],[0, 0, 0, 0, 0, 0, 0, 3, 3, 28, 44, 88, 157, 276, 340, 471, 505, 493, 358, 99],[0, 0, 0, 0, 0, 0, 0, 0, 6, 15, 48, 129, 362, 859, 1699, 2843, 3786, 4041, 3023, 954]) -number_elements['ellipsoid.geo'] = (1262,942,598,1256,5592,41345) -total_badness['ellipsoid.geo'] = (1984.8094938967738,5747.520443762867,903.6523661521342,1908.0512059728062,7199.786784319063,56476.64849160909) -quality_histogram['ellipsoid.geo'] = ([0, 0, 0, 0, 1, 0, 8, 26, 39, 86, 118, 127, 178, 146, 148, 147, 107, 76, 43, 12],[22, 148, 137, 126, 91, 56, 81, 69, 47, 36, 29, 32, 23, 13, 12, 9, 5, 5, 1, 0],[0, 0, 0, 0, 0, 0, 1, 5, 15, 17, 44, 69, 81, 100, 91, 53, 54, 39, 20, 9],[0, 0, 0, 0, 0, 0, 0, 18, 35, 52, 103, 128, 169, 173, 155, 154, 121, 81, 49, 18],[0, 0, 0, 0, 0, 0, 0, 0, 3, 22, 74, 178, 307, 491, 711, 944, 1067, 921, 675, 199],[0, 0, 0, 0, 3, 20, 108, 266, 403, 644, 1110, 1904, 2921, 4621, 6100, 6869, 6568, 5527, 3324, 957]) -number_elements['ellipticcone.geo'] = (5213,587,1780,4971,13441,69596) -total_badness['ellipticcone.geo'] = (6957.997335964581,853.7762583986572,2537.0484181636543,6359.4493283262245,17201.441953759855,85930.2271725273) -quality_histogram['ellipticcone.geo'] = ([0, 0, 0, 0, 0, 0, 1, 7, 26, 47, 141, 216, 357, 555, 760, 902, 879, 712, 459, 151],[0, 0, 0, 0, 0, 0, 3, 8, 8, 14, 33, 55, 67, 67, 76, 85, 69, 56, 32, 14],[0, 0, 0, 1, 3, 4, 12, 22, 34, 43, 79, 96, 136, 191, 227, 251, 258, 253, 129, 41],[0, 0, 0, 0, 0, 0, 0, 1, 3, 17, 53, 107, 248, 431, 665, 897, 978, 791, 593, 187],[0, 0, 0, 0, 0, 0, 1, 8, 29, 62, 198, 341, 643, 1044, 1682, 2259, 2506, 2486, 1671, 511],[0, 0, 0, 0, 0, 0, 1, 5, 40, 121, 306, 826, 1862, 3802, 7575, 11204, 14503, 14913, 11126, 3312]) -number_elements['ellipticcyl.geo'] = (2275,325,1114,2199,8225,55078) -total_badness['ellipticcyl.geo'] = (3156.3970604957917,459.390405230032,1483.3007517785577,2944.2434449093485,10297.19192531407,66822.93034041145) -quality_histogram['ellipticcyl.geo'] = ([0, 0, 0, 0, 0, 0, 1, 10, 26, 44, 84, 125, 208, 263, 341, 376, 326, 261, 175, 35],[0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 18, 28, 26, 37, 71, 54, 46, 27, 10, 2],[0, 0, 0, 0, 0, 0, 0, 0, 3, 10, 17, 41, 80, 144, 172, 205, 165, 155, 97, 25],[0, 0, 0, 0, 0, 0, 1, 2, 8, 35, 43, 95, 163, 238, 314, 377, 378, 307, 193, 45],[0, 0, 0, 0, 0, 0, 0, 3, 5, 9, 46, 106, 269, 605, 988, 1459, 1629, 1655, 1138, 313],[0, 0, 0, 0, 0, 0, 0, 1, 10, 28, 97, 356, 939, 2483, 5114, 8528, 11618, 12908, 9908, 3088]) -number_elements['fichera.geo'] = (40,18,18,40,208,514) -total_badness['fichera.geo'] = (62.36199688281094,26.546480074510768,26.546480074510768,62.361996882810935,266.19865609610633,666.6750726869872) -quality_histogram['fichera.geo'] = ([0, 0, 0, 0, 0, 0, 0, 2, 1, 3, 2, 4, 3, 5, 7, 8, 2, 1, 0, 2],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 10, 6, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 10, 6, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 2, 1, 3, 2, 4, 3, 5, 7, 8, 2, 1, 0, 2],[0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 6, 10, 16, 24, 36, 33, 41, 30, 6],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 14, 32, 55, 87, 97, 91, 71, 52, 13]) -number_elements['frame.step'] = (220900,30129,85945) -total_badness['frame.step'] = (300459.83411975694,44750.50972353135,118266.27326084932) -quality_histogram['frame.step'] = ([2, 7, 7, 9, 9, 30, 241, 749, 1682, 3420, 6081, 10465, 17172, 25221, 31864, 35916, 35505, 29651, 18174, 4695],[4, 4, 5, 11, 20, 39, 120, 287, 625, 1025, 1680, 2536, 3358, 4124, 4521, 4195, 3479, 2399, 1359, 338],[1, 6, 3, 11, 7, 34, 76, 195, 480, 1081, 2528, 4819, 7807, 11027, 13498, 14054, 12911, 10078, 5893, 1436]) -number_elements['hinge.stl'] = (1990,1389,1530,1988,2903,4609) -total_badness['hinge.stl'] = (2772.615463550591,2178.566325869092,2364.3186940730393,2747.7705529808827,3701.663382426159,5628.251412240825) -quality_histogram['hinge.stl'] = ([0, 0, 0, 0, 1, 2, 3, 9, 21, 47, 69, 116, 164, 237, 326, 280, 298, 225, 151, 41],[0, 0, 0, 0, 2, 5, 18, 35, 47, 74, 111, 126, 131, 179, 189, 185, 134, 93, 46, 14],[0, 0, 0, 0, 0, 7, 14, 43, 46, 79, 94, 164, 155, 163, 212, 180, 180, 118, 61, 14],[0, 0, 0, 0, 0, 2, 2, 5, 19, 39, 62, 112, 177, 236, 314, 304, 295, 236, 140, 45],[0, 0, 0, 0, 0, 0, 0, 3, 4, 13, 31, 64, 136, 221, 397, 484, 533, 504, 399, 114],[0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 14, 45, 103, 220, 448, 693, 963, 1055, 803, 257]) -number_elements['lshape3d.geo'] = (18,12,12,18,88,331) -total_badness['lshape3d.geo'] = (27.289065400982963,18.9614815145502,18.9614815145502,27.289065400982963,121.12718489787706,443.95235946678145) -quality_histogram['lshape3d.geo'] = ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 12, 0, 3, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 6, 1, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 1, 6, 1, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 12, 0, 3, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 7, 10, 9, 21, 23, 7, 6, 1, 4],[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 7, 21, 26, 41, 39, 61, 57, 46, 24, 7]) -number_elements['manyholes.geo'] = (179405,29184,70789) -total_badness['manyholes.geo'] = (238774.1757941998,42098.72126770701,100213.31675908854) -quality_histogram['manyholes.geo'] = ([0, 0, 2, 1, 8, 27, 65, 207, 559, 1418, 3370, 7627, 12710, 20134, 27407, 30177, 29994, 24813, 16843, 4043],[0, 0, 0, 1, 5, 26, 45, 181, 387, 817, 1524, 2280, 3331, 4394, 4120, 3700, 3202, 2567, 1880, 724],[0, 0, 0, 2, 30, 78, 189, 443, 837, 1706, 2919, 4402, 7061, 9455, 10197, 10269, 9498, 7395, 4474, 1834]) -number_elements['manyholes2.geo'] = (128088) -total_badness['manyholes2.geo'] = (176960.0270623914) -quality_histogram['manyholes2.geo'] = ([0, 0, 0, 0, 7, 30, 95, 288, 823, 2105, 4573, 7847, 11840, 18008, 18739, 18350, 16782, 14747, 10264, 3590]) -number_elements['matrix.geo'] = (5295,2001,2783,5105,16255,100388) -total_badness['matrix.geo'] = (9761.595421063283,4865.580334425541,5980.102256692753,9068.007640805426,21663.043544618693,124129.9526659235) -quality_histogram['matrix.geo'] = ([0, 0, 32, 147, 135, 100, 130, 147, 177, 237, 361, 409, 554, 617, 583, 555, 457, 385, 212, 57],[0, 3, 20, 65, 122, 160, 137, 169, 184, 189, 172, 190, 184, 137, 89, 53, 45, 54, 20, 8],[0, 0, 13, 51, 108, 146, 173, 161, 225, 265, 333, 287, 211, 205, 173, 161, 117, 93, 45, 16],[0, 0, 20, 134, 116, 78, 117, 149, 152, 188, 285, 371, 498, 547, 578, 611, 503, 441, 254, 63],[0, 0, 0, 0, 0, 5, 24, 75, 128, 202, 346, 678, 1062, 1517, 2149, 2515, 2754, 2540, 1722, 538],[0, 0, 0, 0, 0, 1, 6, 24, 71, 195, 503, 1186, 2824, 5989, 10497, 16251, 20497, 21258, 16049, 5037]) -number_elements['ortho.geo'] = (6,6,6,6,57,180) -total_badness['ortho.geo'] = (9.140127286902135,9.140127286902135,9.140127286902135,9.140127286902135,83.06080967252274,233.34798934128858) -quality_histogram['ortho.geo'] = ([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 4, 0, 1, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 4, 8, 9, 8, 14, 5, 3, 1, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 3, 14, 9, 27, 39, 31, 30, 17, 5]) -number_elements['part1.stl'] = (1228,629,758,1180,1516,3545) -total_badness['part1.stl'] = (1672.637935798938,1030.3136744801673,1097.0227587874047,1563.838689712767,1957.4591373369915,4425.483014010064) -quality_histogram['part1.stl'] = ([0, 0, 0, 0, 0, 0, 1, 5, 5, 20, 38, 51, 111, 128, 195, 211, 190, 152, 90, 31],[0, 0, 0, 0, 1, 4, 13, 14, 23, 44, 56, 74, 86, 82, 70, 72, 36, 38, 10, 6],[0, 0, 0, 0, 0, 0, 0, 3, 10, 24, 33, 62, 90, 103, 138, 113, 90, 60, 22, 10],[0, 0, 0, 0, 0, 0, 0, 3, 4, 12, 16, 43, 89, 116, 178, 208, 222, 153, 99, 37],[0, 0, 0, 0, 0, 0, 0, 0, 1, 6, 20, 50, 73, 141, 210, 280, 272, 238, 170, 55],[0, 0, 0, 0, 0, 0, 0, 2, 6, 12, 20, 44, 109, 246, 424, 580, 665, 742, 515, 180]) -number_elements['period.geo'] = (3294,659,1593,3209,11824,68383) -total_badness['period.geo'] = (4918.043403462622,1346.7559431607624,3241.6735554559423,4660.401219394114,15109.078091558415,84181.20294002682) -quality_histogram['period.geo'] = ([0, 0, 0, 0, 0, 11, 22, 35, 81, 112, 210, 253, 402, 409, 494, 439, 371, 274, 135, 46],[0, 4, 8, 11, 15, 22, 23, 30, 40, 58, 66, 57, 66, 59, 57, 36, 43, 42, 16, 6],[0, 0, 21, 30, 45, 47, 61, 92, 104, 145, 141, 138, 146, 148, 134, 114, 107, 63, 46, 11],[0, 0, 0, 0, 0, 4, 19, 29, 56, 85, 162, 229, 352, 413, 479, 468, 390, 320, 156, 47],[0, 0, 0, 0, 0, 0, 1, 2, 15, 44, 152, 298, 546, 944, 1504, 2045, 2229, 2105, 1531, 408],[0, 0, 0, 0, 0, 0, 2, 12, 37, 108, 252, 694, 1708, 3917, 7031, 11058, 14173, 14782, 11158, 3451]) -number_elements['revolution.geo'] = (8493,1275,4263,8289,32879,201709) -total_badness['revolution.geo'] = (12348.498749170572,2301.5119080238096,7266.901425264716,11619.248926348993,41520.35801256831,246377.26478687205) -quality_histogram['revolution.geo'] = ([0, 0, 0, 0, 0, 1, 14, 37, 141, 292, 516, 761, 908, 1113, 1149, 1153, 1021, 809, 454, 124],[0, 0, 0, 0, 1, 13, 46, 79, 104, 128, 151, 162, 143, 122, 97, 67, 79, 44, 33, 6],[0, 0, 0, 1, 24, 48, 98, 178, 257, 329, 374, 485, 464, 451, 424, 377, 341, 236, 134, 42],[0, 0, 0, 0, 0, 2, 6, 11, 68, 186, 384, 601, 825, 1052, 1157, 1179, 1159, 966, 521, 172],[0, 0, 0, 0, 0, 0, 1, 4, 12, 84, 271, 645, 1296, 2517, 4137, 5621, 6316, 6268, 4405, 1302],[0, 0, 0, 0, 0, 0, 0, 11, 55, 165, 539, 1581, 4149, 10238, 19945, 31707, 42528, 45753, 34593, 10445]) -number_elements['screw.step'] = (2398,7837,31514) -total_badness['screw.step'] = (3755.370545837308,10345.591252904502,38907.12266445083) -quality_histogram['screw.step'] = ([0, 0, 0, 0, 0, 1, 13, 88, 80, 176, 187, 220, 248, 278, 289, 245, 252, 182, 114, 25],[0, 0, 0, 0, 1, 1, 5, 12, 27, 70, 147, 275, 499, 797, 1087, 1289, 1486, 1215, 709, 217],[0, 0, 0, 0, 0, 0, 3, 2, 20, 64, 145, 345, 846, 1782, 3209, 5128, 6751, 6771, 4886, 1562]) -number_elements['sculpture.geo'] = (474,138,259,473,1342,6759) -total_badness['sculpture.geo'] = (694.325017071973,172.9965580254268,337.75654539384095,690.0100728765408,2068.421172379042,8628.81341055162) -quality_histogram['sculpture.geo'] = ([0, 0, 0, 0, 0, 1, 1, 1, 4, 16, 22, 41, 56, 66, 94, 93, 45, 22, 10, 2],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 11, 22, 22, 30, 28, 19, 1],[0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 6, 7, 14, 25, 29, 47, 50, 46, 25, 7],[0, 0, 0, 0, 0, 0, 1, 1, 3, 16, 22, 41, 56, 67, 94, 93, 45, 22, 10, 2],[0, 0, 0, 0, 1, 0, 8, 25, 55, 76, 126, 141, 130, 145, 122, 136, 146, 128, 84, 19],[0, 0, 0, 0, 3, 7, 8, 20, 26, 48, 63, 134, 286, 497, 697, 1121, 1313, 1288, 944, 304]) -number_elements['shaft.geo'] = (2758,951,2088,2749,11186,63583) -total_badness['shaft.geo'] = (5318.02970416672,1354.4698006500785,6181.8600404314575,4725.048512973088,14442.588211795146,77700.72253850821) -quality_histogram['shaft.geo'] = ([5, 19, 22, 27, 27, 37, 60, 74, 82, 160, 296, 372, 295, 251, 231, 278, 234, 181, 86, 21],[0, 0, 0, 0, 0, 0, 1, 6, 17, 32, 42, 65, 90, 111, 140, 137, 132, 103, 58, 17],[20, 46, 76, 95, 111, 105, 97, 134, 91, 101, 96, 141, 150, 177, 193, 168, 177, 56, 41, 13],[0, 2, 15, 16, 32, 30, 44, 71, 72, 143, 302, 400, 289, 259, 236, 273, 259, 196, 88, 22],[0, 0, 0, 0, 0, 0, 1, 3, 30, 80, 154, 350, 602, 945, 1409, 1830, 2160, 1870, 1352, 400],[0, 0, 0, 0, 0, 0, 0, 1, 16, 57, 199, 505, 1317, 3246, 6239, 10147, 13375, 14218, 10750, 3513]) -number_elements['sphere.geo'] = (126,56,80,126,365,2315) -total_badness['sphere.geo'] = (237.49105851849373,68.82375901522019,114.85441614445755,237.49105851849373,557.7238546173342,2861.2824595084517) -quality_histogram['sphere.geo'] = ([0, 0, 0, 0, 0, 0, 0, 0, 6, 28, 46, 29, 15, 0, 2, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 5, 14, 24, 11, 2, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 12, 28, 24, 10, 4, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 6, 28, 46, 29, 15, 0, 2, 0, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 8, 21, 36, 47, 55, 52, 32, 40, 28, 22, 15, 9],[0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 6, 30, 51, 141, 273, 396, 472, 471, 361, 111]) -number_elements['sphereincube.geo'] = (495,187,352,501,1711,13950) -total_badness['sphereincube.geo'] = (1405.0779325461885,493.44997215033766,970.1271691161155,1303.49186301379,2380.2313828272604,17374.576935292873) -quality_histogram['sphereincube.geo'] = ([0, 0, 7, 60, 37, 29, 46, 41, 57, 46, 44, 16, 23, 10, 15, 12, 12, 24, 11, 5],[0, 0, 4, 11, 14, 25, 27, 14, 4, 2, 2, 3, 7, 13, 19, 16, 11, 6, 6, 3],[0, 0, 7, 15, 30, 48, 31, 27, 35, 44, 27, 19, 22, 15, 9, 8, 6, 6, 3, 0],[0, 0, 4, 44, 27, 20, 51, 40, 68, 51, 51, 21, 20, 17, 17, 16, 15, 23, 11, 5],[0, 0, 0, 0, 2, 3, 7, 15, 23, 28, 56, 85, 135, 188, 256, 270, 252, 194, 131, 66],[0, 0, 0, 0, 0, 0, 2, 2, 8, 27, 100, 220, 499, 870, 1449, 2270, 2791, 2947, 2086, 679]) -number_elements['torus.geo'] = (5567,3145,2727,5419,25297,175540) -total_badness['torus.geo'] = (8384.304881325788,25137.501541465608,3909.4618457982724,7868.841003540981,31635.159094988307,212959.87194011256) -quality_histogram['torus.geo'] = ([0, 0, 0, 0, 0, 1, 24, 44, 120, 251, 427, 577, 708, 736, 700, 671, 555, 393, 274, 86],[195, 700, 454, 360, 340, 221, 170, 157, 140, 91, 96, 60, 44, 31, 33, 26, 12, 7, 6, 2],[0, 0, 0, 0, 0, 0, 2, 5, 12, 62, 161, 219, 352, 418, 401, 380, 266, 239, 155, 55],[0, 0, 0, 0, 0, 0, 4, 19, 42, 209, 332, 508, 665, 720, 748, 656, 613, 495, 305, 103],[0, 0, 0, 0, 0, 0, 0, 4, 6, 57, 140, 381, 917, 1672, 2967, 4341, 5051, 5114, 3588, 1059],[0, 0, 0, 0, 0, 0, 0, 2, 23, 105, 378, 1086, 3067, 7730, 16270, 26910, 37673, 40911, 31553, 9832]) -number_elements['trafo.geo'] = (5207,1348,2390,5136,17915,84569) -total_badness['trafo.geo'] = (7609.297722974407,2770.7952645933756,3971.12751286376,7387.3184405933,23360.27008887893,108711.84635488936) -quality_histogram['trafo.geo'] = ([0, 1, 2, 0, 8, 23, 26, 43, 130, 209, 256, 376, 434, 574, 672, 714, 598, 554, 460, 127],[0, 2, 3, 17, 13, 39, 77, 130, 126, 139, 162, 128, 136, 115, 80, 88, 48, 32, 11, 2],[0, 0, 2, 1, 11, 17, 45, 82, 116, 145, 178, 211, 303, 386, 349, 231, 147, 96, 45, 25],[0, 0, 0, 0, 3, 14, 20, 37, 122, 193, 254, 362, 416, 558, 664, 720, 625, 547, 463, 138],[0, 0, 0, 0, 0, 0, 6, 26, 41, 68, 180, 504, 1428, 2170, 2266, 2730, 2780, 2666, 2365, 685],[0, 0, 0, 0, 3, 8, 60, 1414, 732, 421, 765, 1392, 2637, 5659, 9077, 13242, 16177, 16531, 12448, 4003]) -number_elements['twobricks.geo'] = (41,22,22,41,171,594) -total_badness['twobricks.geo'] = (68.92997913151194,35.05041803583789,35.04132026480671,68.92997913151194,228.18972949546867,771.140091711599) -quality_histogram['twobricks.geo'] = ([0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 1, 7, 3, 15, 4, 4, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 4, 0, 0, 8, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 2, 4, 0, 0, 8, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 1, 7, 3, 15, 4, 4, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 7, 10, 12, 40, 34, 23, 22, 13, 3],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 22, 29, 70, 88, 100, 109, 115, 43, 14]) -number_elements['twocubes.geo'] = (41,22,22,41,171,594) -total_badness['twocubes.geo'] = (68.92997913151194,35.05041803583789,35.04132026480671,68.92997913151194,228.18972949546867,771.140091711599) -quality_histogram['twocubes.geo'] = ([0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 1, 7, 3, 15, 4, 4, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 4, 4, 0, 0, 8, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 2, 4, 0, 0, 8, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 2, 2, 3, 1, 7, 3, 15, 4, 4, 0, 0, 0, 0],[0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 5, 7, 10, 12, 40, 34, 23, 22, 13, 3],[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 22, 29, 70, 88, 100, 109, 115, 43, 14]) -number_elements['twocyl.geo'] = (572,209,551,568,1894,13452) -total_badness['twocyl.geo'] = (851.3592397192452,357.1550235646191,1900.9270599861966,824.3004337537227,2477.4306123873607,16367.35839189883) -quality_histogram['twocyl.geo'] = ([0, 0, 0, 0, 0, 1, 2, 7, 7, 17, 34, 51, 57, 89, 111, 75, 73, 35, 12, 1],[0, 0, 0, 1, 3, 6, 11, 2, 8, 5, 15, 18, 12, 28, 28, 27, 24, 17, 3, 1],[0, 29, 41, 30, 31, 36, 49, 40, 55, 27, 38, 32, 26, 26, 20, 13, 37, 16, 4, 1],[0, 0, 0, 0, 0, 0, 0, 3, 7, 16, 23, 51, 53, 95, 117, 69, 73, 43, 14, 4],[0, 0, 0, 0, 0, 0, 0, 0, 1, 3, 20, 72, 118, 190, 292, 365, 352, 262, 179, 40],[0, 0, 0, 0, 0, 0, 0, 0, 1, 5, 25, 83, 244, 626, 1288, 2202, 2860, 3100, 2290, 728]) diff --git a/tests/pytest/test_tutorials.py b/tests/pytest/test_tutorials.py index 4c085b32..80a53fee 100644 --- a/tests/pytest/test_tutorials.py +++ b/tests/pytest/test_tutorials.py @@ -4,39 +4,42 @@ from netgen.meshing import meshsize, MeshingParameters, SetMessageImportance import netgen.csg as csg import netgen.stl as stl from pyngcore import TaskManager +import json try: import netgen.occ as occ has_occ = True except ImportError: has_occ = False -from results import * SetMessageImportance(0) +def getData(mesh, mp): + out = {} + out['ne1d'] = len(mesh.Elements1D()) + out['ne2d'] = len(mesh.Elements2D()) + out['ne3d'] = len(mesh.Elements3D()) + # round badness to avoid fluctuations in last digits + out["total_badness"] = float("{:.11g}".format(mesh.CalcTotalBadness(mp))) + out["quality_histogram"] = str(list(mesh.GetQualityHistogram())) + return out + +def checkData(mesh, mp, ref): + data = getData(mesh, mp) + assert ref['ne1d'] == data['ne1d'] + assert ref['ne2d'] == data['ne2d'] + assert ref['ne3d'] == data['ne3d'] + assert ref['quality_histogram'] == data['quality_histogram'] + assert ref['total_badness'] == pytest.approx(data['total_badness'], rel=1e-5) + + def getFiles(fileEnding): r, d, files = next(os.walk(os.path.join("..","..","tutorials"))) return (f for f in files if f.endswith(fileEnding)) +@pytest.fixture +def refdata(): + return json.load(open('results.json','r')) -def getCheckFunc(filename): - def func(mesh,mp,i): - if filename in number_elements: - # number of elements should be in 2% range of expected value - assert mesh.ne == number_elements[filename][i] - badness = mesh.CalcTotalBadness(mp) - qual_classes = list(mesh.GetQualityHistogram()) - assert badness == pytest.approx(total_badness[filename][i], rel=1e-6) - assert qual_classes == quality_histogram[filename][i] - return func - -def getResultFunc(filename): - def resultFunc(mesh, mp): - results = {} - results["number_elements"] = mesh.ne - results["total_badness"] = mesh.CalcTotalBadness(mp) - results["quality_histogram"] = list(mesh.GetQualityHistogram()) - return results - return resultFunc def getMeshingparameters(filename): standard = [MeshingParameters()] + [MeshingParameters(ms) for ms in (meshsize.very_coarse, meshsize.coarse, meshsize.moderate, meshsize.fine, meshsize.very_fine)] @@ -55,7 +58,6 @@ def getMeshingparameters(filename): _geofiles = [f for f in getFiles(".geo")] + [f for f in getFiles(".stl")] if has_occ: _geofiles += [f for f in getFiles(".step")] - _geofiles.sort() def generateMesh(filename, mp): @@ -73,46 +75,51 @@ def isSlowTest(filename): "period.geo", "shaft.geo", "cubeandring.geo", "ellipticcyl.geo", "ellipsoid.geo", "cone.geo"] -def getParamForTest(filename): - return pytest.param(filename, getCheckFunc(filename), marks=pytest.mark.slow) if isSlowTest(filename) \ - else (filename, getCheckFunc(filename)) +def getParameters(): + res = [] + for f in _geofiles: + for i,mp in enumerate(getMeshingparameters(f)): + if isSlowTest(f): + res.append( pytest.param(f, mp, i, marks=pytest.mark.slow ) ) + else: + res.append( (f, mp, i) ) + return res -@pytest.mark.parametrize(("filename, checkFunc"), [getParamForTest(f) for f in _geofiles]) -def test_geoFiles(filename, checkFunc): +@pytest.mark.parametrize(("filename", "mp", "i"), getParameters()) +def test_geoFiles(filename, mp, i, refdata): + ref = refdata[filename] import filecmp - for i, mp_ in enumerate(getMeshingparameters(filename)): - print("load geo", filename) - mp = MeshingParameters(mp_, parallel_meshing=False) - mesh = generateMesh(filename, mp) - if checkFunc is not None: - checkFunc(mesh,mp,i) - mesh.Save(filename+'_seq.vol.gz') + print("load geo", filename) + mp = MeshingParameters(mp, parallel_meshing=False) + mesh = generateMesh(filename, mp) + mesh.Save(filename+'_seq.vol.gz') + with TaskManager(): + mesh_par = generateMesh(filename, mp) + mesh_par.Save(filename+'_par.vol.gz') - with TaskManager(): - mesh_par = generateMesh(filename, mp) - mesh_par.Save(filename+'_par.vol.gz') + assert filecmp.cmp(filename+'_seq.vol.gz', filename+'_par.vol.gz') + checkData(mesh, mp, ref[i]) - assert filecmp.cmp(filename+'_seq.vol.gz', filename+'_par.vol.gz') -import time def generateResultFile(): - with TaskManager(): - with open("results.py", "w") as f: - print("number_elements = {}", file=f) - print("total_badness = {}", file=f) - print("quality_histogram = {}", file=f) - for _file, _func in ((gf, getResultFunc(gf)) for gf in _geofiles): + import re, time + data = {} + with TaskManager(): + for _file in _geofiles: + print("generate "+_file) start = time.time() - print("write", _file) mps = getMeshingparameters(_file) if not mps: continue - results = [_func(generateMesh(_file, mp), mp) for mp in mps] - print("number_elements['{}'] = {}".format(_file, "(" + ",".join((str(r["number_elements"]) for r in results)) + ")"), file=f) - print("total_badness['{}'] = {}".format(_file, "(" + ",".join((str(r["total_badness"]) for r in results)) + ")"), file=f) - print("quality_histogram['{}'] = {}".format(_file, "(" + ",".join((str(r["quality_histogram"]) for r in results)) + ")"), file=f) - print("needed", time.time() - start, "seconds") + meshdata = [] + for mp in mps: + mesh = generateMesh(_file, mp) + meshdata.append( getData(mesh, mp) ) + data[_file] = meshdata + print("needed", time.time() - start, "seconds") + s = json.dumps(data, sort_keys=True, indent=4) + open("results.json", "w").write(s) if __name__ == "__main__": generateResultFile()