start work on stlparam from python, strange bad any cast exception

This commit is contained in:
Christopher Lackner 2019-08-02 16:22:53 +02:00
parent a73594b738
commit 218bd4c5d2
15 changed files with 338 additions and 147 deletions

View File

@ -19,6 +19,7 @@
#include <thread>
#include <mutex>
#include <atomic>
#include <any>
#include <new>
#include <string>

View File

@ -1269,6 +1269,8 @@ namespace netgen
bool inverttrigs = false;
///
bool autozrefine = false;
any geometrySpecificParameters;
///
MeshingParameters ();
///

View File

@ -1019,17 +1019,14 @@ DLL_HEADER void ExportNetgenMeshing(py::module &m)
typedef MeshingParameters MP;
auto mp = py::class_<MP> (m, "MeshingParameters")
.def(py::init<>())
.def(py::init([](py::kwargs kwargs)
.def(py::init([](MeshingParameters* other, py::kwargs kwargs)
{
MeshingParameters mp;
if(other) mp = *other;
CreateMPfromKwargs(mp, kwargs);
return mp;
}), meshingparameter_description.c_str())
}), py::arg("mp")=nullptr, meshingparameter_description.c_str())
.def("__str__", &ToString<MP>)
.def_property("maxh", [](const MP & mp ) { return mp.maxh; },
[](MP & mp, double maxh) { return mp.maxh = maxh; })
.def_property("grading", [](const MP & mp ) { return mp.grading; },
[](MP & mp, double grading) { return mp.grading = grading; })
.def("RestrictH", FunctionPointer
([](MP & mp, double x, double y, double z, double h)
{

View File

@ -83,86 +83,88 @@ elsizeweight: float = 0.2
inline void CreateMPfromKwargs(MeshingParameters& mp, py::kwargs kwargs)
{
if(kwargs.contains("optimize3d"))
mp.optimize3d = py::cast<string>(kwargs["optimize3d"]);
mp.optimize3d = py::cast<string>(kwargs.attr("pop")("optimize3d"));
if(kwargs.contains("optsteps3d"))
mp.optsteps3d = py::cast<int>(kwargs["optsteps3d"]);
mp.optsteps3d = py::cast<int>(kwargs.attr("pop")("optsteps3d"));
if(kwargs.contains("optimize2d"))
mp.optimize2d = py::cast<string>(kwargs["optimize2d"]);
mp.optimize2d = py::cast<string>(kwargs.attr("pop")("optimize2d"));
if(kwargs.contains("optsteps2d"))
mp.optsteps2d = py::cast<int>(kwargs["optsteps2d"]);
mp.optsteps2d = py::cast<int>(kwargs.attr("pop")("optsteps2d"));
if(kwargs.contains("opterrpow"))
mp.opterrpow = py::cast<double>(kwargs["opterrpow"]);
mp.opterrpow = py::cast<double>(kwargs.attr("pop")("opterrpow"));
if(kwargs.contains("blockfill"))
mp.blockfill = py::cast<bool>(kwargs["blockfill"]);
mp.blockfill = py::cast<bool>(kwargs.attr("pop")("blockfill"));
if(kwargs.contains("filldist"))
mp.filldist = py::cast<double>(kwargs["filldist"]);
mp.filldist = py::cast<double>(kwargs.attr("pop")("filldist"));
if(kwargs.contains("safety"))
mp.safety = py::cast<double>(kwargs["safety"]);
mp.safety = py::cast<double>(kwargs.attr("pop")("safety"));
if(kwargs.contains("relinnersafety"))
mp.relinnersafety = py::cast<double>(kwargs["relinnersafety"]);
mp.relinnersafety = py::cast<double>(kwargs.attr("pop")("relinnersafety"));
if(kwargs.contains("uselocalh"))
mp.uselocalh = py::cast<bool>(kwargs["uselocalh"]);
mp.uselocalh = py::cast<bool>(kwargs.attr("pop")("uselocalh"));
if(kwargs.contains("grading"))
mp.grading = py::cast<double>(kwargs["grading"]);
mp.grading = py::cast<double>(kwargs.attr("pop")("grading"));
if(kwargs.contains("delaunay"))
mp.delaunay = py::cast<bool>(kwargs["delaunay"]);
mp.delaunay = py::cast<bool>(kwargs.attr("pop")("delaunay"));
if(kwargs.contains("maxh"))
mp.maxh = py::cast<double>(kwargs["maxh"]);
mp.maxh = py::cast<double>(kwargs.attr("pop")("maxh"));
if(kwargs.contains("minh"))
mp.minh = py::cast<double>(kwargs["minh"]);
mp.minh = py::cast<double>(kwargs.attr("pop")("minh"));
if(kwargs.contains("meshsizefilename"))
mp.meshsizefilename = py::cast<string>(kwargs["meshsizefilename"]);
mp.meshsizefilename = py::cast<string>(kwargs.attr("pop")("meshsizefilename"));
if(kwargs.contains("startinsurface"))
mp.startinsurface = py::cast<bool>(kwargs["startinsurface"]);
mp.startinsurface = py::cast<bool>(kwargs.attr("pop")("startinsurface"));
if(kwargs.contains("checkoverlap"))
mp.checkoverlap = py::cast<bool>(kwargs["checkoverlap"]);
mp.checkoverlap = py::cast<bool>(kwargs.attr("pop")("checkoverlap"));
if(kwargs.contains("checkoverlappingboundary"))
mp.checkoverlappingboundary = py::cast<bool>(kwargs["checkoverlappingboundary"]);
mp.checkoverlappingboundary = py::cast<bool>(kwargs.attr("pop")("checkoverlappingboundary"));
if(kwargs.contains("checkchartboundary"))
mp.checkchartboundary = py::cast<bool>(kwargs["checkchartboundary"]);
mp.checkchartboundary = py::cast<bool>(kwargs.attr("pop")("checkchartboundary"));
if(kwargs.contains("curvaturesafety"))
mp.curvaturesafety = py::cast<double>(kwargs["curvaturesafety"]);
mp.curvaturesafety = py::cast<double>(kwargs.attr("pop")("curvaturesafety"));
if(kwargs.contains("segmentsperedge"))
mp.segmentsperedge = py::cast<double>(kwargs["segmentsperedge"]);
mp.segmentsperedge = py::cast<double>(kwargs.attr("pop")("segmentsperedge"));
if(kwargs.contains("parthread"))
mp.parthread = py::cast<bool>(kwargs["parthread"]);
mp.parthread = py::cast<bool>(kwargs.attr("pop")("parthread"));
if(kwargs.contains("elsizeweight"))
mp.elsizeweight = py::cast<double>(kwargs["elsizeweight"]);
mp.elsizeweight = py::cast<double>(kwargs.attr("pop")("elsizeweight"));
if(kwargs.contains("perfstepsstart"))
mp.perfstepsstart = py::cast<int>(kwargs["perfstepsstart"]);
mp.perfstepsstart = py::cast<int>(kwargs.attr("pop")("perfstepsstart"));
if(kwargs.contains("perfstepsend"))
mp.perfstepsend = py::cast<int>(kwargs["perfstepsend"]);
mp.perfstepsend = py::cast<int>(kwargs.attr("pop")("perfstepsend"));
if(kwargs.contains("giveuptol2d"))
mp.giveuptol2d = py::cast<int>(kwargs["giveuptol2d"]);
mp.giveuptol2d = py::cast<int>(kwargs.attr("pop")("giveuptol2d"));
if(kwargs.contains("giveuptol"))
mp.giveuptol = py::cast<int>(kwargs["giveuptol"]);
mp.giveuptol = py::cast<int>(kwargs.attr("pop")("giveuptol"));
if(kwargs.contains("maxoutersteps"))
mp.maxoutersteps = py::cast<int>(kwargs["maxoutersteps"]);
mp.maxoutersteps = py::cast<int>(kwargs.attr("pop")("maxoutersteps"));
if(kwargs.contains("starshapeclass"))
mp.starshapeclass = py::cast<int>(kwargs["starshapeclass"]);
mp.starshapeclass = py::cast<int>(kwargs.attr("pop")("starshapeclass"));
if(kwargs.contains("baseelnp"))
mp.baseelnp = py::cast<int>(kwargs["baseelnp"]);
mp.baseelnp = py::cast<int>(kwargs.attr("pop")("baseelnp"));
if(kwargs.contains("sloppy"))
mp.sloppy = py::cast<bool>(kwargs["sloppy"]);
mp.sloppy = py::cast<bool>(kwargs.attr("pop")("sloppy"));
if(kwargs.contains("badellimit"))
mp.badellimit = py::cast<double>(kwargs["badellimit"]);
mp.badellimit = py::cast<double>(kwargs.attr("pop")("badellimit"));
if(kwargs.contains("check_impossible"))
mp.check_impossible = py::cast<bool>(kwargs["check_impossible"]);
mp.check_impossible = py::cast<bool>(kwargs.attr("pop")("check_impossible"));
if(kwargs.contains("only3D_domain_nr"))
mp.only3D_domain_nr = py::cast<int>(kwargs["only3D_domain_nr"]);
mp.only3D_domain_nr = py::cast<int>(kwargs.attr("pop")("only3D_domain_nr"));
if(kwargs.contains("secondorder"))
mp.secondorder = py::cast<bool>(kwargs["secondorder"]);
mp.secondorder = py::cast<bool>(kwargs.attr("pop")("secondorder"));
if(kwargs.contains("elementorder"))
mp.elementorder = py::cast<int>(kwargs["elementorder"]);
mp.elementorder = py::cast<int>(kwargs.attr("pop")("elementorder"));
if(kwargs.contains("quad"))
mp.quad = py::cast<bool>(kwargs["quad"]);
mp.quad = py::cast<bool>(kwargs.attr("pop")("quad"));
if(kwargs.contains("try_hexes"))
mp.try_hexes = py::cast<bool>(kwargs["try_hexes"]);
mp.try_hexes = py::cast<bool>(kwargs.attr("pop")("try_hexes"));
if(kwargs.contains("inverttets"))
mp.inverttets = py::cast<bool>(kwargs["inverttets"]);
mp.inverttets = py::cast<bool>(kwargs.attr("pop")("inverttets"));
if(kwargs.contains("inverttrigs"))
mp.inverttrigs = py::cast<bool>(kwargs["inverttrigs"]);
mp.inverttrigs = py::cast<bool>(kwargs.attr("pop")("inverttrigs"));
if(kwargs.contains("autozrefine"))
mp.autozrefine = py::cast<bool>(kwargs["autozrefine"]);
mp.autozrefine = py::cast<bool>(kwargs.attr("pop")("autozrefine"));
if(kwargs.size())
mp.geometrySpecificParameters = make_any<py::kwargs>(std::move(kwargs));
}
} // namespace netgen

View File

@ -14,7 +14,8 @@ namespace netgen
{
static void STLFindEdges (STLGeometry & geom,
class Mesh & mesh)
class Mesh & mesh,
MeshingParameters& mparam)
{
double h = mparam.maxh;
@ -229,18 +230,18 @@ static void STLFindEdges (STLGeometry & geom,
void STLSurfaceMeshing1 (STLGeometry & geom, class Mesh & mesh,
void STLSurfaceMeshing1 (STLGeometry & geom, class Mesh & mesh, MeshingParameters& mparam,
int retrynr);
int STLSurfaceMeshing (STLGeometry & geom, class Mesh & mesh)
int STLSurfaceMeshing (STLGeometry & geom, class Mesh & mesh, MeshingParameters& mparam)
{
PrintFnStart("Do Surface Meshing");
geom.PrepareSurfaceMeshing();
if (mesh.GetNSeg() == 0)
STLFindEdges (geom, mesh);
STLFindEdges (geom, mesh, mparam);
int nopen;
int outercnt = 20;
@ -272,7 +273,7 @@ int STLSurfaceMeshing (STLGeometry & geom, class Mesh & mesh)
if (multithread.terminate) { return MESHING3_TERMINATE; }
trialcnt++;
STLSurfaceMeshing1 (geom, mesh, trialcnt);
STLSurfaceMeshing1 (geom, mesh, mparam, trialcnt);
mesh.FindOpenSegments();
nopen = mesh.GetNOpenSegments();
@ -527,6 +528,7 @@ int STLSurfaceMeshing (STLGeometry & geom, class Mesh & mesh)
void STLSurfaceMeshing1 (STLGeometry & geom,
class Mesh & mesh,
MeshingParameters& mparam,
int retrynr)
{
static int timer1 = NgProfiler::CreateTimer ("STL surface meshing1");
@ -741,7 +743,7 @@ void STLSurfaceMeshing1 (STLGeometry & geom,
void STLSurfaceOptimization (STLGeometry & geom,
class Mesh & mesh,
MeshingParameters & meshparam)
MeshingParameters & mparam)
{
PrintFnStart("optimize STL Surface");
@ -749,12 +751,12 @@ void STLSurfaceOptimization (STLGeometry & geom,
optmesh.SetFaceIndex (0);
optmesh.SetImproveEdges (0);
optmesh.SetMetricWeight (meshparam.elsizeweight);
optmesh.SetMetricWeight (mparam.elsizeweight);
PrintMessage(5,"optimize string = ", meshparam.optimize2d, " elsizew = ", meshparam.elsizeweight);
PrintMessage(5,"optimize string = ", mparam.optimize2d, " elsizew = ", mparam.elsizeweight);
for (int i = 1; i <= meshparam.optsteps2d; i++)
for (size_t j = 1; j <= meshparam.optimize2d.length(); j++)
for (int i = 1; i <= mparam.optsteps2d; i++)
for (size_t j = 1; j <= mparam.optimize2d.length(); j++)
{
if (multithread.terminate)
break;
@ -762,7 +764,7 @@ void STLSurfaceOptimization (STLGeometry & geom,
//(*testout) << "optimize, before, step = " << meshparam.optimize2d[j-1] << mesh.Point (3679) << endl;
mesh.CalcSurfacesOfNode();
switch (meshparam.optimize2d[j-1])
switch (mparam.optimize2d[j-1])
{
case 's':
{

View File

@ -17,6 +17,118 @@ namespace netgen
extern shared_ptr<NetgenGeometry> ng_geometry;
}
static string stlparameter_description = R"delimiter(
STL Specific Meshing Parameters
-------------------------------
yangle: float =
Angle for edge detection
contyangle: float =
Edges continue if angle > contyangle
edgecornerangle: float =
Angle of geometry edge at which the mesher should set a point.
)delimiter";
void CreateSTLParametersFromKwargs(STLParameters& stlparam, py::kwargs kwargs)
{
if(kwargs.contains("yangle"))
stlparam.yangle = py::cast<double>(kwargs.attr("pop")("yangle"));
if(kwargs.contains("contyangle"))
stlparam.contyangle = py::cast<double>(kwargs.attr("pop")("contyangle"));
if(kwargs.contains("edgecornerangle"))
stlparam.edgecornerangle = py::cast<double>(kwargs.attr("pop")("edgecornerangle"));
if(kwargs.contains("chartangle"))
stlparam.chartangle = py::cast<double>(kwargs.attr("pop")("chartangle"));
if(kwargs.contains("outerchartangle"))
stlparam.outerchartangle = py::cast<double>(kwargs.attr("pop")("outerchartangle"));
if(kwargs.contains("usesearchtree"))
stlparam.usesearchtree = py::cast<int>(kwargs.attr("pop")("usesearchtree"));
if(kwargs.contains("resthatlasfac"))
{
auto val = kwargs.attr("pop")("resthatlasfac");
if(val.is_none())
stlparam.resthatlasenable = false;
else
{
stlparam.resthatlasenable = true;
stlparam.resthatlasfac = py::cast<double>(val);
}
}
if(kwargs.contains("atlasminh"))
stlparam.atlasminh = py::cast<double>(kwargs.attr("pop")("atlasminh"));
if(kwargs.contains("resthsurfcurvfac"))
{
auto val = kwargs.attr("pop")("resthsurfcurvfac");
if(val.is_none())
stlparam.resthsurfcurvenable = false;
else
{
stlparam.resthsurfcurvenable = true;
stlparam.resthsurfcurvfac = py::cast<double>(val);
}
}
if(kwargs.contains("resthchartdistfac"))
{
auto val = kwargs.attr("pop")("resthchartdistfac");
if(val.is_none())
stlparam.resthchartdistenable = false;
else
{
stlparam.resthchartdistenable = true;
stlparam.resthchartdistfac = py::cast<double>(val);
}
}
if(kwargs.contains("resthcloseedgefac"))
{
auto val = kwargs.attr("pop")("resthcloseedgefac");
if(val.is_none())
stlparam.resthcloseedgeenable = false;
else
{
stlparam.resthcloseedgeenable = true;
stlparam.resthcloseedgefac = py::cast<double>(val);
}
}
if(kwargs.contains("resthedgeanglefac"))
{
auto val = kwargs.attr("pop")("resthedgeanglefac");
if(val.is_none())
stlparam.resthedgeangleenable = false;
else
{
stlparam.resthedgeangleenable = true;
stlparam.resthedgeanglefac = py::cast<double>(val);
}
}
if(kwargs.contains("resthsurfmeshcurvfac"))
{
auto val = kwargs.attr("pop")("resthsurfmeshcurvfac");
if(val.is_none())
stlparam.resthsurfmeshcurvenable = false;
else
{
stlparam.resthsurfmeshcurvenable = true;
stlparam.resthsurfmeshcurvfac = py::cast<double>(val);
}
}
if(kwargs.contains("resthlinelengthfac"))
{
auto val = kwargs.attr("pop")("resthlinelengthfac");
if(val.is_none())
stlparam.resthlinelengthenable = false;
else
{
stlparam.resthlinelengthenable = true;
stlparam.resthlinelengthfac = py::cast<double>(val);
}
}
if(kwargs.contains("recalc_h_opt"))
stlparam.recalc_h_opt = py::cast<bool>(kwargs.attr("pop")("recalc_h_opt"));
}
DLL_HEADER void ExportSTL(py::module & m)
{
@ -82,10 +194,31 @@ DLL_HEADER void ExportSTL(py::module & m)
MeshingParameters* pars, py::kwargs kwargs)
{
MeshingParameters mp;
if(pars) mp = *pars;
{
py::gil_scoped_acquire aq;
STLParameters stlparam;
if(pars)
{
if(pars->geometrySpecificParameters.has_value() &&
(pars->geometrySpecificParameters.type() == typeid(py::kwargs)))
{
py::gil_scoped_acquire aq;
py::kwargs mp_kwargs = any_cast<py::kwargs>(pars->geometrySpecificParameters);
py::print("geometry specific kwargs:", mp_kwargs);
CreateSTLParametersFromKwargs(stlparam, mp_kwargs);
pars->geometrySpecificParameters.reset();
}
mp = *pars;
}
CreateMPfromKwargs(mp, kwargs);
CreateSTLParametersFromKwargs(stlparam, kwargs);
if(kwargs.size())
{
cout << "WARNING: Given meshing arguments that are ignored:";
for(auto& key : kwargs)
py::print(key);
}
mp.geometrySpecificParameters = stlparam;
}
auto mesh = make_shared<Mesh>();
SetGlobalMesh(mesh);
@ -95,7 +228,7 @@ DLL_HEADER void ExportSTL(py::module & m)
return mesh;
}, py::arg("mp") = nullptr,
py::call_guard<py::gil_scoped_release>(),
meshingparameter_description.c_str())
(meshingparameter_description + stlparameter_description).c_str())
;
m.def("LoadSTLGeometry", [] (const string & filename)
{

View File

@ -13,15 +13,21 @@ int usechartnormal = 1;
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
void STLMeshing (STLGeometry & geom,
Mesh & mesh)
Mesh & mesh,
const MeshingParameters& mparam)
{
geom.Clear();
geom.BuildEdges();
geom.MakeAtlas(mesh);
STLParameters stlpar = stlparam;
if(mparam.geometrySpecificParameters.has_value() && mparam.geometrySpecificParameters.type().name() == typeid(STLParameters).name())
{
stlpar = any_cast<STLParameters>(mparam.geometrySpecificParameters);
}
geom.BuildEdges(stlpar);
geom.MakeAtlas(mesh, mparam, stlpar);
if (multithread.terminate) { return; }
geom.CalcFaceNums();
geom.AddFaceEdges();
geom.LinkEdges();
geom.LinkEdges(stlpar);
mesh.ClearFaceDescriptors();
for (int i = 1; i <= geom.GetNOFaces(); i++)
@ -132,7 +138,7 @@ void STLGeometry :: STLInfo(double* data)
data[7] = cons;
}
void STLGeometry :: MarkNonSmoothNormals()
void STLGeometry :: MarkNonSmoothNormals(const STLParameters& stlparam)
{
PrintFnStart("Mark Non-Smooth Normals");
@ -169,13 +175,13 @@ void STLGeometry :: MarkNonSmoothNormals()
}
void STLGeometry :: SmoothNormals()
void STLGeometry :: SmoothNormals(const STLParameters& stlparam)
{
multithread.terminate = 0;
// UseExternalEdges();
BuildEdges();
BuildEdges(stlparam);
DenseMatrix m(3), hm(3);
@ -1240,13 +1246,13 @@ void STLGeometry :: ClearEdges()
}
void STLGeometry :: STLDoctorBuildEdges()
void STLGeometry :: STLDoctorBuildEdges(const STLParameters& stlparam)
{
// if (!trigsconverted) {return;}
ClearEdges();
meshlines.SetSize(0);
FindEdgesFromAngles();
FindEdgesFromAngles(stlparam);
}
void STLGeometry :: DeleteExternalEdgeAtSelected()
@ -1737,7 +1743,7 @@ void STLGeometry :: InitMarkedTrigs()
}
}
void STLGeometry :: MarkDirtyTrigs()
void STLGeometry :: MarkDirtyTrigs(const STLParameters& stlparam)
{
PrintFnStart("mark dirty trigs");
int i,j;
@ -1813,12 +1819,12 @@ double STLGeometry :: CalcTrigBadness(int i)
}
void STLGeometry :: GeomSmoothRevertedTrigs()
void STLGeometry :: GeomSmoothRevertedTrigs(const STLParameters& stlparam)
{
//double revertedangle = stldoctor.smoothangle/180.*M_PI;
double fact = stldoctor.dirtytrigfact;
MarkRevertedTrigs();
MarkRevertedTrigs(stlparam);
int i, j, k, l, p;
@ -1860,13 +1866,13 @@ void STLGeometry :: GeomSmoothRevertedTrigs()
}
}
}
MarkRevertedTrigs();
MarkRevertedTrigs(stlparam);
}
void STLGeometry :: MarkRevertedTrigs()
void STLGeometry :: MarkRevertedTrigs(const STLParameters& stlparam)
{
int i,j;
if (edgesperpoint.Size() != GetNP()) {BuildEdges();}
if (edgesperpoint.Size() != GetNP()) {BuildEdges(stlparam);}
PrintFnStart("mark reverted trigs");
@ -1906,11 +1912,11 @@ void STLGeometry :: MarkRevertedTrigs()
}
void STLGeometry :: SmoothDirtyTrigs()
void STLGeometry :: SmoothDirtyTrigs(const STLParameters& stlparam)
{
PrintFnStart("smooth dirty trigs");
MarkDirtyTrigs();
MarkDirtyTrigs(stlparam);
int i,j;
int changed = 1;
@ -1953,7 +1959,7 @@ void STLGeometry :: SmoothDirtyTrigs()
calcedgedataanglesnew = 1;
MarkDirtyTrigs();
MarkDirtyTrigs(stlparam);
int cnt = 0;
for (i = 1; i <= GetNT(); i++)
@ -2360,12 +2366,12 @@ int STLGeometry :: IsEdgeNum(int ap1, int ap2)
}
void STLGeometry :: BuildEdges()
void STLGeometry :: BuildEdges(const STLParameters& stlparam)
{
//PrintFnStart("build edges");
edges.SetSize(0);
meshlines.SetSize(0);
FindEdgesFromAngles();
FindEdgesFromAngles(stlparam);
}
void STLGeometry :: UseExternalEdges()
@ -2487,7 +2493,7 @@ void STLGeometry :: CalcEdgeDataAngles()
PrintMessage (5,"calc edge data angles ... done");
}
void STLGeometry :: FindEdgesFromAngles()
void STLGeometry :: FindEdgesFromAngles(const STLParameters& stlparam)
{
// PrintFnStart("find edges from angles");
@ -2714,7 +2720,7 @@ void STLGeometry :: AddFaceEdges()
}
void STLGeometry :: LinkEdges()
void STLGeometry :: LinkEdges(const STLParameters& stlparam)
{
PushStatusF("Link Edges");
PrintMessage(5,"have now ", GetNE(), " edges with yellow angle = ", stlparam.yangle, " degree");
@ -3131,7 +3137,7 @@ int IsInArray(int n, const NgArray<int>& ia)
}
*/
void STLGeometry :: AddConeAndSpiralEdges()
void STLGeometry :: AddConeAndSpiralEdges(const STLParameters& stlparam)
{
PrintMessage(5,"have now ", GetNE(), " edges with yellow angle = ", stlparam.yangle, " degree");

View File

@ -196,8 +196,8 @@ namespace netgen
DLL_HEADER void STLInfo(double* data);
//stldoctor:
DLL_HEADER void SmoothNormals();
DLL_HEADER void MarkNonSmoothNormals();
DLL_HEADER void SmoothNormals(const STLParameters& stlparam);
DLL_HEADER void MarkNonSmoothNormals(const STLParameters& stlparam);
DLL_HEADER void CalcEdgeData();
DLL_HEADER void CalcEdgeDataAngles();
@ -251,7 +251,7 @@ namespace netgen
DLL_HEADER void AddClosedLinesToExternalEdges();
DLL_HEADER void AddLongLinesToExternalEdges();
DLL_HEADER void AddAllNotSingleLinesToExternalEdges();
DLL_HEADER void STLDoctorBuildEdges();
DLL_HEADER void STLDoctorBuildEdges(const STLParameters& stlparam);
DLL_HEADER void AddExternalEdgesFromGeomLine();
DLL_HEADER void DeleteDirtyExternalEdges();
DLL_HEADER void DeleteExternalEdgeAtSelected();
@ -292,10 +292,10 @@ namespace netgen
DLL_HEADER int Vicinity(int trig) const;
DLL_HEADER void InitMarkedTrigs();
DLL_HEADER void MarkDirtyTrigs();
DLL_HEADER void SmoothDirtyTrigs();
DLL_HEADER void GeomSmoothRevertedTrigs();
DLL_HEADER void MarkRevertedTrigs();
DLL_HEADER void MarkDirtyTrigs(const STLParameters& stlparam);
DLL_HEADER void SmoothDirtyTrigs(const STLParameters& stlparam);
DLL_HEADER void GeomSmoothRevertedTrigs(const STLParameters& stlparam);
DLL_HEADER void MarkRevertedTrigs(const STLParameters& stlparam);
DLL_HEADER double CalcTrigBadness(int i);
DLL_HEADER int IsMarkedTrig(int trig) const;
DLL_HEADER void SetMarkedTrig(int trig, int num);
@ -353,18 +353,18 @@ namespace netgen
///Build EdgeSegments
void ClearEdges();
void BuildEdges();
void BuildEdges(const STLParameters& stlparam);
void BuildEdgesPerPoint();
void UseExternalEdges();
void FindEdgesFromAngles();
void FindEdgesFromAngles(const STLParameters& stlparam);
void CalcFaceNums();
int GetNOBodys();
int GetNOFaces() {return facecnt;}
void LinkEdges();
void LinkEdges(const STLParameters& stlparam);
void AddConeAndSpiralEdges();
void AddConeAndSpiralEdges(const STLParameters& stlparam);
void AddFaceEdges(); //each face should have at least one starting edge (outherwise it won't be meshed)
void GetDirtyChartTrigs(int chartnum, STLChart& chart, const NgArray<int>& outercharttrigs,
@ -382,7 +382,7 @@ namespace netgen
//make charts with regions of a max. angle
void MakeAtlas(class Mesh & mesh);
void MakeAtlas(class Mesh & mesh, const MeshingParameters& mparam, const STLParameters& stlparam);
//outerchartspertrig, sorted!
int GetOCPTSize() const {return outerchartspertrig.Size();};

View File

@ -17,7 +17,7 @@ int chartdebug = 0;
void STLGeometry :: MakeAtlas(Mesh & mesh)
void STLGeometry :: MakeAtlas(Mesh & mesh, const MeshingParameters& mparam, const STLParameters& stlparam)
{
// int timer1 = NgProfiler::CreateTimer ("makeatlas");
/*
@ -128,7 +128,7 @@ void STLGeometry :: MakeAtlas(Mesh & mesh)
SetThreadPercent(100.0 * workedarea / atlasarea);
STLChart * chart = new STLChart(this);
STLChart * chart = new STLChart(this, stlparam);
atlas.Append(chart);
// *testout << "Chart " << atlas.Size() << endl;
@ -572,7 +572,7 @@ void STLGeometry :: MakeAtlas(Mesh & mesh)
mesh.SetMinimalH(mparam.minh);
AddConeAndSpiralEdges();
AddConeAndSpiralEdges(stlparam);
PrintMessage(5,"Make Atlas finished");

View File

@ -1372,7 +1372,7 @@ int STLMeshingDummy (STLGeometry* stlgeometry, shared_ptr<Mesh> & mesh, MeshingP
//mesh->DeleteMesh();
STLMeshing (*stlgeometry, *mesh);
STLMeshing (*stlgeometry, *mesh, mparam);
stlgeometry->edgesfound = 1;
stlgeometry->surfacemeshed = 0;
@ -1399,7 +1399,7 @@ int STLMeshingDummy (STLGeometry* stlgeometry, shared_ptr<Mesh> & mesh, MeshingP
}
success = 0;
int retval = STLSurfaceMeshing (*stlgeometry, *mesh);
int retval = STLSurfaceMeshing (*stlgeometry, *mesh, mparam);
if (retval == MESHING3_OK)
{
PrintMessage(3,"Success !!!!");

View File

@ -243,15 +243,15 @@ namespace netgen
}
else if (strcmp (argv[1], "markdirtytrigs") == 0)
{
stlgeometry->MarkDirtyTrigs();
stlgeometry->MarkDirtyTrigs(stlparam);
}
else if (strcmp (argv[1], "smoothdirtytrigs") == 0)
{
stlgeometry->SmoothDirtyTrigs();
stlgeometry->SmoothDirtyTrigs(stlparam);
}
else if (strcmp (argv[1], "smoothrevertedtrigs") == 0)
{
stlgeometry->GeomSmoothRevertedTrigs();
stlgeometry->GeomSmoothRevertedTrigs(stlparam);
}
else if (strcmp (argv[1], "invertselectedtrig") == 0)
{
@ -306,11 +306,11 @@ namespace netgen
}
else if (strcmp (argv[1], "smoothnormals") == 0)
{
stlgeometry->SmoothNormals();
stlgeometry->SmoothNormals(stlparam);
}
else if (strcmp (argv[1], "marknonsmoothnormals") == 0)
{
stlgeometry->MarkNonSmoothNormals();
stlgeometry->MarkNonSmoothNormals(stlparam);
}
else if (strcmp (argv[1], "addexternaledge") == 0)
{
@ -359,7 +359,7 @@ namespace netgen
}
else if (strcmp (argv[1], "buildedges") == 0)
{
stlgeometry->STLDoctorBuildEdges();
stlgeometry->STLDoctorBuildEdges(stlparam);
}
else if (strcmp (argv[1], "confirmedge") == 0)
{

View File

@ -607,7 +607,7 @@ STLTopEdge :: STLTopEdge (int p1, int p2, int trig1, int trig2)
//+++++++++++++++++++ STL CHART +++++++++++++++++++++++++++++++
//+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
STLChart :: STLChart(STLGeometry * ageometry)
STLChart :: STLChart(STLGeometry * ageometry, const STLParameters& stlparam)
{
// charttrigs = new NgArray<int> (0,0);
// outertrigs = new NgArray<int> (0,0);

View File

@ -38,6 +38,7 @@ extern void FIOWriteString(ostream& ios, char* str, int len);
typedef NgArray <int> * ArrayINTPTR;
class STLGeometry;
class STLParameters;
class STLChart
{
@ -53,7 +54,7 @@ private:
public:
STLChart(STLGeometry * ageometry);
STLChart(STLGeometry * ageometry, const STLParameters& stlparam);
~STLChart();
void AddChartTrig(int i);
void AddOuterTrig(int i);
@ -227,45 +228,46 @@ DLL_HEADER extern STLDoctorParams stldoctor;
// TODO change enable flag to optional parameters
class STLParameters
{
public:
/// angle for edge detection
double yangle;
double yangle = 30.;
double contyangle; //edges continued with contyangle
/// angle of geometry edge at which the mesher should set a point
double edgecornerangle;
double edgecornerangle = 60.;
/// angle inside on chart
double chartangle;
double chartangle = 15.;
/// angle for overlapping parts of char
double outerchartangle;
double outerchartangle = 70.;
/// 0 .. no, 1 .. local, (2 .. global)
int usesearchtree;
///
double resthatlasfac;
int resthatlasenable;
bool resthatlasenable;
double atlasminh;
double resthsurfcurvfac;
int resthsurfcurvenable;
double resthsurfcurvfac = 1.;
bool resthsurfcurvenable = false;
double resthchartdistfac;
int resthchartdistenable;
double resthchartdistfac = 1.5;
bool resthchartdistenable = true;
double resthcloseedgefac;
int resthcloseedgeenable;
double resthcloseedgefac = 2.;
bool resthcloseedgeenable = true;
double resthedgeanglefac;
int resthedgeangleenable;
double resthedgeanglefac = 1.;
bool resthedgeangleenable = false;
double resthsurfmeshcurvfac;
int resthsurfmeshcurvenable;
double resthsurfmeshcurvfac = 2.;
bool resthsurfmeshcurvenable = false;
double resthlinelengthfac;
int resthlinelengthenable;
double resthlinelengthfac = 0.5;
bool resthlinelengthenable = true;
///
int recalc_h_opt;
bool recalc_h_opt = true;
///
STLParameters();
///
@ -276,11 +278,13 @@ DLL_HEADER extern STLParameters stlparam;
void STLMeshing (STLGeometry & geom,
class Mesh & mesh);
class Mesh & mesh,
const MeshingParameters& mparam);
int STLSurfaceMeshing (STLGeometry & geom,
class Mesh & mesh);
class Mesh & mesh,
MeshingParameters& mparam);
void STLSurfaceOptimization (STLGeometry & geom,
class Mesh & mesh,

View File

@ -667,7 +667,7 @@ namespace nglib
}
*/
STLMeshing (*stlgeometry, *me);
STLMeshing (*stlgeometry, *me, mparam);
stlgeometry->edgesfound = 1;
stlgeometry->surfacemeshed = 0;
@ -709,7 +709,7 @@ namespace nglib
stlgeometry->surfaceoptimized = 0;
stlgeometry->volumemeshed = 0;
*/
int retval = STLSurfaceMeshing (*stlgeometry, *me);
int retval = STLSurfaceMeshing (*stlgeometry, *me, mparam);
if (retval == MESHING3_OK)
{
(*mycout) << "Success !!!!" << endl;

View File

@ -1,22 +1,66 @@
from .libngpy._meshing import *
class _MeshsizeObject:
pass
@property
def very_coarse(self):
return MeshingParameters(curvaturesafety=1,
segmentsperedge=0.3,
grading=0.7,
resthsurfcurvfac=0.25,
resthchartdistfac=0.8,
resthlinelengthfac=0.2,
resthcloseedgefac=0.5,
resthminedgelen=0.002,
resthedgeanglefac=0.25,
resthsurfmeshcurvfac=1.)
@property
def coarse(self):
return MeshingParameters(curvaturesafety=1.5,
segmentsperedge=0.5,
grading=0.5,
resthsurfcurvfac=0.5,
resthchartdistfac=1,
resthlinelengthfac=0.35,
resthcloseedgefac=1,
resthminedgelen=0.02,
resthedgeanglefac=0.5,
resthsurfmeshcurvfac=1.5)
@property
def moderate(self):
return MeshingParameters(curvaturesafety=2,
segmentsperedge=1,
grading=0.3,
resthsurfcurvfac=1.,
resthchartdistfac=1.5,
resthlinelengthfac=0.5,
resthcloseedgefac=2,
resthminedgelen=0.2,
resthedgeanglefac=1,
resthsurfmeshcurvfac=2.)
@property
def fine(self):
return MeshingParameters(curvaturesafety=3,
segmentsperedge=2,
grading=0.2,
resthsurfcurvfac=1.5,
resthchartdistfac=2,
resthlinelengthfac=1.5,
resthcloseedgefac=3.5,
resthminedgelen=1.,
resthedgeanglefac=1.5,
resthsurfmeshcurvfac=3.)
@property
def very_fine(self):
return MeshingParameters(curvaturesafety=5,
segmentsperedge=3,
grading=0.1,
resthsurfcurvfac=3,
resthchartdistfac=5,
resthlinelengthfac=3,
resthcloseedgefac=5,
resthminedgelen=2.,
resthedgeanglefac=3.,
resthsurfmeshcurvfac=5.)
meshsize = _MeshsizeObject()
meshsize.very_coarse = MeshingParameters(curvaturesafety=1,
segmentsperedge=0.3,
grading=0.7)
meshsize.coarse = MeshingParameters(curvaturesafety=1.5,
segmentsperedge=0.5,
grading=0.5)
meshsize.moderate = MeshingParameters(curvaturesafety=2,
segmentsperedge=1,
grading=0.3)
meshsize.fine = MeshingParameters(curvaturesafety=3,
segmentsperedge=2,
grading=0.2)
meshsize.very_fine = MeshingParameters(curvaturesafety=5,
segmentsperedge=3,
grading=0.1)