SSE - vectorization

This commit is contained in:
Joachim Schöberl 2017-11-27 10:19:43 +01:00
parent ddbe9dbc9e
commit 25ba2f7a54
3 changed files with 123 additions and 5 deletions

View File

@ -48,11 +48,25 @@ NG_INLINE __m256d operator/= (__m256d &a, __m256d b) { return a = a/b; }
namespace ngsimd
{
// MSVC does not define SSE. It's always present on 64bit cpus
#if (defined(_M_AMD64) || defined(_M_X64) || defined(__AVX__))
#ifndef __SSE__
#define __SSE__
#endif
#ifndef __SSE2__
#define __SSE2__
#endif
#endif
constexpr int GetDefaultSIMDSize() {
#if defined __AVX512F__
return 8;
#elif defined __AVX__
return 4;
#elif defined __SSE__
return 2;
#else
return 1;
#endif
@ -64,6 +78,9 @@ namespace ngsimd
#elif defined __AVX__
typedef __m256 tAVX;
typedef __m256d tAVXd;
#elif defined __SSE__
typedef __m128 tAVX;
typedef __m128d tAVXd;
#endif
@ -270,6 +287,107 @@ using std::fabs;
return std::make_tuple(sd1.Data(), sd2.Data(), sd3.Data(), sd4.Data());
}
/////////////////////////////////////////////////////////////////////////////
// SSE - Simd width 2
/////////////////////////////////////////////////////////////////////////////
#ifdef __SSE__
template<>
class alignas(16) SIMD<double,2> // : public AlignedAlloc<SIMD<double,4>>
{
__m128d data;
public:
static constexpr int Size() { return 2; }
SIMD () = default;
SIMD (const SIMD &) = default;
SIMD & operator= (const SIMD &) = default;
SIMD (__m128d adata)
: data(adata)
{ ; }
// only called if T has a call operator of appropriate type
template<typename T, typename std::enable_if<std::is_convertible<T, std::function<double(int)>>::value, int>::type = 0>
SIMD (const T & func)
{
data = _mm_set_pd(func(3), func(2), func(1), func(0));
}
// only called if T is arithmetic (integral or floating point types)
template<typename T, typename std::enable_if<std::is_arithmetic<T>::value, int>::type = 0>
SIMD (const T & val)
{
data = _mm_set1_pd(val);
}
SIMD (double const * p)
{
data = _mm_loadu_pd(p);
}
NG_INLINE operator __m128d() const { return data; }
NG_INLINE double operator[] (int i) const { return ((double*)(&data))[i]; }
NG_INLINE double& operator[] (int i) { return ((double*)(&data))[i]; }
NG_INLINE __m128d Data() const { return data; }
NG_INLINE __m128d & Data() { return data; }
// NG_INLINE operator std::tuple<double&,double&,double&,double&> ()
// { return std::tuple<double&,double&,double&,double&>((*this)[0], (*this)[1], (*this)[2], (*this)[3]); }
NG_INLINE SIMD<double,2> &operator+= (SIMD<double,2> b) { data+=b.Data(); return *this; }
NG_INLINE SIMD<double,2> &operator-= (SIMD<double,2> b) { data-=b.Data(); return *this; }
NG_INLINE SIMD<double,2> &operator*= (SIMD<double,2> b) { data*=b.Data(); return *this; }
NG_INLINE SIMD<double,2> &operator/= (SIMD<double,2> b) { data/=b.Data(); return *this; }
};
NG_INLINE SIMD<double,2> operator+ (SIMD<double,2> a, SIMD<double,2> b) { return a.Data()+b.Data(); }
NG_INLINE SIMD<double,2> operator- (SIMD<double,2> a, SIMD<double,2> b) { return a.Data()-b.Data(); }
NG_INLINE SIMD<double,2> operator- (SIMD<double,2> a) { return -a.Data(); }
NG_INLINE SIMD<double,2> operator* (SIMD<double,2> a, SIMD<double,2> b) { return a.Data()*b.Data(); }
NG_INLINE SIMD<double,2> operator/ (SIMD<double,2> a, SIMD<double,2> b) { return a.Data()/b.Data(); }
/*
NG_INLINE SIMD<double,4> sqrt (SIMD<double,4> a) { return _mm256_sqrt_pd(a.Data()); }
NG_INLINE SIMD<double,4> floor (SIMD<double,4> a) { return _mm256_floor_pd(a.Data()); }
NG_INLINE SIMD<double,4> ceil (SIMD<double,4> a) { return _mm256_ceil_pd(a.Data()); }
NG_INLINE SIMD<double,4> fabs (SIMD<double,4> a) { return _mm256_max_pd(a.Data(), -a.Data()); }
NG_INLINE SIMD<double,4> L2Norm2 (SIMD<double,4> a) { return a.Data()*a.Data(); }
NG_INLINE SIMD<double,4> Trans (SIMD<double,4> a) { return a; }
NG_INLINE SIMD<double,4> IfPos (SIMD<double,4> a, SIMD<double,4> b, SIMD<double,4> c)
{
auto cp = _mm256_cmp_pd (a.Data(), _mm256_setzero_pd(), _CMP_GT_OS);
return _mm256_blendv_pd(c.Data(), b.Data(), cp);
}
NG_INLINE double HSum (SIMD<double,4> sd)
{
__m128d hv = _mm_add_pd (_mm256_extractf128_pd(sd.Data(),0), _mm256_extractf128_pd(sd.Data(),1));
return _mm_cvtsd_f64 (_mm_hadd_pd (hv, hv));
}
NG_INLINE auto HSum (SIMD<double,4> sd1, SIMD<double,4> sd2)
{
__m256d hv = _mm256_hadd_pd(sd1.Data(), sd2.Data());
__m128d hv2 = _mm_add_pd (_mm256_extractf128_pd(hv,0), _mm256_extractf128_pd(hv,1));
return std::make_tuple(_mm_cvtsd_f64 (hv2), _mm_cvtsd_f64(_mm_shuffle_pd (hv2, hv2, 3)));
}
NG_INLINE auto HSum (SIMD<double,4> v1, SIMD<double,4> v2, SIMD<double,4> v3, SIMD<double,4> v4)
{
__m256d hsum1 = _mm256_hadd_pd (v1.Data(), v2.Data());
__m256d hsum2 = _mm256_hadd_pd (v3.Data(), v4.Data());
__m256d hsum = _mm256_add_pd (_mm256_permute2f128_pd (hsum1, hsum2, 1+2*16),
_mm256_blend_pd (hsum1, hsum2, 12));
return SIMD<double,4>(hsum);
}
*/
#endif // __SSE__
/////////////////////////////////////////////////////////////////////////////
// AVX - Simd width 4
/////////////////////////////////////////////////////////////////////////////

View File

@ -671,7 +671,7 @@ namespace netgen
#ifdef __AVX__
#ifdef __SSE__
#include <immintrin.h>
template<> DLL_HEADER void Ngx_Mesh ::

View File

@ -6,7 +6,7 @@ namespace netgen
{
using namespace std;
/*
#if defined __AVX512F__
typedef __m512 tAVX;
typedef __m512d tAVXd;
@ -14,7 +14,7 @@ namespace netgen
typedef __m256 tAVX;
typedef __m256d tAVXd;
#endif
*/
class SolutionData
{
@ -101,7 +101,7 @@ namespace netgen
return res;
}
#ifdef __AVX__
#ifdef __SSE__
virtual bool GetMultiSurfValue (size_t selnr, size_t facetnr, size_t npts,
const tAVXd * xref,
const tAVXd * x,