mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-26 21:00:34 +05:00
pickling of Array
This commit is contained in:
parent
e5056dcd57
commit
3b29d03227
@ -156,164 +156,6 @@ namespace ngcore
|
||||
{ return std::string("sp_")+GetPyName<T>(); }
|
||||
};
|
||||
|
||||
template<typename T>
|
||||
Array<T> makeCArray(const py::object& obj)
|
||||
{
|
||||
Array<T> arr;
|
||||
if(py::isinstance<py::list>(obj))
|
||||
for(auto& val : py::cast<py::list>(obj))
|
||||
arr.Append(py::cast<T>(val));
|
||||
else if(py::isinstance<py::tuple>(obj))
|
||||
for(auto& val : py::cast<py::tuple>(obj))
|
||||
arr.Append(py::cast<T>(val));
|
||||
else
|
||||
throw py::type_error("Cannot convert Python object to C Array");
|
||||
return arr;
|
||||
}
|
||||
|
||||
template <typename T, typename TIND=typename FlatArray<T>::index_type>
|
||||
void ExportArray (py::module &m)
|
||||
{
|
||||
using TFlat = FlatArray<T, TIND>;
|
||||
using TArray = Array<T, TIND>;
|
||||
std::string suffix = GetPyName<T>() + "_" +
|
||||
GetPyName<TIND>();
|
||||
std::string fname = std::string("FlatArray_") + suffix;
|
||||
auto flatarray_class = py::class_<TFlat>(m, fname.c_str(),
|
||||
py::buffer_protocol())
|
||||
.def ("__len__", [] ( TFlat &self ) { return self.Size(); } )
|
||||
.def ("__getitem__",
|
||||
[](TFlat & self, TIND i) -> T&
|
||||
{
|
||||
static constexpr int base = IndexBASE<TIND>();
|
||||
if (i < base || i >= self.Size()+base)
|
||||
throw py::index_error();
|
||||
return self[i];
|
||||
},
|
||||
py::return_value_policy::reference)
|
||||
.def ("__setitem__",
|
||||
[](TFlat & self, TIND i, T val) -> T&
|
||||
{
|
||||
static constexpr int base = IndexBASE<TIND>();
|
||||
if (i < base || i >= self.Size()+base)
|
||||
throw py::index_error();
|
||||
self[i] = val;
|
||||
return self[i];
|
||||
},
|
||||
py::return_value_policy::reference)
|
||||
|
||||
.def ("__setitem__",
|
||||
[](TFlat & self, py::slice slice, T val)
|
||||
{
|
||||
size_t start, stop, step, slicelength;
|
||||
if (!slice.compute(self.Size(), &start, &stop, &step, &slicelength))
|
||||
throw py::error_already_set();
|
||||
static constexpr int base = IndexBASE<TIND>();
|
||||
if (start < base || start+(slicelength-1)*step >= self.Size()+base)
|
||||
throw py::index_error();
|
||||
for (size_t i = 0; i < slicelength; i++, start+=step)
|
||||
self[start] = val;
|
||||
})
|
||||
|
||||
.def("__iter__", [] ( TFlat & self) {
|
||||
return py::make_iterator (self.begin(),self.end());
|
||||
}, py::keep_alive<0,1>()) // keep array alive while iterator is used
|
||||
|
||||
.def("__str__", [](TFlat& self)
|
||||
{
|
||||
return ToString(self);
|
||||
})
|
||||
;
|
||||
|
||||
if constexpr (detail::HasPyFormat<T>::value)
|
||||
{
|
||||
if(ngcore_have_numpy && !py::detail::npy_format_descriptor<T>::dtype().is_none())
|
||||
{
|
||||
flatarray_class
|
||||
.def_buffer([](TFlat& self)
|
||||
{
|
||||
return py::buffer_info(
|
||||
self.Addr(0),
|
||||
sizeof(T),
|
||||
py::format_descriptor<T>::format(),
|
||||
1,
|
||||
{ self.Size() },
|
||||
{ sizeof(T) * (self.Addr(1) - self.Addr(0)) });
|
||||
})
|
||||
.def("NumPy", [](py::object self)
|
||||
{
|
||||
return py::module::import("numpy")
|
||||
.attr("frombuffer")(self, py::detail::npy_format_descriptor<T>::dtype());
|
||||
})
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
std::string aname = std::string("Array_") + suffix;
|
||||
py::class_<TArray, TFlat>(m, aname.c_str())
|
||||
.def(py::init([] (size_t n) { return new TArray(n); }),py::arg("n"), "Makes array of given length")
|
||||
.def(py::init([] (std::vector<T> const & x)
|
||||
{
|
||||
size_t s = x.size();
|
||||
TArray tmp(s);
|
||||
for (size_t i : Range(tmp))
|
||||
tmp[TIND(i)] = x[i];
|
||||
return tmp;
|
||||
}), py::arg("vec"), "Makes array with given list of elements")
|
||||
|
||||
;
|
||||
py::implicitly_convertible<std::vector<T>, TArray>();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ExportTable (py::module &m)
|
||||
{
|
||||
py::class_<ngcore::Table<T>, std::shared_ptr<ngcore::Table<T>>> (m, ("Table_"+GetPyName<T>()).c_str())
|
||||
.def(py::init([] (py::list blocks)
|
||||
{
|
||||
size_t size = py::len(blocks);
|
||||
Array<int> cnt(size);
|
||||
size_t i = 0;
|
||||
for (auto block : blocks)
|
||||
cnt[i++] = py::len(block);
|
||||
|
||||
i = 0;
|
||||
Table<T> blocktable(cnt);
|
||||
for (auto block : blocks)
|
||||
{
|
||||
auto row = blocktable[i++];
|
||||
size_t j = 0;
|
||||
for (auto val : block)
|
||||
row[j++] = val.cast<T>();
|
||||
}
|
||||
// cout << "blocktable = " << *blocktable << endl;
|
||||
return blocktable;
|
||||
|
||||
}), py::arg("blocks"), "a list of lists")
|
||||
|
||||
.def ("__len__", [] (Table<T> &self ) { return self.Size(); } )
|
||||
.def ("__getitem__",
|
||||
[](Table<T> & self, size_t i) -> FlatArray<T>
|
||||
{
|
||||
if (i >= self.Size())
|
||||
throw py::index_error();
|
||||
return self[i];
|
||||
})
|
||||
.def("__str__", [](Table<T> & self)
|
||||
{
|
||||
return ToString(self);
|
||||
})
|
||||
;
|
||||
}
|
||||
|
||||
|
||||
void NGCORE_API SetFlag(Flags &flags, std::string s, py::object value);
|
||||
// Parse python kwargs to flags
|
||||
Flags NGCORE_API CreateFlagsFromKwArgs(const py::kwargs& kwargs, py::object pyclass = py::none(),
|
||||
py::list info = py::list());
|
||||
// Create python dict from kwargs
|
||||
py::dict NGCORE_API CreateDictFromFlags(const Flags& flags);
|
||||
|
||||
// *************** Archiving functionality **************
|
||||
|
||||
template<typename T>
|
||||
@ -429,6 +271,165 @@ namespace ngcore
|
||||
});
|
||||
}
|
||||
|
||||
template<typename T>
|
||||
Array<T> makeCArray(const py::object& obj)
|
||||
{
|
||||
Array<T> arr;
|
||||
if(py::isinstance<py::list>(obj))
|
||||
for(auto& val : py::cast<py::list>(obj))
|
||||
arr.Append(py::cast<T>(val));
|
||||
else if(py::isinstance<py::tuple>(obj))
|
||||
for(auto& val : py::cast<py::tuple>(obj))
|
||||
arr.Append(py::cast<T>(val));
|
||||
else
|
||||
throw py::type_error("Cannot convert Python object to C Array");
|
||||
return arr;
|
||||
}
|
||||
|
||||
template <typename T, typename TIND=typename FlatArray<T>::index_type>
|
||||
void ExportArray (py::module &m)
|
||||
{
|
||||
using TFlat = FlatArray<T, TIND>;
|
||||
using TArray = Array<T, TIND>;
|
||||
std::string suffix = GetPyName<T>() + "_" +
|
||||
GetPyName<TIND>();
|
||||
std::string fname = std::string("FlatArray_") + suffix;
|
||||
auto flatarray_class = py::class_<TFlat>(m, fname.c_str(),
|
||||
py::buffer_protocol())
|
||||
.def ("__len__", [] ( TFlat &self ) { return self.Size(); } )
|
||||
.def ("__getitem__",
|
||||
[](TFlat & self, TIND i) -> T&
|
||||
{
|
||||
static constexpr int base = IndexBASE<TIND>();
|
||||
if (i < base || i >= self.Size()+base)
|
||||
throw py::index_error();
|
||||
return self[i];
|
||||
},
|
||||
py::return_value_policy::reference)
|
||||
.def ("__setitem__",
|
||||
[](TFlat & self, TIND i, T val) -> T&
|
||||
{
|
||||
static constexpr int base = IndexBASE<TIND>();
|
||||
if (i < base || i >= self.Size()+base)
|
||||
throw py::index_error();
|
||||
self[i] = val;
|
||||
return self[i];
|
||||
},
|
||||
py::return_value_policy::reference)
|
||||
|
||||
.def ("__setitem__",
|
||||
[](TFlat & self, py::slice slice, T val)
|
||||
{
|
||||
size_t start, stop, step, slicelength;
|
||||
if (!slice.compute(self.Size(), &start, &stop, &step, &slicelength))
|
||||
throw py::error_already_set();
|
||||
static constexpr int base = IndexBASE<TIND>();
|
||||
if (start < base || start+(slicelength-1)*step >= self.Size()+base)
|
||||
throw py::index_error();
|
||||
for (size_t i = 0; i < slicelength; i++, start+=step)
|
||||
self[start] = val;
|
||||
})
|
||||
|
||||
.def("__iter__", [] ( TFlat & self) {
|
||||
return py::make_iterator (self.begin(),self.end());
|
||||
}, py::keep_alive<0,1>()) // keep array alive while iterator is used
|
||||
|
||||
.def("__str__", [](TFlat& self)
|
||||
{
|
||||
return ToString(self);
|
||||
})
|
||||
;
|
||||
|
||||
if constexpr (detail::HasPyFormat<T>::value)
|
||||
{
|
||||
if(ngcore_have_numpy && !py::detail::npy_format_descriptor<T>::dtype().is_none())
|
||||
{
|
||||
flatarray_class
|
||||
.def_buffer([](TFlat& self)
|
||||
{
|
||||
return py::buffer_info(
|
||||
self.Addr(0),
|
||||
sizeof(T),
|
||||
py::format_descriptor<T>::format(),
|
||||
1,
|
||||
{ self.Size() },
|
||||
{ sizeof(T) * (self.Addr(1) - self.Addr(0)) });
|
||||
})
|
||||
.def("NumPy", [](py::object self)
|
||||
{
|
||||
return py::module::import("numpy")
|
||||
.attr("frombuffer")(self, py::detail::npy_format_descriptor<T>::dtype());
|
||||
})
|
||||
;
|
||||
}
|
||||
}
|
||||
|
||||
std::string aname = std::string("Array_") + suffix;
|
||||
auto arr = py::class_<TArray, TFlat> (m, aname.c_str())
|
||||
.def(py::init([] (size_t n) { return new TArray(n); }),py::arg("n"), "Makes array of given length")
|
||||
.def(py::init([] (std::vector<T> const & x)
|
||||
{
|
||||
size_t s = x.size();
|
||||
TArray tmp(s);
|
||||
for (size_t i : Range(tmp))
|
||||
tmp[TIND(i)] = x[i];
|
||||
return tmp;
|
||||
}), py::arg("vec"), "Makes array with given list of elements")
|
||||
;
|
||||
if constexpr(is_archivable<TArray>)
|
||||
arr.def(NGSPickle<TArray>());
|
||||
py::implicitly_convertible<std::vector<T>, TArray>();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
void ExportTable (py::module &m)
|
||||
{
|
||||
py::class_<ngcore::Table<T>, std::shared_ptr<ngcore::Table<T>>> (m, ("Table_"+GetPyName<T>()).c_str())
|
||||
.def(py::init([] (py::list blocks)
|
||||
{
|
||||
size_t size = py::len(blocks);
|
||||
Array<int> cnt(size);
|
||||
size_t i = 0;
|
||||
for (auto block : blocks)
|
||||
cnt[i++] = py::len(block);
|
||||
|
||||
i = 0;
|
||||
Table<T> blocktable(cnt);
|
||||
for (auto block : blocks)
|
||||
{
|
||||
auto row = blocktable[i++];
|
||||
size_t j = 0;
|
||||
for (auto val : block)
|
||||
row[j++] = val.cast<T>();
|
||||
}
|
||||
// cout << "blocktable = " << *blocktable << endl;
|
||||
return blocktable;
|
||||
|
||||
}), py::arg("blocks"), "a list of lists")
|
||||
|
||||
.def ("__len__", [] (Table<T> &self ) { return self.Size(); } )
|
||||
.def ("__getitem__",
|
||||
[](Table<T> & self, size_t i) -> FlatArray<T>
|
||||
{
|
||||
if (i >= self.Size())
|
||||
throw py::index_error();
|
||||
return self[i];
|
||||
})
|
||||
.def("__str__", [](Table<T> & self)
|
||||
{
|
||||
return ToString(self);
|
||||
})
|
||||
;
|
||||
}
|
||||
|
||||
|
||||
void NGCORE_API SetFlag(Flags &flags, std::string s, py::object value);
|
||||
// Parse python kwargs to flags
|
||||
Flags NGCORE_API CreateFlagsFromKwArgs(const py::kwargs& kwargs, py::object pyclass = py::none(),
|
||||
py::list info = py::list());
|
||||
// Create python dict from kwargs
|
||||
py::dict NGCORE_API CreateDictFromFlags(const Flags& flags);
|
||||
|
||||
|
||||
} // namespace ngcore
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user