Merge branch 'vgeza_fix_blayer_limiting' into 'master'

Boundary layer thickness limiting fixes

See merge request ngsolve/netgen!596
This commit is contained in:
Schöberl, Joachim 2023-08-29 17:11:17 +02:00
commit 3ff2e46ddd

View File

@ -42,15 +42,26 @@ namespace netgen
if(!isIntersectingPlane(seg, trig, lam))
return false;
//buffer enlargement of triangle
auto pt0 = trig[0];
auto pt1 = trig[1];
auto pt2 = trig[2];
Point<3> center = { (pt0[0] + pt1[0] + pt2[0]) / 3.0, (pt0[1] + pt1[1] + pt2[1]) / 3.0, (pt0[2] + pt1[2] + pt2[2]) / 3.0 };
array<Point<3>, 3> larger_trig = {
center + (pt0 - center) * 1.1,
center + (pt1 - center) * 1.1,
center + (pt2 - center) * 1.1, };
auto p = seg[0] + lam/0.9*(seg[1]-seg[0]);
auto n_trig = Cross(trig[1]-trig[0], trig[2]-trig[0]).Normalize();
for(auto i : Range(3))
{
// check if p0 and p are on same side of segment p1-p2
auto p0 = trig[i];
auto p1 = trig[(i+1)%3];
auto p2 = trig[(i+2)%3];
auto p0 = larger_trig[i];
auto p1 = larger_trig[(i+1)%3];
auto p2 = larger_trig[(i+2)%3];
auto n = Cross(p2-p1, n_trig);
auto v0 = (p2-p1).Normalize();
@ -147,6 +158,91 @@ namespace netgen
limits.SetSize(np);
limits = 1.0;
// Function to calculate the dot product of two 3D vectors
// Is there netgen native function for this?
const auto Dot = [](Vec<3> a, Vec<3> b) {
return a[0] * b[0] + a[1] * b[1] + a[2] * b[2];
};
auto parallel_limiter = [&](PointIndex pi1, PointIndex pi2, SurfaceElementIndex si) {
MeshPoint& a_base = mesh[pi1];
MeshPoint& b_base = mesh[pi2];
MeshPoint a_end = mesh[pi1] + height * limits[pi1] * growthvectors[pi1];
MeshPoint b_end = mesh[pi2] + height * limits[pi2] * growthvectors[pi2];
double ab_base = (b_base - a_base).Length();
Vec<3> a_vec = (a_end - a_base);
Vec<3> b_vec = (b_end - b_base);
// Calculate parallel projections
Vec<3> ab_base_norm = (b_base - a_base).Normalize();
double a_vec_x = Dot(a_vec, ab_base_norm);
double b_vec_x = Dot(b_vec, -ab_base_norm);
double ratio_parallel = (a_vec_x + b_vec_x) / ab_base;
double PARALLEL_RATIO_LIMIT = 0.85;
if (ratio_parallel > PARALLEL_RATIO_LIMIT) {
// Adjust limits, vectors, and projections if parallel ratio exceeds the limit
double corrector = PARALLEL_RATIO_LIMIT / ratio_parallel;
limits[pi1] *= corrector;
limits[pi2] *= corrector;
}
};
auto perpendicular_limiter = [&](PointIndex pi1, PointIndex pi2, SurfaceElementIndex si) {
// this part is same as in parallel limiter, but note that limits contents are already changed
MeshPoint& a_base = mesh[pi1];
MeshPoint& b_base = mesh[pi2];
MeshPoint a_end = mesh[pi1] + height * limits[pi1] * growthvectors[pi1];
MeshPoint b_end = mesh[pi2] + height * limits[pi2] * growthvectors[pi2];
double ab_base = (b_base - a_base).Length();
Vec<3> a_vec = (a_end - a_base);
Vec<3> b_vec = (b_end - b_base);
// Calculate parallel projections
Vec<3> ab_base_norm = (b_base - a_base).Normalize();
double a_vec_x = Dot(a_vec, ab_base_norm);
double b_vec_x = Dot(b_vec, -ab_base_norm);
double ratio_parallel = (a_vec_x + b_vec_x) / ab_base;
// Calculate surface normal at point si
Vec<3> surface_normal = getNormal(mesh[si]);
double a_vec_y = abs(Dot(a_vec, surface_normal));
double b_vec_y = abs(Dot(b_vec, surface_normal));
double diff_perpendicular = abs(a_vec_y - b_vec_y);
double tan_alpha = diff_perpendicular / (ab_base - a_vec_x - b_vec_x);
double TAN_ALPHA_LIMIT = 0.36397; // Approximately 20 degrees in radians
if (tan_alpha > TAN_ALPHA_LIMIT) {
if (a_vec_y > b_vec_y) {
double correction = (TAN_ALPHA_LIMIT / tan_alpha * diff_perpendicular + b_vec_y) / a_vec_y;
limits[pi1] *= correction;
}
else {
double correction = (TAN_ALPHA_LIMIT / tan_alpha * diff_perpendicular + a_vec_y) / b_vec_y;
limits[pi2] *= correction;
}
}
};
auto neighbour_limiter = [&](PointIndex pi1, PointIndex pi2, SurfaceElementIndex si) {
parallel_limiter(pi1, pi2, si);
perpendicular_limiter(pi1, pi2, si);
};
auto modifiedsmooth = [&](size_t nsteps) {
for (auto i : Range(nsteps))
for (SurfaceElementIndex sei : mesh.SurfaceElements().Range())
{
// assuming triangle
neighbour_limiter(mesh[sei].PNum(1), mesh[sei].PNum(2), sei);
neighbour_limiter(mesh[sei].PNum(2), mesh[sei].PNum(3), sei);
neighbour_limiter(mesh[sei].PNum(3), mesh[sei].PNum(1), sei);
}
};
auto smooth = [&] (size_t nsteps) {
for(auto i : Range(nsteps))
@ -189,9 +285,11 @@ namespace netgen
bool limit_reached = true;
double lam_lower_limit = 1.0;
int step = 0;
while(limit_reached || step<2)
while(limit_reached || step<3)
{
if(step>0)
if(step>1)
lam_lower_limit *= 0.8;
limit_reached = false;
@ -241,7 +339,18 @@ namespace netgen
double lam_ = 999;
bool is_bl_sel = params.surfid.Contains(sel.GetIndex());
if(step==0)
if (step == 0)
{
face = GetMappedFace(sei, -1);
if (isIntersectingFace(seg, face, lam_))
{
if (is_bl_sel)
lam_ *= 0.5;
lam = min(lam, lam_);
}
}
if(step==1)
{
if(isIntersectingFace(seg, face, lam_))
{
@ -251,7 +360,7 @@ namespace netgen
}
}
// if the opposing surface element has a boundary layer, we need to additionally intersect with the new faces
if(step>0 && is_bl_sel)
if(step>1 && is_bl_sel)
{
for(auto facei : Range(-1, sel.GetNP()))
{
@ -278,7 +387,7 @@ namespace netgen
}
self_intersection();
smooth(3);
modifiedsmooth(3);
for(auto pi : Range(growthvectors))
growthvectors[pi] *= limits[pi];