Merge remote-tracking branch 'origin/master' into boundarylayer_fixes

This commit is contained in:
Matthias Hochsteger 2024-01-12 18:58:42 +01:00
commit 459a6b1c59
3 changed files with 20 additions and 211 deletions

View File

@ -10,24 +10,31 @@
namespace ngcore namespace ngcore
{ {
// clang-tidy should ignore this static object // clang-tidy should ignore this static object
static std::unique_ptr<std::map<std::string, detail::ClassArchiveInfo>> type_register; // NOLINT // static std::map<std::string, detail::ClassArchiveInfo> type_register; // NOLINT
auto& GetTypeRegister()
{
static std::map<std::string, detail::ClassArchiveInfo> type_register;
return type_register;
}
const detail::ClassArchiveInfo& Archive :: GetArchiveRegister(const std::string& classname) const detail::ClassArchiveInfo& Archive :: GetArchiveRegister(const std::string& classname)
{ {
if(type_register == nullptr) type_register = // if(type_register == nullptr) type_register =
std::make_unique<std::map<std::string, detail::ClassArchiveInfo>>(); // std::make_unique<std::map<std::string, detail::ClassArchiveInfo>>();
return (*type_register)[classname]; return GetTypeRegister()[classname];
} }
void Archive :: SetArchiveRegister(const std::string& classname, const detail::ClassArchiveInfo& info) void Archive :: SetArchiveRegister(const std::string& classname, const detail::ClassArchiveInfo& info)
{ {
if(type_register == nullptr) type_register = // if(type_register == nullptr) type_register =
std::make_unique<std::map<std::string, detail::ClassArchiveInfo>>(); // std::make_unique<std::map<std::string, detail::ClassArchiveInfo>>();
(*type_register)[classname] = info; GetTypeRegister()[classname] = info;
} }
bool Archive :: IsRegistered(const std::string& classname) bool Archive :: IsRegistered(const std::string& classname)
{ {
if(type_register == nullptr) type_register = // if(type_register == nullptr) type_register =
std::make_unique<std::map<std::string, detail::ClassArchiveInfo>>(); // std::make_unique<std::map<std::string, detail::ClassArchiveInfo>>();
return type_register->count(classname) != 0; return GetTypeRegister().count(classname) != 0;
} }
#ifdef NETGEN_PYTHON #ifdef NETGEN_PYTHON

View File

@ -150,7 +150,8 @@ namespace ngcore
void* (*downcaster)(const std::type_info&, void*); void* (*downcaster)(const std::type_info&, void*);
// Archive constructor arguments // Archive constructor arguments
std::function<void(Archive&, void*)> cargs_archiver; // std::function<void(Archive&, void*)> cargs_archiver;
void (*cargs_archiver)(Archive&, void*);
#ifdef NETGEN_PYTHON #ifdef NETGEN_PYTHON
// std::function<pybind11::object(const std::any&)> anyToPyCaster; // std::function<pybind11::object(const std::any&)> anyToPyCaster;

View File

@ -572,7 +572,6 @@ struct GrowthVectorLimiter {
limiter.LimitGrowthVector(pi_to, sei, trig_shift, seg_shift); limiter.LimitGrowthVector(pi_to, sei, trig_shift, seg_shift);
}); });
<<<<<<< HEAD
// for (auto i : Range(limits)) // for (auto i : Range(limits))
// if(limits[i] < 1.0) // if(limits[i] < 1.0)
// cout << i << ": " << limits[i] << endl; // cout << i << ": " << limits[i] << endl;
@ -581,200 +580,6 @@ struct GrowthVectorLimiter {
auto pi_from = limiter.map_from[pi_to]; auto pi_from = limiter.map_from[pi_to];
if(pi_from.IsValid()) if(pi_from.IsValid())
limits[pi_from] = min(limits[pi_from], limits[pi_to]); limits[pi_from] = min(limits[pi_from], limits[pi_to]);
=======
// Calculate parallel projections
Vec<3> ab_base_norm = (b_base - a_base).Normalize();
double a_vec_x = Dot(a_vec, ab_base_norm);
double b_vec_x = Dot(b_vec, -ab_base_norm);
// double ratio_parallel = (a_vec_x + b_vec_x) / ab_base;
// Calculate surface normal at point si
Vec<3> surface_normal = getNormal(mesh[si]);
double a_vec_y = abs(Dot(a_vec, surface_normal));
double b_vec_y = abs(Dot(b_vec, surface_normal));
double diff_perpendicular = abs(a_vec_y - b_vec_y);
double tan_alpha = diff_perpendicular / (ab_base - a_vec_x - b_vec_x);
double TAN_ALPHA_LIMIT = 0.36397; // Approximately 20 degrees in radians
if (tan_alpha > TAN_ALPHA_LIMIT) {
if (a_vec_y > b_vec_y) {
double correction = (TAN_ALPHA_LIMIT / tan_alpha * diff_perpendicular + b_vec_y) / a_vec_y;
limits[pi1] *= correction;
}
else {
double correction = (TAN_ALPHA_LIMIT / tan_alpha * diff_perpendicular + a_vec_y) / b_vec_y;
limits[pi2] *= correction;
}
}
};
auto neighbour_limiter = [&](PointIndex pi1, PointIndex pi2, SurfaceElementIndex si) {
parallel_limiter(pi1, pi2, si);
perpendicular_limiter(pi1, pi2, si);
};
auto modifiedsmooth = [&](size_t nsteps) {
for ([[maybe_unused]] auto i : Range(nsteps))
for (SurfaceElementIndex sei : mesh.SurfaceElements().Range())
{
// assuming triangle
neighbour_limiter(mesh[sei].PNum(1), mesh[sei].PNum(2), sei);
neighbour_limiter(mesh[sei].PNum(2), mesh[sei].PNum(3), sei);
neighbour_limiter(mesh[sei].PNum(3), mesh[sei].PNum(1), sei);
}
};
/*
auto smooth = [&] (size_t nsteps) {
for([[maybe_unused]] auto i : Range(nsteps))
for(const auto & sel : mesh.SurfaceElements())
{
double min_limit = 999;
for(auto pi : sel.PNums())
min_limit = min(min_limit, limits[pi]);
for(auto pi : sel.PNums())
limits[pi] = min(limits[pi], 1.4*min_limit);
}
};
*/
// check for self-intersection within new elements (prisms/hexes)
auto self_intersection = [&] () {
for(SurfaceElementIndex sei : mesh.SurfaceElements().Range())
{
auto facei = mesh[sei].GetIndex();
if(facei < nfd_old && !params.surfid.Contains(facei))
continue;
auto sel = mesh[sei];
auto np = sel.GetNP();
// check if a new edge intesects the plane of any opposing face
double lam;
for(auto i : Range(np))
for(auto fi : Range(np-2))
if(isIntersectingPlane(GetMappedSeg(sel[i]), GetMappedFace(sei, i+fi+1), lam))
if(lam < 1.0)
limits[sel[i]] *= lam;
}
};
// first step: intersect with other surface elements that are boundary of domain the layer is grown into
// second (and subsequent) steps: intersect with other boundary layers, allow restriction by 20% in each step
auto changed_domains = domains;
if(!params.outside)
changed_domains.Invert();
bool limit_reached = true;
double lam_lower_limit = 1.0;
int step = 0;
while(limit_reached || step<3)
{
Array<double, PointIndex> new_limits;
new_limits.SetSize(np);
new_limits = 1.0;
if(step>1)
lam_lower_limit *= 0.8;
limit_reached = false;
// build search tree with all surface elements (bounding box of a surface element also covers the generated boundary layer)
Box<3> bbox(Box<3>::EMPTY_BOX);
for(auto pi : mesh.Points().Range())
{
bbox.Add(mesh[pi]);
bbox.Add(mesh[pi]+limits[pi]*height*growthvectors[pi]);
}
BoxTree<3> tree(bbox);
for(auto sei : mesh.SurfaceElements().Range())
{
const auto & sel = mesh[sei];
Box<3> box(Box<3>::EMPTY_BOX);
const auto& fd = mesh.GetFaceDescriptor(sel.GetIndex());
if(!changed_domains.Test(fd.DomainIn()) &&
!changed_domains.Test(fd.DomainOut()))
continue;
for(auto pi : sel.PNums())
box.Add(mesh[pi]);
// also add moved points to bounding box
if(params.surfid.Contains(sel.GetIndex()))
for(auto pi : sel.PNums())
box.Add(mesh[pi]+limits[pi]*height*growthvectors[pi]);
tree.Insert(box, sei);
}
for(auto pi : mesh.Points().Range())
{
if(mesh[pi].Type() == INNERPOINT)
continue;
if(growthvectors[pi].Length2() == 0.0)
continue;
Box<3> box(Box<3>::EMPTY_BOX);
auto seg = GetMappedSeg(pi);
box.Add(seg[0]);
box.Add(seg[1]);
double lam = 1.0;
tree.GetFirstIntersecting(box.PMin(), box.PMax(), [&](SurfaceElementIndex sei)
{
const auto & sel = mesh[sei];
if(sel.PNums().Contains(pi))
return false;
auto face = GetMappedFace(sei, -2);
double lam_ = 999;
bool is_bl_sel = params.surfid.Contains(sel.GetIndex());
if (step == 0)
{
face = GetMappedFace(sei, -1);
if (isIntersectingFace(seg, face, lam_))
{
if (is_bl_sel)
lam_ *= params.limit_safety;
lam = min(lam, lam_);
}
}
if(step==1)
{
if(isIntersectingFace(seg, face, lam_))
{
if(is_bl_sel) // allow only half the distance if the opposing surface element has a boundary layer too
lam_ *= params.limit_safety;
lam = min(lam, lam_);
}
}
// if the opposing surface element has a boundary layer, we need to additionally intersect with the new faces
if(step>1 && is_bl_sel)
{
for(auto facei : Range(-1, sel.GetNP()))
{
auto face = GetMappedFace(sei, facei);
if(isIntersectingFace(seg, face, lam_)) // && lam_ > other_limit)
{
lam = min(lam, lam_);
}
}
}
return false;
});
if(lam<1)
{
if(lam<lam_lower_limit && step>1)
{
limit_reached = true;
lam = lam_lower_limit;
}
}
new_limits[pi] = min(limits[pi], lam* limits[pi]);
}
step++;
limits = new_limits;
if (step > 0)
modifiedsmooth(1);
>>>>>>> origin/master
} }
for(auto i : Range(growthvectors)) for(auto i : Range(growthvectors))
@ -1207,12 +1012,8 @@ struct GrowthVectorLimiter {
for(auto pi : points) for(auto pi : points)
{ {
auto sels = p2sel[pi]; auto sels = p2sel[pi];
<<<<<<< HEAD
Vec<3> new_gw = getGW(pi); Vec<3> new_gw = getGW(pi);
new_gw = 0.; new_gw = 0.;
=======
Vec<3> new_gw = growthvectors[pi];
>>>>>>> origin/master
// int cnt = 1; // int cnt = 1;
std::set<PointIndex> suround; std::set<PointIndex> suround;
suround.insert(pi); suround.insert(pi);