diff --git a/tests/pytest/compare_results.py b/tests/pytest/compare_results.py index 84e9efe8..7f5b6b2b 100644 --- a/tests/pytest/compare_results.py +++ b/tests/pytest/compare_results.py @@ -73,6 +73,13 @@ for bad1,bad2, f1, f2 in zip(data['badness'], data2['badness'], data['file'], da if bad2>0 and bad2<0.9*bad1: print(f"file {f1} got better: {bad1} -> {bad2}") +for bad1,bad2, f1, f2 in zip(data['#trigs'], data2['#trigs'], data['file'], data2['file']): + assert f1==f2 + if bad2>0 and bad2>1.1*bad1: + print(f"file {f1} got worse: {bad1} -> {bad2}") + if bad2>0 and bad2<0.9*bad1: + print(f"file {f1} got better: {bad1} -> {bad2}") + n = len(data)+1 fig,ax = plt.subplots(figsize=(10,7)) for i,d in enumerate(['min trig angle','min tet angle','max trig angle','max tet angle']): diff --git a/tests/pytest/results.json b/tests/pytest/results.json index 595c6a87..5f079143 100644 --- a/tests/pytest/results.json +++ b/tests/pytest/results.json @@ -1590,8 +1590,8 @@ 0.0, 0.0 ], - "ne1d": 81, - "ne2d": 436, + "ne1d": 80, + "ne2d": 412, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -1606,7 +1606,7 @@ 0.0 ], "ne1d": 86, - "ne2d": 452, + "ne2d": 440, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -1621,7 +1621,7 @@ 0.0 ], "ne1d": 86, - "ne2d": 450, + "ne2d": 464, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -1635,8 +1635,8 @@ 0.0, 0.0 ], - "ne1d": 81, - "ne2d": 436, + "ne1d": 80, + "ne2d": 412, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -1650,8 +1650,8 @@ 0.0, 0.0 ], - "ne1d": 82, - "ne2d": 441, + "ne1d": 83, + "ne2d": 453, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -1665,8 +1665,8 @@ 0.0, 0.0 ], - "ne1d": 86, - "ne2d": 472, + "ne1d": 84, + "ne2d": 462, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -2790,8 +2790,38 @@ 0.0, 0.0 ], - "ne1d": 31, - "ne2d": 97, + "ne1d": 27, + "ne2d": 87, + "ne3d": 0, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", + "total_badness": 0.0 + }, + { + "angles_tet": [ + 0.0, + 0.0 + ], + "angles_trig": [ + 0.0, + 0.0 + ], + "ne1d": 28, + "ne2d": 80, + "ne3d": 0, + "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", + "total_badness": 0.0 + }, + { + "angles_tet": [ + 0.0, + 0.0 + ], + "angles_trig": [ + 0.0, + 0.0 + ], + "ne1d": 26, + "ne2d": 78, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -2806,7 +2836,7 @@ 0.0 ], "ne1d": 27, - "ne2d": 71, + "ne2d": 87, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -2820,8 +2850,8 @@ 0.0, 0.0 ], - "ne1d": 25, - "ne2d": 85, + "ne1d": 36, + "ne2d": 150, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -2835,38 +2865,8 @@ 0.0, 0.0 ], - "ne1d": 31, - "ne2d": 97, - "ne3d": 0, - "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", - "total_badness": 0.0 - }, - { - "angles_tet": [ - 0.0, - 0.0 - ], - "angles_trig": [ - 0.0, - 0.0 - ], - "ne1d": 41, - "ne2d": 173, - "ne3d": 0, - "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", - "total_badness": 0.0 - }, - { - "angles_tet": [ - 0.0, - 0.0 - ], - "angles_trig": [ - 0.0, - 0.0 - ], - "ne1d": 30, - "ne2d": 108, + "ne1d": 42, + "ne2d": 246, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -2883,7 +2883,7 @@ 0.0 ], "ne1d": 32, - "ne2d": 148, + "ne2d": 142, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -2913,7 +2913,7 @@ 0.0 ], "ne1d": 32, - "ne2d": 134, + "ne2d": 126, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -2928,7 +2928,7 @@ 0.0 ], "ne1d": 32, - "ne2d": 148, + "ne2d": 142, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -2942,8 +2942,8 @@ 0.0, 0.0 ], - "ne1d": 43, - "ne2d": 300, + "ne1d": 42, + "ne2d": 326, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -2957,8 +2957,8 @@ 0.0, 0.0 ], - "ne1d": 79, - "ne2d": 821, + "ne1d": 76, + "ne2d": 811, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -2975,7 +2975,7 @@ 0.0 ], "ne1d": 32, - "ne2d": 124, + "ne2d": 118, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -3005,7 +3005,7 @@ 0.0 ], "ne1d": 32, - "ne2d": 110, + "ne2d": 102, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -3020,7 +3020,7 @@ 0.0 ], "ne1d": 32, - "ne2d": 124, + "ne2d": 118, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -3034,8 +3034,8 @@ 0.0, 0.0 ], - "ne1d": 43, - "ne2d": 249, + "ne1d": 42, + "ne2d": 274, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0 @@ -3049,8 +3049,8 @@ 0.0, 0.0 ], - "ne1d": 79, - "ne2d": 687, + "ne1d": 76, + "ne2d": 672, "ne3d": 0, "quality_histogram": "[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]", "total_badness": 0.0