More work on boundary layers, todo: cut also with sides of new prisms

This commit is contained in:
Matthias Hochsteger 2024-05-31 19:24:11 +02:00
parent 6d65f18c90
commit 5bf7f6623b

View File

@ -154,10 +154,32 @@ struct GrowthVectorLimiter {
for (auto pi_to : tool.mapto[pi]) map_from[pi_to] = pi; for (auto pi_to : tool.mapto[pi]) map_from[pi_to] = pi;
} }
Point<3> GetPoint(PointIndex pi_to, double shift = 1.) { double GetLimit(PointIndex pi) {
if (pi <= tool.np) return limits[pi];
return limits[map_from[pi]];
}
bool SetLimit(PointIndex pi, double new_limit) {
double & limit = (pi <= tool.np) ? limits[pi] : limits[map_from[pi]];
if(limit <= new_limit)
return false;
cout << "limit " << pi << "\t" << limit << " -> " << new_limit << endl;
limit = new_limit;
return true;
}
bool ScaleLimit(PointIndex pi, double factor) {
double & limit = (pi <= tool.np) ? limits[pi] : limits[map_from[pi]];
return SetLimit(pi, limit * factor);
}
Point<3> GetPoint(PointIndex pi_to, double shift = 1., bool apply_limit = false) {
if (tool.growth_vector_map.count(pi_to) == 0) return mesh[pi_to]; if (tool.growth_vector_map.count(pi_to) == 0) return mesh[pi_to];
auto [gw, height] = tool.growth_vector_map[pi_to]; auto [gw, height] = tool.growth_vector_map[pi_to];
if(apply_limit)
shift *= GetLimit(pi_to);
return mesh[pi_to] + shift * height * (*gw); return mesh[pi_to] + shift * height * (*gw);
} }
@ -170,14 +192,14 @@ struct GrowthVectorLimiter {
return {mesh[pi_from], GetMappedPoint(pi_from, shift)}; return {mesh[pi_from], GetMappedPoint(pi_from, shift)};
} }
std::array<Point<3>, 2> GetSeg(PointIndex pi_to, double shift = 1.) { std::array<Point<3>, 2> GetSeg(PointIndex pi_to, double shift = 1., bool apply_limit = false) {
return {GetPoint(pi_to, 0), GetPoint(pi_to, shift)}; return {GetPoint(pi_to, 0), GetPoint(pi_to, shift, apply_limit)};
} }
auto GetTrig(SurfaceElementIndex sei, double shift = 0.0) { auto GetTrig(SurfaceElementIndex sei, double shift = 0.0, bool apply_limit = false) {
auto sel = mesh[sei]; auto sel = mesh[sei];
std::array<Point<3>, 3> trig; std::array<Point<3>, 3> trig;
for (auto i : Range(3)) trig[i] = GetPoint(sel[i], shift); for (auto i : Range(3)) trig[i] = GetPoint(sel[i], shift, apply_limit);
return trig; return trig;
} }
@ -198,53 +220,91 @@ struct GrowthVectorLimiter {
return trig; return trig;
} }
static constexpr double INTERSECTION_SAFETY = .99; static constexpr double INTERSECTION_SAFETY = .7;
void LimitGrowthVector(PointIndex pi_to, SurfaceElementIndex sei, bool LimitGrowthVector(PointIndex pi_to, SurfaceElementIndex sei,
double trig_shift, double seg_shift) { double trig_shift, double seg_shift) {
auto pi_from = map_from[pi_to]; auto pi_from = map_from[pi_to];
if (!pi_from.IsValid()) return; if (!pi_from.IsValid()) return false;
auto seg = GetSeg(pi_to, seg_shift); bool debug= pi_from == 1059;
// debug = true;
// debug = false;
auto seg = GetSeg(pi_to, seg_shift, true);
if (trig_shift > 0) { if (trig_shift > 0) {
if(pi_from == 3523) cout << "check intersection " << mesh[sei] << endl; // if(debug) cout << "check intersection " << mesh[sei] << endl;
auto intersection = isIntersectingTrig(seg, GetTrig(sei, trig_shift)); auto intersection = isIntersectingTrig(seg, GetTrig(sei, trig_shift, true));
if (!intersection) return; if (!intersection) return false;
if(pi_from == 3523) cout << "found intersection " << mesh[sei] << ", lam = " << intersection.lam0 << endl; if(debug) cout << "found intersection " << pi_from << " sel = " << mesh[sei] << ", lam = " << intersection.lam0 << endl;
double dshift = trig_shift;
while (dshift/trig_shift > intersection.lam0/seg_shift) { double scaling_factor = 0.9;
dshift *= 0.9; double s = 1.0;
auto reduced_intersection = isIntersectingPlane(seg, GetTrig(sei, dshift));
while(true) {
s *= scaling_factor;
auto reduced_intersection = isIntersectingTrig(GetSeg(pi_to, s*seg_shift, true), GetTrig(sei, s*trig_shift, true));
if(!reduced_intersection) break; if(!reduced_intersection) break;
// cout << "still intersecting " << dshift << endl; }
cout << "Scale limits " << s << endl;
ScaleLimit(pi_to, s);
for(auto pi : mesh[sei].PNums())
ScaleLimit(pi, s);
return true;
double dshift = trig_shift;
double lam0 = intersection.lam0*seg_shift*GetLimit(pi_from);
while (dshift/trig_shift > lam0) {
dshift *= 0.9;
auto reduced_intersection = isIntersectingTrig(seg, GetTrig(sei, dshift, true));
if(!reduced_intersection) break;
// cout << "still intersecting " << dshift*trig_shift << " > " << lam0 << endl;
intersection = reduced_intersection; intersection = reduced_intersection;
} }
if(dshift/trig_shift < intersection.lam0/seg_shift) { lam0 = intersection.lam0*seg_shift;
// cout << "unshift " << dshift << ',' << intersection.lam0 << endl; // if(dshift*trig_shift < lam0) {
dshift /= 0.9; // if(debug) cout << "unshift " << dshift << ',' << lam0 << endl;
intersection = isIntersectingPlane(seg, GetTrig(sei, dshift)); // dshift /= 0.9;
} // intersection = isIntersectingTrig(seg, GetTrig(sei, dshift));
double min_trig_limit = 1e99; // }
double max_trig_limit = 1e99;
auto sel = mesh[sei]; auto sel = mesh[sei];
for (auto i : Range(3)) for (auto i : Range(3)) {
min_trig_limit = min(min_trig_limit, limits[sel[i]]*dshift); if(debug) cout << "current trig limit " << GetLimit(sel[i]) << endl;
max_trig_limit = min(max_trig_limit, GetLimit(sel[i]));
}
double new_seg_limit = intersection.lam0*seg_shift; double new_seg_limit = lam0*INTERSECTION_SAFETY;
double new_trig_limit = dshift*trig_shift; double new_trig_limit = dshift*trig_shift*INTERSECTION_SAFETY;
if(new_trig_limit >= min_trig_limit || new_seg_limit >= limits[pi_from] )
return; // nothing to do if(debug) cout << "current limits " << GetLimit(pi_from) << ", " << max_trig_limit << endl;
if(debug) cout << "new limits " << new_seg_limit << ", " << new_trig_limit << endl;
if(new_trig_limit >= max_trig_limit && new_seg_limit >= GetLimit(pi_from) )
return false; // nothing to do
if(debug) cout << "apply intersection " << intersection.lam0*seg_shift << endl;
if(debug) cout << "current limits " << GetLimit(pi_from) << ", " << max_trig_limit << endl;
if(debug) cout << "new limits " << new_seg_limit << ", " << new_trig_limit << endl;
// decide what to limit (apply the larger limit) // decide what to limit (apply the larger limit)
if(new_seg_limit > new_trig_limit) bool result = false;
limits[pi_from] = new_seg_limit; result |= SetLimit(pi_from, new_seg_limit);
else for (auto pi : sel.PNums())
for (auto pi : sel.PNums()) result |= SetLimit(pi, new_trig_limit);
limits[pi] = new_trig_limit;
if(debug) cout << "new applied limits " << GetLimit(pi_from) << ", " << GetLimit(sel[0]) << ", " << GetLimit(sel[1]) << ", " << GetLimit(sel[2]) << endl;
return result;
} else { } else {
auto trig = GetTrig(sei, 0.0); auto trig = GetTrig(sei, 0.0);
auto intersection = isIntersectingTrig(seg, trig); auto intersection = isIntersectingTrig(seg, trig);
// checking with original surface elements -> allow only half the distance // checking with original surface elements -> allow only half the distance
auto new_seg_limit = 0.40 * intersection.lam0*seg_shift; auto new_seg_limit = 0.40 * intersection.lam0*seg_shift;
if (intersection && new_seg_limit < limits[pi_from]) { if (intersection && new_seg_limit < GetLimit(pi_from)) {
// cout << seg_shift << "\tlimiting " << pi_from << " from " << limits[pi_from] << " to " << new_seg_limit << endl; // cout << seg_shift << "\tlimiting " << pi_from << " from " << limits[pi_from] << " to " << new_seg_limit << endl;
auto p0 = seg[0]; auto p0 = seg[0];
auto p1 = seg[1]; auto p1 = seg[1];
@ -253,8 +313,9 @@ struct GrowthVectorLimiter {
// cout << "gw = " << *gw << ", height = " << height << endl; // cout << "gw = " << *gw << ", height = " << height << endl;
// cout << "p0 = " << p0 << ", p1 = " << p1 << ", gw = " << growthvectors[pi_from] << endl; // cout << "p0 = " << p0 << ", p1 = " << p1 << ", gw = " << growthvectors[pi_from] << endl;
// cout << "\t" << intersection.p << ',' << d << ',' << Dist(intersection.p, p0)/d<< endl; // cout << "\t" << intersection.p << ',' << d << ',' << Dist(intersection.p, p0)/d<< endl;
limits[pi_from] = new_seg_limit; return SetLimit(pi_from, new_seg_limit);
} }
return false;
} }
} }
@ -299,7 +360,7 @@ struct GrowthVectorLimiter {
if (max_limit / min_limit > 1.2) { if (max_limit / min_limit > 1.2) {
max_limit = min_limit * 1.2; max_limit = min_limit * 1.2;
for (auto i : Range(np)) for (auto i : Range(np))
limits[sel[i]] = min(limits[sel[i]], max_limit); SetLimit(sel[i], min(limits[sel[i]], max_limit));
} }
}; };
@ -321,14 +382,14 @@ struct GrowthVectorLimiter {
equalizeLimits(sei); equalizeLimits(sei);
double shift = 1.0; double shift = 1.0;
double safety = 1.1; double safety = 1.4;
const double step_factor = 0.9; const double step_factor = 0.9;
while (isIntersecting(sei, shift * safety)) { while (isIntersecting(sei, shift * safety)) {
shift *= step_factor; shift *= step_factor;
double max_limit = 0; double max_limit = 0;
for (auto i : Range(np)) max_limit = max(max_limit, limits[sel[i]]); for (auto i : Range(np)) max_limit = max(max_limit, limits[sel[i]]);
for (auto i : Range(np)) for (auto i : Range(np))
if (max_limit == limits[sel[i]]) limits[sel[i]] *= step_factor; if (max_limit == limits[sel[i]]) ScaleLimit(sel[i], step_factor);
// if (max_limit < 0.01) break; // if (max_limit < 0.01) break;
} }
} }
@ -375,7 +436,7 @@ struct GrowthVectorLimiter {
SolveLinearSystem(col1, col2, col3, rhs, bary); SolveLinearSystem(col1, col2, col3, rhs, bary);
intersection.lam1 = 0; intersection.lam1 = 0;
double eps = 0; double eps = 0.1;
if (bary.X() >= -eps && bary.Y() >= -eps && if (bary.X() >= -eps && bary.Y() >= -eps &&
bary.X() + bary.Y() <= 1 + eps) { bary.X() + bary.Y() <= 1 + eps) {
intersection.bary[0] = bary.X(); intersection.bary[0] = bary.X();
@ -408,8 +469,10 @@ struct GrowthVectorLimiter {
auto sel_index = mesh[sei].GetIndex(); auto sel_index = mesh[sei].GetIndex();
Box<3> box(Box<3>::EMPTY_BOX); Box<3> box(Box<3>::EMPTY_BOX);
for (auto p : GetTrig(sei, 0.)) box.Add(p); for (auto pi : sel.PNums()) {
for (auto p : GetTrig(sei, trig_shift)) box.Add(p); box.Add(GetPoint(pi, 0.));
box.Add(GetPoint(pi, trig_shift*GetLimit(pi)));
}
tree->Insert(box, sei); tree->Insert(box, sei);
} }
} }
@ -432,12 +495,14 @@ struct GrowthVectorLimiter {
auto seg = GetSeg(pi_to, seg_shift); auto seg = GetSeg(pi_to, seg_shift);
box.Add(GetPoint(pi_to, 0)); box.Add(GetPoint(pi_to, 0));
box.Add(GetPoint(pi_to, limits[pi_from])); box.Add(GetPoint(pi_to, GetLimit(pi_from)));
tree->GetFirstIntersecting(box.PMin(), box.PMax(), tree->GetFirstIntersecting(box.PMin(), box.PMax(),
[&](SurfaceElementIndex sei) { [&](SurfaceElementIndex sei) {
const auto& sel = mesh[sei]; const auto& sel = mesh[sei];
if (sel.PNums().Contains(pi_from)) if (sel.PNums().Contains(pi_from))
return false; return false;
if (sel.PNums().Contains(pi_to))
return false;
counter++; counter++;
f(pi_to, sei); f(pi_to, sei);
return false; return false;
@ -466,6 +531,7 @@ Vec<3> BoundaryLayerTool ::getEdgeTangent(PointIndex pi, int edgenr) {
} }
void BoundaryLayerTool ::LimitGrowthVectorLengths() { void BoundaryLayerTool ::LimitGrowthVectorLengths() {
cout << "LIMIT GROWTH VECTOR LENGTHS" << endl;
static Timer tall("BoundaryLayerTool::LimitGrowthVectorLengths"); static Timer tall("BoundaryLayerTool::LimitGrowthVectorLengths");
RegionTimer rtall(tall); RegionTimer rtall(tall);
mesh.Save("mesh_before_limit.vol"); mesh.Save("mesh_before_limit.vol");
@ -494,10 +560,18 @@ void BoundaryLayerTool ::LimitGrowthVectorLengths() {
// now limit again with shifted surface elements // now limit again with shifted surface elements
trig_shift = 1.1; trig_shift = 1.1;
seg_shift = 1.1; seg_shift = 1.1;
limiter.FindTreeIntersections( size_t limit_counter = 1;
trig_shift, seg_shift, [&](PointIndex pi_to, SurfaceElementIndex sei) {
limiter.LimitGrowthVector(pi_to, sei, trig_shift, seg_shift); while(limit_counter) {
}); limit_counter = 0;
limiter.FindTreeIntersections(
trig_shift, seg_shift, [&](PointIndex pi_to, SurfaceElementIndex sei) {
if(limiter.LimitGrowthVector(pi_to, sei, trig_shift, seg_shift))
limit_counter++;
});
cout << "limit counter " << limit_counter << endl;
// break;
}
// for (auto [pi_to, data] : growth_vector_map) { // for (auto [pi_to, data] : growth_vector_map) {
// auto pi_from = limiter.map_from[pi_to]; // auto pi_from = limiter.map_from[pi_to];