mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-26 21:00:34 +05:00
multi point element transformation in nginterface_v2
This commit is contained in:
parent
5764ae448c
commit
654914c3e1
@ -24,7 +24,20 @@ public:
|
||||
|
||||
|
||||
|
||||
template <int DIM> DLL_HEADER int Ng_GetNElements ();
|
||||
template <int DIM>
|
||||
DLL_HEADER int Ng_GetNElements ();
|
||||
|
||||
template <int DIM> DLL_HEADER Ng_Element Ng_GetElement (int nr);
|
||||
template <int DIM>
|
||||
DLL_HEADER Ng_Element Ng_GetElement (int nr);
|
||||
|
||||
|
||||
/// Curved Elements:
|
||||
/// xi..... DIM_EL local coordinates
|
||||
/// sxi ... step xi
|
||||
/// x ..... DIM_SPACE global coordinates
|
||||
/// dxdxi...DIM_SPACE x DIM_EL Jacobian matrix (row major storage)
|
||||
template <int DIM_EL, int DIM_SPACE>
|
||||
DLL_HEADER void Ng_MultiElementTransformation (int elnr, int npts,
|
||||
const double * xi, int sxi,
|
||||
double * x, int sx,
|
||||
double * dxdxi, int sdxdxi);
|
||||
|
@ -205,64 +205,64 @@ namespace netgen
|
||||
|
||||
|
||||
|
||||
template <class S, class T>
|
||||
inline void JacobiPolynomial (int n, S x, double alpha, double beta, T * values)
|
||||
{
|
||||
S p1 = 1.0, p2 = 0.0, p3;
|
||||
template <class S, class T>
|
||||
inline void JacobiPolynomial (int n, S x, double alpha, double beta, T * values)
|
||||
{
|
||||
S p1 = 1.0, p2 = 0.0, p3;
|
||||
|
||||
if (n >= 0)
|
||||
p2 = values[0] = 1.0;
|
||||
if (n >= 1)
|
||||
p1 = values[1] = 0.5 * (2*(alpha+1)+(alpha+beta+2)*(x-1));
|
||||
if (n >= 0)
|
||||
p2 = values[0] = 1.0;
|
||||
if (n >= 1)
|
||||
p1 = values[1] = 0.5 * (2*(alpha+1)+(alpha+beta+2)*(x-1));
|
||||
|
||||
for (int i = 1; i < n; i++)
|
||||
{
|
||||
p3 = p2; p2=p1;
|
||||
p1 =
|
||||
1.0 / ( 2 * (i+1) * (i+alpha+beta+1) * (2*i+alpha+beta) ) *
|
||||
(
|
||||
( (2*i+alpha+beta+1)*(alpha*alpha-beta*beta) +
|
||||
(2*i+alpha+beta)*(2*i+alpha+beta+1)*(2*i+alpha+beta+2) * x)
|
||||
* p2
|
||||
- 2*(i+alpha)*(i+beta) * (2*i+alpha+beta+2) * p3
|
||||
);
|
||||
values[i+1] = p1;
|
||||
}
|
||||
}
|
||||
for (int i = 1; i < n; i++)
|
||||
{
|
||||
p3 = p2; p2=p1;
|
||||
p1 =
|
||||
1.0 / ( 2 * (i+1) * (i+alpha+beta+1) * (2*i+alpha+beta) ) *
|
||||
(
|
||||
( (2*i+alpha+beta+1)*(alpha*alpha-beta*beta) +
|
||||
(2*i+alpha+beta)*(2*i+alpha+beta+1)*(2*i+alpha+beta+2) * x)
|
||||
* p2
|
||||
- 2*(i+alpha)*(i+beta) * (2*i+alpha+beta+2) * p3
|
||||
);
|
||||
values[i+1] = p1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <class S, class St, class T>
|
||||
inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta, T * values)
|
||||
{
|
||||
/*
|
||||
S p1 = 1.0, p2 = 0.0, p3;
|
||||
template <class S, class St, class T>
|
||||
inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta, T * values)
|
||||
{
|
||||
/*
|
||||
S p1 = 1.0, p2 = 0.0, p3;
|
||||
|
||||
if (n >= 0) values[0] = 1.0;
|
||||
*/
|
||||
if (n >= 0) values[0] = 1.0;
|
||||
*/
|
||||
|
||||
S p1 = 1.0, p2 = 0.0, p3;
|
||||
S p1 = 1.0, p2 = 0.0, p3;
|
||||
|
||||
if (n >= 0)
|
||||
p2 = values[0] = 1.0;
|
||||
if (n >= 1)
|
||||
p1 = values[1] = 0.5 * (2*(alpha+1)*t+(alpha+beta+2)*(x-t));
|
||||
if (n >= 0)
|
||||
p2 = values[0] = 1.0;
|
||||
if (n >= 1)
|
||||
p1 = values[1] = 0.5 * (2*(alpha+1)*t+(alpha+beta+2)*(x-t));
|
||||
|
||||
for (int i=1; i < n; i++)
|
||||
{
|
||||
p3 = p2; p2=p1;
|
||||
p1 =
|
||||
1.0 / ( 2 * (i+1) * (i+alpha+beta+1) * (2*i+alpha+beta) ) *
|
||||
(
|
||||
( (2*i+alpha+beta+1)*(alpha*alpha-beta*beta) * t +
|
||||
(2*i+alpha+beta)*(2*i+alpha+beta+1)*(2*i+alpha+beta+2) * x)
|
||||
* p2
|
||||
- 2*(i+alpha)*(i+beta) * (2*i+alpha+beta+2) * t * t * p3
|
||||
);
|
||||
values[i+1] = p1;
|
||||
}
|
||||
}
|
||||
for (int i=1; i < n; i++)
|
||||
{
|
||||
p3 = p2; p2=p1;
|
||||
p1 =
|
||||
1.0 / ( 2 * (i+1) * (i+alpha+beta+1) * (2*i+alpha+beta) ) *
|
||||
(
|
||||
( (2*i+alpha+beta+1)*(alpha*alpha-beta*beta) * t +
|
||||
(2*i+alpha+beta)*(2*i+alpha+beta+1)*(2*i+alpha+beta+2) * x)
|
||||
* p2
|
||||
- 2*(i+alpha)*(i+beta) * (2*i+alpha+beta+2) * t * t * p3
|
||||
);
|
||||
values[i+1] = p1;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
@ -310,21 +310,21 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
/*
|
||||
if (n < 3) return;
|
||||
|
||||
int ndof = (n-1)*(n-2)/2;
|
||||
double h1[1000], h2[1000];
|
||||
double eps = 1e-4;
|
||||
int ndof = (n-1)*(n-2)/2;
|
||||
double h1[1000], h2[1000];
|
||||
double eps = 1e-4;
|
||||
|
||||
CalcTrigShape (n, x+eps, y, h1);
|
||||
CalcTrigShape (n, x-eps, y, h2);
|
||||
CalcTrigShape (n, x+eps, y, h1);
|
||||
CalcTrigShape (n, x-eps, y, h2);
|
||||
|
||||
for (int i = 0; i < ndof; i++)
|
||||
dshape[2*i] = (h1[i]-h2[i])/(2*eps);
|
||||
for (int i = 0; i < ndof; i++)
|
||||
dshape[2*i] = (h1[i]-h2[i])/(2*eps);
|
||||
|
||||
CalcTrigShape (n, x, y+eps, h1);
|
||||
CalcTrigShape (n, x, y-eps, h2);
|
||||
CalcTrigShape (n, x, y+eps, h1);
|
||||
CalcTrigShape (n, x, y-eps, h2);
|
||||
|
||||
for (int i = 0; i < ndof; i++)
|
||||
dshape[2*i+1] = (h1[i]-h2[i])/(2*eps);
|
||||
for (int i = 0; i < ndof; i++)
|
||||
dshape[2*i+1] = (h1[i]-h2[i])/(2*eps);
|
||||
*/
|
||||
}
|
||||
|
||||
@ -376,36 +376,36 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
}
|
||||
|
||||
/*
|
||||
double dshape1[6000];
|
||||
if (n < 3) return;
|
||||
double hvl[1000], hvr[1000];
|
||||
int nd = (n-1)*(n-2)/2;
|
||||
double dshape1[6000];
|
||||
if (n < 3) return;
|
||||
double hvl[1000], hvr[1000];
|
||||
int nd = (n-1)*(n-2)/2;
|
||||
|
||||
double eps = 1e-6;
|
||||
double eps = 1e-6;
|
||||
|
||||
CalcScaledTrigShape (n, x-eps, y, t, hvl);
|
||||
CalcScaledTrigShape (n, x+eps, y, t, hvr);
|
||||
for (int i = 0; i < nd; i++)
|
||||
CalcScaledTrigShape (n, x-eps, y, t, hvl);
|
||||
CalcScaledTrigShape (n, x+eps, y, t, hvr);
|
||||
for (int i = 0; i < nd; i++)
|
||||
dshape[3*i] = (hvr[i]-hvl[i])/(2*eps);
|
||||
|
||||
CalcScaledTrigShape (n, x, y-eps, t, hvl);
|
||||
CalcScaledTrigShape (n, x, y+eps, t, hvr);
|
||||
for (int i = 0; i < nd; i++)
|
||||
CalcScaledTrigShape (n, x, y-eps, t, hvl);
|
||||
CalcScaledTrigShape (n, x, y+eps, t, hvr);
|
||||
for (int i = 0; i < nd; i++)
|
||||
dshape[3*i+1] = (hvr[i]-hvl[i])/(2*eps);
|
||||
|
||||
CalcScaledTrigShape (n, x, y, t-eps, hvl);
|
||||
CalcScaledTrigShape (n, x, y, t+eps, hvr);
|
||||
for (int i = 0; i < nd; i++)
|
||||
CalcScaledTrigShape (n, x, y, t-eps, hvl);
|
||||
CalcScaledTrigShape (n, x, y, t+eps, hvr);
|
||||
for (int i = 0; i < nd; i++)
|
||||
dshape[3*i+2] = (hvr[i]-hvl[i])/(2*eps);
|
||||
*/
|
||||
|
||||
/*
|
||||
for (int i = 0; i < 3*nd; i++)
|
||||
for (int i = 0; i < 3*nd; i++)
|
||||
if (fabs (dshape[i]-dshape1[i]) > 1e-8 * fabs(dshape[i]) + 1e-6)
|
||||
{
|
||||
cerr
|
||||
cerr << "big difference: " << dshape1[i] << " != " << dshape[i] << endl;
|
||||
}
|
||||
{
|
||||
cerr
|
||||
cerr << "big difference: " << dshape1[i] << " != " << dshape[i] << endl;
|
||||
}
|
||||
*/
|
||||
}
|
||||
|
||||
@ -723,21 +723,21 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
edgecoeffs[edgecoeffsindex[segnr]] = Vec<3> (p3);
|
||||
|
||||
|
||||
// double dopt = 1e99;
|
||||
// double wopt = 0;
|
||||
// for (double w = 0; w <= 2; w += 0.0001)
|
||||
// {
|
||||
// Vec<3> v05 = 0.25 * Vec<3> (p1) + 0.5*w* Vec<3>(p3) + 0.25 * Vec<3> (p2);
|
||||
// v05 /= 1 + (w-1) * 0.5;
|
||||
// Point<3> p05 (v05), pp05(v05);
|
||||
// ref -> ProjectToEdge (pp05, seg.surfnr1, seg.surfnr2, seg.epgeominfo[0]);
|
||||
// double d = Dist (pp05, p05);
|
||||
// if (d < dopt)
|
||||
// {
|
||||
// wopt = w;
|
||||
// dopt = d;
|
||||
// }
|
||||
// }
|
||||
// double dopt = 1e99;
|
||||
// double wopt = 0;
|
||||
// for (double w = 0; w <= 2; w += 0.0001)
|
||||
// {
|
||||
// Vec<3> v05 = 0.25 * Vec<3> (p1) + 0.5*w* Vec<3>(p3) + 0.25 * Vec<3> (p2);
|
||||
// v05 /= 1 + (w-1) * 0.5;
|
||||
// Point<3> p05 (v05), pp05(v05);
|
||||
// ref -> ProjectToEdge (pp05, seg.surfnr1, seg.surfnr2, seg.epgeominfo[0]);
|
||||
// double d = Dist (pp05, p05);
|
||||
// if (d < dopt)
|
||||
// {
|
||||
// wopt = w;
|
||||
// dopt = d;
|
||||
// }
|
||||
// }
|
||||
|
||||
double wold = 1, w = 1, dw = 0.1;
|
||||
double dold = 1e99;
|
||||
@ -766,10 +766,10 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
// cout << "wopt = " << w << ", dopt = " << dold << endl;
|
||||
edgeweight[segnr] = w;
|
||||
|
||||
// cout << "p1 = " << p1 << ", tau1 = " << tau1 << ", alpha1 = " << sol(0) << endl;
|
||||
// cout << "p2 = " << p2 << ", tau2 = " << tau2 << ", alpha2 = " << -sol(1) << endl;
|
||||
// cout << "p+alpha tau = " << p1 + sol(0) * tau1
|
||||
// << " =?= " << p2 +sol(1) * tau2 << endl;
|
||||
// cout << "p1 = " << p1 << ", tau1 = " << tau1 << ", alpha1 = " << sol(0) << endl;
|
||||
// cout << "p2 = " << p2 << ", tau2 = " << tau2 << ", alpha2 = " << -sol(1) << endl;
|
||||
// cout << "p+alpha tau = " << p1 + sol(0) * tau1
|
||||
// << " =?= " << p2 +sol(1) * tau2 << endl;
|
||||
|
||||
}
|
||||
|
||||
@ -837,71 +837,71 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
PrintMessage (3, "Curving faces");
|
||||
|
||||
if (mesh.GetDimension() == 3)
|
||||
for (SurfaceElementIndex i = 0; i < mesh.GetNSE(); i++)
|
||||
{
|
||||
SetThreadPercent(double(i)/mesh.GetNSE()*100.);
|
||||
const Element2d & el = mesh[i];
|
||||
int facenr = top.GetSurfaceElementFace (i+1)-1;
|
||||
for (SurfaceElementIndex i = 0; i < mesh.GetNSE(); i++)
|
||||
{
|
||||
SetThreadPercent(double(i)/mesh.GetNSE()*100.);
|
||||
const Element2d & el = mesh[i];
|
||||
int facenr = top.GetSurfaceElementFace (i+1)-1;
|
||||
|
||||
if (el.GetType() == TRIG && order >= 3)
|
||||
{
|
||||
int fnums[] = { 0, 1, 2 };
|
||||
if (el[fnums[0]] > el[fnums[1]]) swap (fnums[0], fnums[1]);
|
||||
if (el[fnums[1]] > el[fnums[2]]) swap (fnums[1], fnums[2]);
|
||||
if (el[fnums[0]] > el[fnums[1]]) swap (fnums[0], fnums[1]);
|
||||
if (el.GetType() == TRIG && order >= 3)
|
||||
{
|
||||
int fnums[] = { 0, 1, 2 };
|
||||
if (el[fnums[0]] > el[fnums[1]]) swap (fnums[0], fnums[1]);
|
||||
if (el[fnums[1]] > el[fnums[2]]) swap (fnums[1], fnums[2]);
|
||||
if (el[fnums[0]] > el[fnums[1]]) swap (fnums[0], fnums[1]);
|
||||
|
||||
int order1 = faceorder[facenr];
|
||||
int ndof = max (0, (order1-1)*(order1-2)/2);
|
||||
int order1 = faceorder[facenr];
|
||||
int ndof = max (0, (order1-1)*(order1-2)/2);
|
||||
|
||||
Vector shape(ndof);
|
||||
DenseMatrix mat(ndof, ndof), inv(ndof, ndof),
|
||||
rhs(ndof, 3), sol(ndof, 3);
|
||||
Vector shape(ndof);
|
||||
DenseMatrix mat(ndof, ndof), inv(ndof, ndof),
|
||||
rhs(ndof, 3), sol(ndof, 3);
|
||||
|
||||
rhs = 0.0;
|
||||
mat = 0.0;
|
||||
rhs = 0.0;
|
||||
mat = 0.0;
|
||||
|
||||
for (int jx = 0; jx < xi.Size(); jx++)
|
||||
for (int jy = 0; jy < xi.Size(); jy++)
|
||||
{
|
||||
double y = xi[jy];
|
||||
double x = (1-y) * xi[jx];
|
||||
double lami[] = { x, y, 1-x-y };
|
||||
double wi = weight[jx]*weight[jy]*(1-y);
|
||||
for (int jx = 0; jx < xi.Size(); jx++)
|
||||
for (int jy = 0; jy < xi.Size(); jy++)
|
||||
{
|
||||
double y = xi[jy];
|
||||
double x = (1-y) * xi[jx];
|
||||
double lami[] = { x, y, 1-x-y };
|
||||
double wi = weight[jx]*weight[jy]*(1-y);
|
||||
|
||||
Point<2> xii (x, y);
|
||||
Point<3> p1, p2;
|
||||
CalcSurfaceTransformation (xii, i, p1);
|
||||
p2 = p1;
|
||||
ref -> ProjectToSurface (p2, mesh.GetFaceDescriptor(el.GetIndex()).SurfNr());
|
||||
Point<2> xii (x, y);
|
||||
Point<3> p1, p2;
|
||||
CalcSurfaceTransformation (xii, i, p1);
|
||||
p2 = p1;
|
||||
ref -> ProjectToSurface (p2, mesh.GetFaceDescriptor(el.GetIndex()).SurfNr());
|
||||
|
||||
Vec<3> dist = p2-p1;
|
||||
Vec<3> dist = p2-p1;
|
||||
|
||||
CalcTrigShape (order1, lami[fnums[1]]-lami[fnums[0]],
|
||||
1-lami[fnums[1]]-lami[fnums[0]], &shape(0));
|
||||
CalcTrigShape (order1, lami[fnums[1]]-lami[fnums[0]],
|
||||
1-lami[fnums[1]]-lami[fnums[0]], &shape(0));
|
||||
|
||||
for (int k = 0; k < ndof; k++)
|
||||
for (int l = 0; l < ndof; l++)
|
||||
mat(k,l) += wi * shape(k) * shape(l);
|
||||
for (int k = 0; k < ndof; k++)
|
||||
for (int l = 0; l < ndof; l++)
|
||||
mat(k,l) += wi * shape(k) * shape(l);
|
||||
|
||||
for (int k = 0; k < ndof; k++)
|
||||
for (int l = 0; l < 3; l++)
|
||||
rhs(k,l) += wi * shape(k) * dist(l);
|
||||
}
|
||||
for (int k = 0; k < ndof; k++)
|
||||
for (int l = 0; l < 3; l++)
|
||||
rhs(k,l) += wi * shape(k) * dist(l);
|
||||
}
|
||||
|
||||
// *testout << "mat = " << endl << mat << endl;
|
||||
// CalcInverse (mat, inv);
|
||||
// Mult (inv, rhs, sol);
|
||||
// *testout << "mat = " << endl << mat << endl;
|
||||
// CalcInverse (mat, inv);
|
||||
// Mult (inv, rhs, sol);
|
||||
|
||||
for (int i = 0; i < ndof; i++)
|
||||
for (int j = 0; j < 3; j++)
|
||||
sol(i,j) = rhs(i,j) / mat(i,i); // Orthogonal basis !
|
||||
for (int i = 0; i < ndof; i++)
|
||||
for (int j = 0; j < 3; j++)
|
||||
sol(i,j) = rhs(i,j) / mat(i,i); // Orthogonal basis !
|
||||
|
||||
int first = facecoeffsindex[facenr];
|
||||
for (int j = 0; j < ndof; j++)
|
||||
for (int k = 0; k < 3; k++)
|
||||
facecoeffs[first+j](k) = sol(j,k);
|
||||
}
|
||||
}
|
||||
int first = facecoeffsindex[facenr];
|
||||
for (int j = 0; j < ndof; j++)
|
||||
for (int k = 0; k < 3; k++)
|
||||
facecoeffs[first+j](k) = sol(j,k);
|
||||
}
|
||||
}
|
||||
|
||||
PrintMessage (3, "Complete");
|
||||
|
||||
@ -1232,7 +1232,7 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
const HPRefElement & hpref_el =
|
||||
(*mesh.hpelements) [mesh[elnr].hp_elnr];
|
||||
|
||||
// xi umrechnen
|
||||
// xi umrechnen
|
||||
double lami[4];
|
||||
FlatVector vlami(4, lami);
|
||||
vlami = 0;
|
||||
@ -1251,7 +1251,7 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
for (int l = 0; l < 2; l++)
|
||||
for (int i = 0; i < hpref_el.np; i++)
|
||||
trans(l,k) += hpref_el.param[i][l] * dlami(i, k);
|
||||
}
|
||||
}
|
||||
|
||||
Point<2> coarse_xi(0,0);
|
||||
for (int i = 0; i < hpref_el.np; i++)
|
||||
@ -1269,7 +1269,7 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
|
||||
|
||||
Vector shapes;
|
||||
DenseMatrix dshapes;
|
||||
MatrixFixWidth<2> dshapes;
|
||||
Array<Vec<3> > coefs;
|
||||
|
||||
const Element2d & el = mesh[elnr];
|
||||
@ -1359,7 +1359,7 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
const Element2d & el = mesh[info.elnr];
|
||||
|
||||
shapes.SetSize(info.ndof);
|
||||
shapes = 0;
|
||||
// shapes = 0;
|
||||
|
||||
if (rational && info.order >= 2)
|
||||
{
|
||||
@ -1457,8 +1457,8 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
|
||||
double mu[4] = {
|
||||
1 - xi(0) + 1 - xi(1),
|
||||
xi(0) + 1 - xi(1),
|
||||
xi(0) + xi(1),
|
||||
xi(0) + 1 - xi(1),
|
||||
xi(0) + xi(1),
|
||||
1 - xi(0) + xi(1),
|
||||
};
|
||||
|
||||
@ -1494,15 +1494,15 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
|
||||
|
||||
void CurvedElements ::
|
||||
CalcElementDShapes (SurfaceElementInfo & info, const Point<2> & xi, DenseMatrix & dshapes) const
|
||||
CalcElementDShapes (SurfaceElementInfo & info, const Point<2> & xi, MatrixFixWidth<2> & dshapes) const
|
||||
{
|
||||
const Element2d & el = mesh[info.elnr];
|
||||
ELEMENT_TYPE type = el.GetType();
|
||||
|
||||
double lami[4];
|
||||
|
||||
dshapes.SetSize(info.ndof,2);
|
||||
dshapes = 0;
|
||||
dshapes.SetSize(info.ndof);
|
||||
// dshapes = 0;
|
||||
|
||||
// *testout << "calcelementdshapes, info.ndof = " << info.ndof << endl;
|
||||
|
||||
@ -1536,7 +1536,7 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
w += (wi-1) * 2 * lami[edges[j][0]-1] * lami[edges[j][1]-1];
|
||||
for (int k = 0; k < 2; k++)
|
||||
dw[k] += 2*(wi-1) * (lami[edges[j][0]-1] * dlami[edges[j][1]-1][k] +
|
||||
lami[edges[j][1]-1] * dlami[edges[j][0]-1][k]);
|
||||
lami[edges[j][1]-1] * dlami[edges[j][0]-1][k]);
|
||||
}
|
||||
// shapes *= 1.0 / w;
|
||||
dshapes *= 1.0 / w;
|
||||
@ -1555,6 +1555,8 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
case TRIG:
|
||||
{
|
||||
dshapes(0,0) = 1;
|
||||
dshapes(0,1) = 0.0;
|
||||
dshapes(1,0) = 0.0;
|
||||
dshapes(1,1) = 1;
|
||||
dshapes(2,0) = -1;
|
||||
dshapes(2,1) = -1;
|
||||
@ -1681,15 +1683,15 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
|
||||
double shapes[4] = {
|
||||
(1-xi(0))*(1-xi(1)),
|
||||
xi(0) *(1-xi(1)),
|
||||
xi(0) * xi(1) ,
|
||||
xi(0) *(1-xi(1)),
|
||||
xi(0) * xi(1) ,
|
||||
(1-xi(0))* xi(1)
|
||||
};
|
||||
|
||||
double mu[4] = {
|
||||
1 - xi(0) + 1 - xi(1),
|
||||
xi(0) + 1 - xi(1),
|
||||
xi(0) + xi(1),
|
||||
xi(0) + 1 - xi(1),
|
||||
xi(0) + xi(1),
|
||||
1 - xi(0) + xi(1),
|
||||
};
|
||||
|
||||
@ -1731,22 +1733,22 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
}
|
||||
|
||||
/*
|
||||
*testout << "quad, dshape = " << endl << dshapes << endl;
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
Point<2> xil = xi, xir = xi;
|
||||
Vector shapesl(dshapes.Height()), shapesr(dshapes.Height());
|
||||
xil(i) -= 1e-6;
|
||||
xir(i) += 1e-6;
|
||||
CalcElementShapes (info, xil, shapesl);
|
||||
CalcElementShapes (info, xir, shapesr);
|
||||
*testout << "quad, dshape = " << endl << dshapes << endl;
|
||||
for (int i = 0; i < 2; i++)
|
||||
{
|
||||
Point<2> xil = xi, xir = xi;
|
||||
Vector shapesl(dshapes.Height()), shapesr(dshapes.Height());
|
||||
xil(i) -= 1e-6;
|
||||
xir(i) += 1e-6;
|
||||
CalcElementShapes (info, xil, shapesl);
|
||||
CalcElementShapes (info, xir, shapesr);
|
||||
|
||||
for (int j = 0; j < dshapes.Height(); j++)
|
||||
dshapes(j,i) = 1.0 / 2e-6 * (shapesr(j)-shapesl(j));
|
||||
}
|
||||
for (int j = 0; j < dshapes.Height(); j++)
|
||||
dshapes(j,i) = 1.0 / 2e-6 * (shapesr(j)-shapesl(j));
|
||||
}
|
||||
|
||||
*testout << "quad, num dshape = " << endl << dshapes << endl;
|
||||
*/
|
||||
*testout << "quad, num dshape = " << endl << dshapes << endl;
|
||||
*/
|
||||
break;
|
||||
}
|
||||
default:
|
||||
@ -1756,16 +1758,20 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <int DIM_SPACE>
|
||||
void CurvedElements ::
|
||||
GetCoefficients (SurfaceElementInfo & info, Array<Vec<3> > & coefs) const
|
||||
GetCoefficients (SurfaceElementInfo & info, Array<Vec<DIM_SPACE> > & coefs) const
|
||||
{
|
||||
const Element2d & el = mesh[info.elnr];
|
||||
coefs.SetSize (info.ndof);
|
||||
// coefs = Vec<3> (0,0,0);
|
||||
|
||||
for (int i = 0; i < info.nv; i++)
|
||||
coefs[i] = Vec<3> (mesh[el[i]]);
|
||||
{
|
||||
Vec<3> hv(mesh[el[i]]);
|
||||
for (int j = 0; j < DIM_SPACE; j++)
|
||||
coefs[i](j) = hv(j);
|
||||
}
|
||||
|
||||
if (info.order == 1) return;
|
||||
|
||||
@ -1776,16 +1782,23 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
int first = edgecoeffsindex[info.edgenrs[i]];
|
||||
int next = edgecoeffsindex[info.edgenrs[i]+1];
|
||||
for (int j = first; j < next; j++, ii++)
|
||||
coefs[ii] = edgecoeffs[j];
|
||||
for (int k = 0; k < DIM_SPACE; k++)
|
||||
coefs[ii](k) = edgecoeffs[j](k);
|
||||
}
|
||||
|
||||
int first = facecoeffsindex[info.facenr];
|
||||
int next = facecoeffsindex[info.facenr+1];
|
||||
for (int j = first; j < next; j++, ii++)
|
||||
coefs[ii] = facecoeffs[j];
|
||||
for (int k = 0; k < DIM_SPACE; k++)
|
||||
coefs[ii](k) = facecoeffs[j](k);
|
||||
}
|
||||
|
||||
|
||||
template void CurvedElements ::
|
||||
GetCoefficients<2> (SurfaceElementInfo & info, Array<Vec<2> > & coefs) const;
|
||||
|
||||
template void CurvedElements ::
|
||||
GetCoefficients<3> (SurfaceElementInfo & info, Array<Vec<3> > & coefs) const;
|
||||
|
||||
|
||||
|
||||
@ -1844,41 +1857,41 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
{
|
||||
if (mesh.coarsemesh)
|
||||
{
|
||||
const HPRefElement & hpref_el =
|
||||
(*mesh.hpelements) [mesh[elnr].hp_elnr];
|
||||
const HPRefElement & hpref_el =
|
||||
(*mesh.hpelements) [mesh[elnr].hp_elnr];
|
||||
|
||||
// xi umrechnen
|
||||
double lami[8];
|
||||
FlatVector vlami(8, lami);
|
||||
vlami = 0;
|
||||
mesh[elnr].GetShapeNew (xi, vlami);
|
||||
// xi umrechnen
|
||||
double lami[8];
|
||||
FlatVector vlami(8, lami);
|
||||
vlami = 0;
|
||||
mesh[elnr].GetShapeNew (xi, vlami);
|
||||
|
||||
Mat<3,3> trans, dxdxic;
|
||||
if (dxdxi)
|
||||
{
|
||||
MatrixFixWidth<3> dlami(8);
|
||||
dlami = 0;
|
||||
mesh[elnr].GetDShapeNew (xi, dlami);
|
||||
Mat<3,3> trans, dxdxic;
|
||||
if (dxdxi)
|
||||
{
|
||||
MatrixFixWidth<3> dlami(8);
|
||||
dlami = 0;
|
||||
mesh[elnr].GetDShapeNew (xi, dlami);
|
||||
|
||||
trans = 0;
|
||||
for (int k = 0; k < 3; k++)
|
||||
for (int l = 0; l < 3; l++)
|
||||
for (int i = 0; i < hpref_el.np; i++)
|
||||
trans(l,k) += hpref_el.param[i][l] * dlami(i, k);
|
||||
}
|
||||
trans = 0;
|
||||
for (int k = 0; k < 3; k++)
|
||||
for (int l = 0; l < 3; l++)
|
||||
for (int i = 0; i < hpref_el.np; i++)
|
||||
trans(l,k) += hpref_el.param[i][l] * dlami(i, k);
|
||||
}
|
||||
|
||||
Point<3> coarse_xi(0,0,0);
|
||||
for (int i = 0; i < hpref_el.np; i++)
|
||||
for (int j = 0; j < 3; j++)
|
||||
coarse_xi(j) += hpref_el.param[i][j] * lami[i];
|
||||
Point<3> coarse_xi(0,0,0);
|
||||
for (int i = 0; i < hpref_el.np; i++)
|
||||
for (int j = 0; j < 3; j++)
|
||||
coarse_xi(j) += hpref_el.param[i][j] * lami[i];
|
||||
|
||||
mesh.coarsemesh->GetCurvedElements().CalcElementTransformation (coarse_xi, hpref_el.coarse_elnr, x, &dxdxic /* , curved */);
|
||||
mesh.coarsemesh->GetCurvedElements().CalcElementTransformation (coarse_xi, hpref_el.coarse_elnr, x, &dxdxic /* , curved */);
|
||||
|
||||
if (dxdxi)
|
||||
*dxdxi = dxdxic * trans;
|
||||
if (dxdxi)
|
||||
*dxdxi = dxdxic * trans;
|
||||
|
||||
return;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
|
||||
Vector shapes;
|
||||
@ -2042,10 +2055,10 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
double z = xi(2);
|
||||
double lam4 = 1 - x - y - z;
|
||||
/*
|
||||
shapes(0) = xi(0);
|
||||
shapes(1) = xi(1);
|
||||
shapes(2) = xi(2);
|
||||
shapes(3) = 1-xi(0)-xi(1)-xi(2);
|
||||
shapes(0) = xi(0);
|
||||
shapes(1) = xi(1);
|
||||
shapes(2) = xi(2);
|
||||
shapes(3) = 1-xi(0)-xi(1)-xi(2);
|
||||
*/
|
||||
|
||||
shapes(0) = 2 * x * x - x;
|
||||
@ -2506,7 +2519,7 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
lami[fav[2]]-lami[fav[1]], lami[fav[0]],
|
||||
&dshapei(0,0));
|
||||
CalcTrigShape (forder, lami[fav[2]]-lami[fav[1]], lami[fav[0]],
|
||||
&shapei(0));
|
||||
&shapei(0));
|
||||
|
||||
Mat<2,2> trans;
|
||||
for (int j = 0; j < 2; j++)
|
||||
@ -2566,13 +2579,13 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
dshapes(4,0) = 0;
|
||||
dshapes(4,1) = 0;
|
||||
dshapes(4,2) = 1;
|
||||
/* old:
|
||||
vdshape[0] = Vec<3>( -(z1-y)/z1, -(z1-x)/z1, ((x+y+2*z-2)*z1+(z1-y)*(z1-x))/z2 );
|
||||
vdshape[1] = Vec<3>( (z1-y)/z1, -x/z1, (-x*z1+x*(z1-y))/z2 );
|
||||
vdshape[2] = Vec<3>( y/z1, x/z1, x*y/z2 );
|
||||
vdshape[3] = Vec<3>( -y/z1, (z1-x)/z1, (-y*z1+y*(z1-x))/z2 );
|
||||
vdshape[4] = Vec<3>( 0, 0, 1 );
|
||||
*/
|
||||
/* old:
|
||||
vdshape[0] = Vec<3>( -(z1-y)/z1, -(z1-x)/z1, ((x+y+2*z-2)*z1+(z1-y)*(z1-x))/z2 );
|
||||
vdshape[1] = Vec<3>( (z1-y)/z1, -x/z1, (-x*z1+x*(z1-y))/z2 );
|
||||
vdshape[2] = Vec<3>( y/z1, x/z1, x*y/z2 );
|
||||
vdshape[3] = Vec<3>( -y/z1, (z1-x)/z1, (-y*z1+y*(z1-x))/z2 );
|
||||
vdshape[4] = Vec<3>( 0, 0, 1 );
|
||||
*/
|
||||
break;
|
||||
}
|
||||
|
||||
@ -2632,28 +2645,28 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
}
|
||||
|
||||
/*
|
||||
DenseMatrix dshapes2 (info.ndof, 3);
|
||||
Vector shapesl(info.ndof);
|
||||
Vector shapesr(info.ndof);
|
||||
DenseMatrix dshapes2 (info.ndof, 3);
|
||||
Vector shapesl(info.ndof);
|
||||
Vector shapesr(info.ndof);
|
||||
|
||||
double eps = 1e-6;
|
||||
for (int i = 0; i < 3; i++)
|
||||
double eps = 1e-6;
|
||||
for (int i = 0; i < 3; i++)
|
||||
{
|
||||
Point<3> xl = xi;
|
||||
Point<3> xr = xi;
|
||||
Point<3> xl = xi;
|
||||
Point<3> xr = xi;
|
||||
|
||||
xl(i) -= eps;
|
||||
xr(i) += eps;
|
||||
CalcElementShapes (info, xl, shapesl);
|
||||
CalcElementShapes (info, xr, shapesr);
|
||||
xl(i) -= eps;
|
||||
xr(i) += eps;
|
||||
CalcElementShapes (info, xl, shapesl);
|
||||
CalcElementShapes (info, xr, shapesr);
|
||||
|
||||
for (int j = 0; j < info.ndof; j++)
|
||||
dshapes2(j,i) = (shapesr(j)-shapesl(j)) / (2*eps);
|
||||
for (int j = 0; j < info.ndof; j++)
|
||||
dshapes2(j,i) = (shapesr(j)-shapesl(j)) / (2*eps);
|
||||
}
|
||||
(*testout) << "dshapes = " << endl << dshapes << endl;
|
||||
(*testout) << "dshapes2 = " << endl << dshapes2 << endl;
|
||||
dshapes2 -= dshapes;
|
||||
(*testout) << "diff = " << endl << dshapes2 << endl;
|
||||
(*testout) << "dshapes = " << endl << dshapes << endl;
|
||||
(*testout) << "dshapes2 = " << endl << dshapes2 << endl;
|
||||
dshapes2 -= dshapes;
|
||||
(*testout) << "diff = " << endl << dshapes2 << endl;
|
||||
*/
|
||||
}
|
||||
|
||||
@ -2668,11 +2681,11 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
const Element & el = mesh[info.elnr];
|
||||
|
||||
/*
|
||||
coefs.SetSize (info.ndof);
|
||||
coefs = Vec<3> (0,0,0);
|
||||
coefs.SetSize (info.ndof);
|
||||
coefs = Vec<3> (0,0,0);
|
||||
*/
|
||||
/*
|
||||
for (int i = 0; i < info.ndof; i++)
|
||||
for (int i = 0; i < info.ndof; i++)
|
||||
coefs[i] = Vec<3> (0,0,0);
|
||||
*/
|
||||
for (int i = 0; i < info.nv; i++)
|
||||
@ -2746,7 +2759,7 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
const HPRefElement & hpref_el =
|
||||
(*mesh.hpelements) [mesh[elnr].hp_elnr];
|
||||
|
||||
// xi umrechnen
|
||||
// xi umrechnen
|
||||
double lami[4];
|
||||
FlatVector vlami(4, lami);
|
||||
|
||||
@ -2799,7 +2812,7 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
|
||||
|
||||
Vector shapes;
|
||||
DenseMatrix dshapes;
|
||||
MatrixFixWidth<2> dshapes;
|
||||
Array<Vec<3> > coefs;
|
||||
|
||||
|
||||
@ -2853,11 +2866,11 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
CalcElementDShapes (info, (*xi)[ip], dshapes);
|
||||
|
||||
/*
|
||||
(*dxdxi)[ip] = 0;
|
||||
for (int i = 0; i < coefs.Size(); i++)
|
||||
(*dxdxi)[ip] = 0;
|
||||
for (int i = 0; i < coefs.Size(); i++)
|
||||
for (int j = 0; j < 3; j++)
|
||||
for (int k = 0; k < 2; k++)
|
||||
(*dxdxi)[ip](j,k) += dshapes(i,k) * coefs[i](j);
|
||||
for (int k = 0; k < 2; k++)
|
||||
(*dxdxi)[ip](j,k) += dshapes(i,k) * coefs[i](j);
|
||||
*/
|
||||
|
||||
Mat<3,2> ds;
|
||||
@ -2871,6 +2884,181 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
template <int DIM_SPACE>
|
||||
void CurvedElements ::
|
||||
CalcMultiPointSurfaceTransformation (SurfaceElementIndex elnr, int npts,
|
||||
const double * xi, int sxi,
|
||||
double * x, int sx,
|
||||
double * dxdxi, int sdxdxi)
|
||||
{
|
||||
if (mesh.coarsemesh)
|
||||
{
|
||||
const HPRefElement & hpref_el =
|
||||
(*mesh.hpelements) [mesh[elnr].hp_elnr];
|
||||
|
||||
// xi umrechnen
|
||||
double lami[4];
|
||||
FlatVector vlami(4, lami);
|
||||
|
||||
ArrayMem<Point<2>, 50> coarse_xi (npts);
|
||||
|
||||
for (int pi = 0; pi < npts; pi++)
|
||||
{
|
||||
vlami = 0;
|
||||
Point<2> hxi(xi[pi*sxi], xi[pi*sxi+1]);
|
||||
mesh[elnr].GetShapeNew ( hxi, vlami);
|
||||
|
||||
Point<2> cxi(0,0);
|
||||
for (int i = 0; i < hpref_el.np; i++)
|
||||
for (int j = 0; j < 2; j++)
|
||||
cxi(j) += hpref_el.param[i][j] * lami[i];
|
||||
|
||||
coarse_xi[pi] = cxi;
|
||||
}
|
||||
|
||||
mesh.coarsemesh->GetCurvedElements().
|
||||
CalcMultiPointSurfaceTransformation<DIM_SPACE> (hpref_el.coarse_elnr, npts,
|
||||
&coarse_xi[0](0), &coarse_xi[1](0)-&coarse_xi[0](0),
|
||||
x, sx, dxdxi, sdxdxi);
|
||||
|
||||
Mat<2,2> trans;
|
||||
Mat<3,2> dxdxic;
|
||||
if (dxdxi)
|
||||
{
|
||||
MatrixFixWidth<2> dlami(4);
|
||||
dlami = 0;
|
||||
|
||||
for (int pi = 0; pi < npts; pi++)
|
||||
{
|
||||
Point<2> hxi(xi[pi*sxi], xi[pi*sxi+1]);
|
||||
mesh[elnr].GetDShapeNew ( hxi, dlami);
|
||||
|
||||
trans = 0;
|
||||
for (int k = 0; k < 2; k++)
|
||||
for (int l = 0; l < 2; l++)
|
||||
for (int i = 0; i < hpref_el.np; i++)
|
||||
trans(l,k) += hpref_el.param[i][l] * dlami(i, k);
|
||||
|
||||
Mat<DIM_SPACE,2> hdxdxic, hdxdxi;
|
||||
for (int k = 0; k < 2*DIM_SPACE; k++)
|
||||
hdxdxic(k) = dxdxi[pi*sdxdxi+k];
|
||||
|
||||
hdxdxi = hdxdxic * trans;
|
||||
|
||||
for (int k = 0; k < 2*DIM_SPACE; k++)
|
||||
dxdxi[pi*sdxdxi+k] = hdxdxi(k);
|
||||
|
||||
// dxdxic = (*dxdxi)[pi];
|
||||
// (*dxdxi)[pi] = dxdxic * trans;
|
||||
}
|
||||
}
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
Vector shapes;
|
||||
MatrixFixWidth<2> dshapes;
|
||||
Array<Vec<DIM_SPACE> > coefs;
|
||||
|
||||
|
||||
const Element2d & el = mesh[elnr];
|
||||
ELEMENT_TYPE type = el.GetType();
|
||||
|
||||
SurfaceElementInfo info;
|
||||
info.elnr = elnr;
|
||||
info.order = order;
|
||||
switch (type)
|
||||
{
|
||||
case TRIG : info.nv = 3; break;
|
||||
case QUAD : info.nv = 4; break;
|
||||
case TRIG6: info.nv = 6; break;
|
||||
default:
|
||||
cerr << "undef element in CalcMultPointSurfaceTrao" << endl;
|
||||
}
|
||||
info.ndof = info.nv;
|
||||
|
||||
if (info.order > 1)
|
||||
{
|
||||
const MeshTopology & top = mesh.GetTopology();
|
||||
|
||||
top.GetSurfaceElementEdges (elnr+1, info.edgenrs);
|
||||
for (int i = 0; i < info.edgenrs.Size(); i++)
|
||||
info.edgenrs[i]--;
|
||||
info.facenr = top.GetSurfaceElementFace (elnr+1)-1;
|
||||
|
||||
for (int i = 0; i < info.edgenrs.Size(); i++)
|
||||
info.ndof += edgecoeffsindex[info.edgenrs[i]+1] - edgecoeffsindex[info.edgenrs[i]];
|
||||
info.ndof += facecoeffsindex[info.facenr+1] - facecoeffsindex[info.facenr];
|
||||
}
|
||||
|
||||
GetCoefficients (info, coefs);
|
||||
|
||||
if (x)
|
||||
{
|
||||
for (int j = 0; j < npts; j++)
|
||||
{
|
||||
Point<2> vxi(xi[j*sxi], xi[j*sxi+1]);
|
||||
CalcElementShapes (info, vxi, shapes);
|
||||
|
||||
Point<DIM_SPACE> val = 0.0;
|
||||
for (int i = 0; i < coefs.Size(); i++)
|
||||
val += shapes(i) * coefs[i];
|
||||
|
||||
for (int k = 0; k < DIM_SPACE; k++)
|
||||
x[j*sx+k] = val(k);
|
||||
}
|
||||
}
|
||||
|
||||
if (dxdxi)
|
||||
{
|
||||
for (int j = 0; j < npts; j++)
|
||||
{
|
||||
Point<2> vxi(xi[j*sxi], xi[j*sxi+1]);
|
||||
CalcElementDShapes (info, vxi, dshapes);
|
||||
|
||||
Mat<DIM_SPACE,2> ds;
|
||||
ds = 0.0;
|
||||
for (int i = 0; i < coefs.Size(); i++)
|
||||
for (int j = 0; j < DIM_SPACE; j++)
|
||||
for (int k = 0; k < 2; k++)
|
||||
ds(j,k) += dshapes(i,k) * coefs[i](j);
|
||||
// (*dxdxi)[ip] = ds;
|
||||
|
||||
for (int k = 0; k < 2*DIM_SPACE; k++)
|
||||
dxdxi[j*sdxdxi+k] = ds(k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
template void CurvedElements ::
|
||||
CalcMultiPointSurfaceTransformation<2> (SurfaceElementIndex elnr, int npts,
|
||||
const double * xi, int sxi,
|
||||
double * x, int sx,
|
||||
double * dxdxi, int sdxdxi);
|
||||
|
||||
template void CurvedElements ::
|
||||
CalcMultiPointSurfaceTransformation<3> (SurfaceElementIndex elnr, int npts,
|
||||
const double * xi, int sxi,
|
||||
double * x, int sx,
|
||||
double * dxdxi, int sdxdxi);
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void CurvedElements ::
|
||||
CalcMultiPointElementTransformation (Array< Point<3> > * xi, ElementIndex elnr,
|
||||
Array< Point<3> > * x,
|
||||
@ -2881,7 +3069,7 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
const HPRefElement & hpref_el =
|
||||
(*mesh.hpelements) [mesh[elnr].hp_elnr];
|
||||
|
||||
// xi umrechnen
|
||||
// xi umrechnen
|
||||
double lami[8];
|
||||
FlatVector vlami(8, lami);
|
||||
|
||||
@ -2985,11 +3173,11 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
CalcElementDShapes (info, (*xi)[ip], dshapes);
|
||||
|
||||
/*
|
||||
(*dxdxi)[ip] = 0;
|
||||
for (int i = 0; i < coefs.Size(); i++)
|
||||
(*dxdxi)[ip] = 0;
|
||||
for (int i = 0; i < coefs.Size(); i++)
|
||||
for (int j = 0; j < 3; j++)
|
||||
for (int k = 0; k < 3; k++)
|
||||
(*dxdxi)[ip](j,k) += dshapes(i,k) * coefs[i](j);
|
||||
for (int k = 0; k < 3; k++)
|
||||
(*dxdxi)[ip](j,k) += dshapes(i,k) * coefs[i](j);
|
||||
*/
|
||||
|
||||
Mat<3,3> ds;
|
||||
@ -3017,7 +3205,7 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
const HPRefElement & hpref_el =
|
||||
(*mesh.hpelements) [mesh[elnr].hp_elnr];
|
||||
|
||||
// xi umrechnen
|
||||
// xi umrechnen
|
||||
double lami[8];
|
||||
FlatVector vlami(8, lami);
|
||||
|
||||
@ -3160,9 +3348,9 @@ inline void ScaledJacobiPolynomial (int n, S x, St t, double alpha, double beta,
|
||||
dxdxij(j,k) += dshapes(i,k) * coefs[i](j);
|
||||
|
||||
|
||||
for (int j = 0; j < 3; j++)
|
||||
for (int k = 0; k < 3; k++)
|
||||
dxdxi[ip*sdxdxi+3*j+k] = dxdxij(j,k);
|
||||
for (int j = 0; j < 3; j++)
|
||||
for (int k = 0; k < 3; k++)
|
||||
dxdxi[ip*sdxdxi+3*j+k] = dxdxij(j,k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -122,6 +122,13 @@ public:
|
||||
void CalcMultiPointSurfaceTransformation (Array< Point<2> > * xi, SurfaceElementIndex elnr,
|
||||
Array< Point<3> > * x,
|
||||
Array< Mat<3,2> > * dxdxi);
|
||||
|
||||
template <int DIM_SPACE>
|
||||
void CalcMultiPointSurfaceTransformation (SurfaceElementIndex elnr, int n,
|
||||
const double * xi, int sxi,
|
||||
double * x, int sx,
|
||||
double * dxdxi, int sdxdxi);
|
||||
|
||||
|
||||
void CalcMultiPointElementTransformation (Array< Point<3> > * xi, ElementIndex elnr,
|
||||
Array< Point<3> > * x,
|
||||
@ -200,8 +207,9 @@ private:
|
||||
};
|
||||
|
||||
void CalcElementShapes (SurfaceElementInfo & elinfo, const Point<2> & xi, Vector & shapes) const;
|
||||
void GetCoefficients (SurfaceElementInfo & elinfo, Array<Vec<3> > & coefs) const;
|
||||
void CalcElementDShapes (SurfaceElementInfo & elinfo, const Point<2> & xi, DenseMatrix & dshapes) const;
|
||||
template <int DIM_SPACE>
|
||||
void GetCoefficients (SurfaceElementInfo & elinfo, Array<Vec<DIM_SPACE> > & coefs) const;
|
||||
void CalcElementDShapes (SurfaceElementInfo & elinfo, const Point<2> & xi, MatrixFixWidth<2> & dshapes) const;
|
||||
};
|
||||
|
||||
|
||||
|
@ -10,7 +10,6 @@
|
||||
|
||||
|
||||
|
||||
|
||||
namespace netgen
|
||||
{
|
||||
|
||||
|
@ -929,43 +929,15 @@ void Ng_GetMultiElementTransformation (int ei, int n,
|
||||
double * dxdxi, int sdxdxi)
|
||||
{
|
||||
if (mesh->GetDimension() == 2)
|
||||
{
|
||||
for (int i = 0; i < n; i++)
|
||||
{
|
||||
Point<2> xl(xi[i*sxi], xi[i*sxi+1]);
|
||||
Point<3> xg;
|
||||
Mat<3,2> dx;
|
||||
|
||||
mesh->GetCurvedElements().CalcSurfaceTransformation (xl, ei-1, xg, dx);
|
||||
|
||||
if (x)
|
||||
{
|
||||
x[i*sx ] = xg(0);
|
||||
x[i*sx+1] = xg(1);
|
||||
}
|
||||
|
||||
if (dxdxi)
|
||||
{
|
||||
dxdxi[i*sdxdxi ] = dx(0,0);
|
||||
dxdxi[i*sdxdxi+1] = dx(0,1);
|
||||
dxdxi[i*sdxdxi+2] = dx(1,0);
|
||||
dxdxi[i*sdxdxi+3] = dx(1,1);
|
||||
}
|
||||
}
|
||||
}
|
||||
mesh->GetCurvedElements().CalcMultiPointSurfaceTransformation<2> (ei-1, n, xi, sxi, x, sx, dxdxi, sdxdxi);
|
||||
else
|
||||
{
|
||||
mesh->GetCurvedElements().CalcMultiPointElementTransformation (ei-1, n, xi, sxi, x, sx, dxdxi, sdxdxi);
|
||||
}
|
||||
mesh->GetCurvedElements().CalcMultiPointElementTransformation (ei-1, n, xi, sxi, x, sx, dxdxi, sdxdxi);
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
void Ng_GetSurfaceElementTransformation (int sei, const double * xi,
|
||||
double * x, double * dxdxi)
|
||||
{
|
||||
|
@ -124,3 +124,63 @@ template <> DLL_HEADER Ng_Element Ng_GetElement<3> (int nr)
|
||||
}
|
||||
|
||||
|
||||
|
||||
template <>
|
||||
DLL_HEADER void Ng_MultiElementTransformation<3,3> (int elnr, int npts,
|
||||
const double * xi, int sxi,
|
||||
double * x, int sx,
|
||||
double * dxdxi, int sdxdxi)
|
||||
{
|
||||
mesh->GetCurvedElements().CalcMultiPointElementTransformation (elnr, npts, xi, sxi, x, sx, dxdxi, sdxdxi);
|
||||
}
|
||||
|
||||
template <>
|
||||
DLL_HEADER void Ng_MultiElementTransformation<2,2> (int elnr, int npts,
|
||||
const double * xi, int sxi,
|
||||
double * x, int sx,
|
||||
double * dxdxi, int sdxdxi)
|
||||
{
|
||||
mesh->GetCurvedElements().CalcMultiPointSurfaceTransformation<2> (elnr, npts, xi, sxi, x, sx, dxdxi, sdxdxi);
|
||||
}
|
||||
|
||||
template <>
|
||||
DLL_HEADER void Ng_MultiElementTransformation<2,3> (int elnr, int npts,
|
||||
const double * xi, int sxi,
|
||||
double * x, int sx,
|
||||
double * dxdxi, int sdxdxi)
|
||||
{
|
||||
mesh->GetCurvedElements().CalcMultiPointSurfaceTransformation<3> (elnr, npts, xi, sxi, x, sx, dxdxi, sdxdxi);
|
||||
}
|
||||
|
||||
template <>
|
||||
DLL_HEADER void Ng_MultiElementTransformation<1,2> (int elnr, int npts,
|
||||
const double * xi, int sxi,
|
||||
double * x, int sx,
|
||||
double * dxdxi, int sdxdxi)
|
||||
{
|
||||
for (int ip = 0; ip < npts; ip++)
|
||||
{
|
||||
Point<3> xg;
|
||||
Vec<3> dx;
|
||||
|
||||
mesh->GetCurvedElements().CalcSegmentTransformation (xi[ip*sxi], elnr, xg, dx);
|
||||
|
||||
if (x)
|
||||
for (int i = 0; i < 2; i++)
|
||||
x[ip*sx+i] = xg(i);
|
||||
|
||||
if (dxdxi)
|
||||
for (int i=0; i<2; i++)
|
||||
dxdxi[ip*sdxdxi+i] = dx(i);
|
||||
}
|
||||
}
|
||||
|
||||
template <>
|
||||
DLL_HEADER void Ng_MultiElementTransformation<1,1> (int elnr, int npts,
|
||||
const double * xi, int sxi,
|
||||
double * x, int sx,
|
||||
double * dxdxi, int sdxdxi)
|
||||
{
|
||||
cout << "1D not supported" << endl;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user