Revert "Merge branch 'parallel_meshing' into 'master'"

This reverts commit d20a297cf1, reversing
changes made to fd50131a5b.
This commit is contained in:
Matthias Hochsteger 2021-06-29 19:38:19 +02:00
parent 1c526a5c9e
commit 65c5e2d244
17 changed files with 1084 additions and 1439 deletions

View File

@ -235,14 +235,13 @@ namespace ngcore
const function<void(TaskInfo&)> * func;
int mynr;
int total;
int producing_thread;
atomic<int> * endcnt;
TNestedTask () { ; }
TNestedTask (const function<void(TaskInfo&)> & _func,
int _mynr, int _total,
atomic<int> & _endcnt, int prod_tid)
: func(&_func), mynr(_mynr), total(_total), endcnt(&_endcnt), producing_thread(prod_tid)
atomic<int> & _endcnt)
: func(&_func), mynr(_mynr), total(_total), endcnt(&_endcnt)
{
;
}
@ -261,14 +260,12 @@ namespace ngcore
TPToken ptoken(taskqueue);
int num = endcnt;
auto tid = TaskManager::GetThreadId();
for (int i = 0; i < num; i++)
taskqueue.enqueue (ptoken, { afunc, i, num, endcnt, tid });
taskqueue.enqueue (ptoken, { afunc, i, num, endcnt });
}
bool TaskManager :: ProcessTask()
{
static Timer t("process task");
TNestedTask task;
TCToken ctoken(taskqueue);
@ -285,14 +282,8 @@ namespace ngcore
cout << "process nested, nr = " << ti.task_nr << "/" << ti.ntasks << endl;
}
*/
if(trace && task.producing_thread != ti.thread_nr)
trace->StartTask (ti.thread_nr, t, PajeTrace::Task::ID_TIMER, task.producing_thread);
(*task.func)(ti);
--*task.endcnt;
if(trace && task.producing_thread != ti.thread_nr)
trace->StopTask (ti.thread_nr, t);
return true;
}
return false;

View File

@ -1,51 +0,0 @@
#include <meshclass.hpp>
namespace netgen
{
inline unique_ptr<Mesh> GetOpenElements( const Mesh & m, int dom = 0 )
{
static Timer t("GetOpenElements"); RegionTimer rt(t);
auto mesh = make_unique<Mesh>();
*mesh = m;
Array<bool, PointIndex> interesting_points(mesh->GetNP());
interesting_points = false;
mesh->FindOpenElements(dom);
NgArray<Element2d> openelements;
openelements = mesh->OpenElements();
for (auto & el : openelements)
for (auto i : el.PNums())
interesting_points[i] = true;
for (auto & el : mesh->VolumeElements())
{
int num_interesting_points = 0;
for (auto pi : el.PNums())
if(interesting_points[pi])
num_interesting_points++;
if(num_interesting_points==0)
el.Delete();
el.SetIndex(num_interesting_points);
}
mesh->SetMaterial(1, "1_point");
mesh->SetMaterial(2, "2_points");
mesh->SetMaterial(3, "3_points");
mesh->SetMaterial(4, "4_points");
mesh->Compress();
mesh->ClearSurfaceElements();
for (auto & el : openelements)
mesh->AddSurfaceElement( el );
return mesh;
}
}

View File

@ -235,11 +235,9 @@ namespace netgen
NgArray<int> & freelist, SphereList & list,
IndexSet & insphere, IndexSet & closesphere, Array<DelaunayTet> & newels)
{
static Timer t("Meshing3::AddDelaunayPoint", NoTracing, NoTiming); RegionTimer reg(t);
static Timer tsearch("addpoint, search", NoTracing, NoTiming);
static Timer tfind("addpoint, find all tets", NoTracing, NoTiming);
static Timer tnewtets("addpoint, build new tets", NoTracing, NoTiming);
static Timer tinsert("addpoint, insert", NoTracing, NoTiming);
static Timer t("Meshing3::AddDelaunayPoint");// RegionTimer reg(t);
// static Timer tsearch("addpoint, search");
// static Timer tinsert("addpoint, insert");
/*
find any sphere, such that newp is contained in
@ -279,7 +277,7 @@ namespace netgen
}
*/
tsearch.Start();
// tsearch.Start();
double minquot{1e20};
tettree.GetFirstIntersecting
(newp, newp, [&](const auto pi)
@ -302,7 +300,7 @@ namespace netgen
}
return false;
} );
tsearch.Stop();
// tsearch.Stop();
if (cfelind == -1)
{
@ -310,7 +308,6 @@ namespace netgen
return;
}
tfind.Start();
/*
insphere: point is in sphere -> delete element
closesphere: point is close to sphere -> considered for same center
@ -402,8 +399,6 @@ namespace netgen
}
} // while (changed)
tfind.Stop();
tnewtets.Start();
newels.SetSize(0);
Element2d face(TRIG);
@ -558,11 +553,10 @@ namespace netgen
tpmax.SetToMax (*pp[k]);
}
tpmax = tpmax + 0.01 * (tpmax - tpmin);
tinsert.Start();
// tinsert.Start();
tettree.Insert (tpmin, tpmax, nelind);
tinsert.Stop();
// tinsert.Stop();
}
tnewtets.Stop();
}
@ -1633,20 +1627,20 @@ namespace netgen
// tempmesh.Save ("tempmesh.vol");
{
MeshOptimize3d meshopt(mp);
tempmesh.Compress();
tempmesh.FindOpenElements ();
RegionTaskManager rtm(mp.parallel_meshing ? mp.nthreads : 0);
for (auto i : Range(10))
for (int i = 1; i <= 4; i++)
{
PrintMessage (5, "Num open: ", tempmesh.GetNOpenElements());
tempmesh.FindOpenElements ();
PrintMessage (5, "Num open: ", tempmesh.GetNOpenElements());
tempmesh.CalcSurfacesOfNode ();
if(i%5==0)
tempmesh.FreeOpenElementsEnvironment (1);
MeshOptimize3d meshopt(mp);
// tempmesh.CalcSurfacesOfNode();
meshopt.SwapImprove(tempmesh, OPT_CONFORM);
}
tempmesh.Compress();
}
MeshQuality3d (tempmesh);

View File

@ -1,42 +1,15 @@
#ifndef FILE_IMPROVE2
#define FILE_IMPROVE2
inline void AppendEdges( const Element2d & elem, PointIndex pi, Array<std::tuple<PointIndex,PointIndex>> & edges )
{
for (int j = 0; j < 3; j++)
{
PointIndex pi0 = elem[j];
PointIndex pi1 = elem[(j+1)%3];
if (pi1 < pi0) Swap(pi0, pi1);
if(pi0==pi)
edges.Append(std::make_tuple(pi0, pi1));
}
}
inline void AppendEdges( const Element & elem, PointIndex pi, Array<std::tuple<PointIndex,PointIndex>> & edges )
{
static constexpr int tetedges[6][2] =
{ { 0, 1 }, { 0, 2 }, { 0, 3 },
{ 1, 2 }, { 1, 3 }, { 2, 3 } };
if(elem.flags.fixed)
return;
for (int j = 0; j < 6; j++)
{
PointIndex pi0 = elem[tetedges[j][0]];
PointIndex pi1 = elem[tetedges[j][1]];
if (pi1 < pi0) Swap(pi0, pi1);
if(pi0==pi)
edges.Append(std::make_tuple(pi0, pi1));
}
}
template<typename TINDEX>
void BuildEdgeList( const Mesh & mesh, const Table<TINDEX, PointIndex> & elementsonnode, Array<std::tuple<PointIndex, PointIndex>> & edges )
{
static_assert(is_same_v<TINDEX, ElementIndex>||is_same_v<TINDEX,SurfaceElementIndex>, "Invalid type for TINDEX");
static Timer tbuild_edges("Build edges"); RegionTimer reg(tbuild_edges);
static constexpr int tetedges[6][2] =
{ { 0, 1 }, { 0, 2 }, { 0, 3 },
{ 1, 2 }, { 1, 3 }, { 2, 3 } };
int ntasks = 4*ngcore::TaskManager::GetMaxThreads();
Array<Array<std::tuple<PointIndex,PointIndex>>> task_edges(ntasks);
@ -53,7 +26,29 @@ void BuildEdgeList( const Mesh & mesh, const Table<TINDEX, PointIndex> & element
const auto & elem = mesh[ei];
if (elem.IsDeleted()) continue;
AppendEdges(elem, pi, local_edges);
static_assert(is_same_v<TINDEX, ElementIndex>||is_same_v<TINDEX,SurfaceElementIndex>, "Invalid type for TINDEX");
if constexpr(is_same_v<TINDEX, SurfaceElementIndex>)
{
for (int j = 0; j < 3; j++)
{
PointIndex pi0 = elem[j];
PointIndex pi1 = elem[(j+1)%3];
if (pi1 < pi0) Swap(pi0, pi1);
if(pi0==pi)
local_edges.Append(std::make_tuple(pi0, pi1));
}
}
else if constexpr(is_same_v<TINDEX, ElementIndex>)
{
for (int j = 0; j < 6; j++)
{
PointIndex pi0 = elem[tetedges[j][0]];
PointIndex pi1 = elem[tetedges[j][1]];
if (pi1 < pi0) Swap(pi0, pi1);
if(pi0==pi)
local_edges.Append(std::make_tuple(pi0, pi1));
}
}
}
QuickSort(local_edges);

View File

@ -2717,24 +2717,8 @@ void MeshOptimize3d :: SwapImprove (Mesh & mesh, OPTIMIZEGOAL goal,
int ne = mesh.GetNE();
mesh.BuildBoundaryEdges(false);
BitArray free_points(mesh.GetNP()+PointIndex::BASE);
free_points.Clear();
ParallelForRange(mesh.VolumeElements().Range(), [&] (auto myrange)
{
for (ElementIndex eli : myrange)
{
const auto & el = mesh[eli];
if(el.flags.fixed)
continue;
for (auto pi : el.PNums())
if(!free_points[pi])
free_points.SetBitAtomic(pi);
}
});
auto elementsonnode = mesh.CreatePoint2ElementTable(free_points);
auto elementsonnode = mesh.CreatePoint2ElementTable();
NgArray<ElementIndex> hasbothpoints;
@ -2752,7 +2736,7 @@ void MeshOptimize3d :: SwapImprove (Mesh & mesh, OPTIMIZEGOAL goal,
const Element2d & hel = mesh.OpenElement(i);
INDEX_3 face(hel[0], hel[1], hel[2]);
face.Sort();
faces.Set (face, i);
faces.Set (face, 1);
}
}
@ -2771,8 +2755,6 @@ void MeshOptimize3d :: SwapImprove (Mesh & mesh, OPTIMIZEGOAL goal,
tloop.Start();
auto num_elements_before = mesh.VolumeElements().Range().Next();
ParallelForRange(Range(edges), [&] (auto myrange)
{
for(auto i : myrange)
@ -2804,30 +2786,6 @@ void MeshOptimize3d :: SwapImprove (Mesh & mesh, OPTIMIZEGOAL goal,
PrintMessage (5, cnt, " swaps performed");
if(goal == OPT_CONFORM)
{
// Remove open elements that were closed by new tets
auto & open_els = mesh.OpenElements();
for (auto & el : mesh.VolumeElements().Range( num_elements_before, mesh.VolumeElements().Range().Next() ))
{
for (auto i : Range(1,5))
{
Element2d sel;
el.GetFace(i, sel);
INDEX_3 face(sel[0], sel[1], sel[2]);
face.Sort();
if(faces.Used(face))
open_els[faces.Get(face)-1].Delete();
}
}
for(int i=open_els.Size()-1; i>=0; i--)
if(open_els[i].IsDeleted())
open_els.Delete(i);
mesh.DeleteBoundaryEdges();
}
mesh.Compress ();
multithread.task = savetask;

View File

@ -91,45 +91,6 @@ namespace netgen
delete root;
}
unique_ptr<LocalH> LocalH :: Copy ()
{
static Timer t("LocalH::Copy"); RegionTimer rt(t);
auto lh = make_unique<LocalH>(boundingbox, grading, dimension);
std::map<GradingBox*, GradingBox*> mapping;
lh->boxes.SetSize(boxes.Size());
for(auto i : boxes.Range())
{
lh->boxes[i] = new GradingBox();
auto & bnew = *lh->boxes[i];
auto & b = *boxes[i];
bnew.xmid[0] = b.xmid[0];
bnew.xmid[1] = b.xmid[1];
bnew.xmid[2] = b.xmid[2];
bnew.h2 = b.h2;
bnew.hopt = b.hopt;
bnew.flags = b.flags;
mapping[&b] = &bnew;
}
for(auto i : boxes.Range())
{
auto & bnew = *lh->boxes[i];
auto & b = *boxes[i];
for(auto k : Range(8))
{
if(b.childs[k])
bnew.childs[k] = mapping[b.childs[k]];
}
if(b.father)
bnew.father = mapping[b.father];
}
lh->root = mapping[root];
return lh;
}
void LocalH :: Delete ()
{
root->DeleteChilds();
@ -444,8 +405,8 @@ namespace netgen
void LocalH :: FindInnerBoxes (AdFront3 * adfront,
int (*testinner)(const Point3d & p1))
{
static Timer timer("LocalH::FindInnerBoxes");
RegionTimer reg (timer);
static int timer = NgProfiler::CreateTimer ("LocalH::FindInnerBoxes");
NgProfiler::RegionTimer reg (timer);
int nf = adfront->GetNF();
@ -851,7 +812,6 @@ namespace netgen
void LocalH :: GetOuterPoints (NgArray<Point<3> > & points)
{
static Timer t("LocalH::GetOuterPoints"); RegionTimer rt(t);
for (int i = 0; i < boxes.Size(); i++)
if (!boxes[i]->flags.isinner && !boxes[i]->flags.cutboundary)
points.Append ( boxes[i] -> PMid());

View File

@ -98,8 +98,6 @@ namespace netgen
~LocalH();
///
unique_ptr<LocalH> Copy();
///
void Delete();
///
void DoArchive(Archive& ar);

View File

@ -384,8 +384,6 @@ namespace netgen
volelements.Append (el);
}
volelements.Last().flags.illegal_valid = 0;
volelements.Last().flags.fixed = 0;
volelements.Last().flags.deleted = 0;
// while (volelements.Size() > eltyps.Size())
// eltyps.Append (FREEELEMENT);
@ -407,8 +405,6 @@ namespace netgen
volelements[ei] = el;
volelements[ei].flags.illegal_valid = 0;
volelements[ei].flags.fixed = 0;
volelements[ei].flags.deleted = 0;
}
@ -440,7 +436,6 @@ namespace netgen
void Mesh :: Save (ostream & outfile) const
{
static Timer timer("Mesh::Save"); RegionTimer rt(timer);
int i, j;
double scale = 1; // globflags.GetNumFlag ("scale", 1);
@ -2915,7 +2910,6 @@ namespace netgen
void Mesh :: FreeOpenElementsEnvironment (int layers)
{
static Timer timer("FreeOpenElementsEnvironment"); RegionTimer rt(timer);
int i, j, k;
PointIndex pi;
const int large = 9999;
@ -6576,8 +6570,6 @@ namespace netgen
[&](auto & table, ElementIndex ei)
{
const auto & el = (*this)[ei];
if(el.IsDeleted())
return;
for (PointIndex pi : el.PNums())
if(free_points[pi])
@ -6589,8 +6581,6 @@ namespace netgen
[&](auto & table, ElementIndex ei)
{
const auto & el = (*this)[ei];
if(el.IsDeleted())
return;
for (PointIndex pi : el.PNums())
table.Add (pi, ei);

View File

@ -487,8 +487,6 @@ namespace netgen
auto & OpenElements() const { return openelements; }
auto & OpenElements() { return openelements; }
/// are also quads open elements
bool HasOpenQuads () const;
@ -512,11 +510,6 @@ namespace netgen
return boundaryedges->Used (i2);
}
void DeleteBoundaryEdges ()
{
boundaryedges = nullptr;
}
bool IsSegment (PointIndex pi1, PointIndex pi2) const
{
INDEX_2 i2 (pi1, pi2);

View File

@ -1,6 +1,5 @@
#include <mystdlib.h>
#include "meshing.hpp"
#include "debugging.hpp"
namespace netgen
{
@ -11,405 +10,80 @@ namespace netgen
extern const char * pyramidrules2[];
extern const char * hexrules[];
struct MeshingData
// extern double teterrpow;
MESHING3_RESULT MeshVolume (const MeshingParameters & c_mp, Mesh& mesh3d)
{
int domain;
static Timer t("MeshVolume"); RegionTimer reg(t);
// mesh for one domain (contains all adjacent surface elments)
unique_ptr<Mesh> mesh;
// maps from local (domain) mesh to global mesh
Array<PointIndex, PointIndex> pmap;
Array<INDEX_2> connected_pairs;
MeshingParameters mp;
unique_ptr<Meshing3> meshing;
};
// extract surface meshes belonging to individual domains
Array<MeshingData> DivideMesh(Mesh & mesh, const MeshingParameters & mp)
{
static Timer timer("DivideMesh"); RegionTimer rt(timer);
Array<MeshingData> ret;
auto num_domains = mesh.GetNDomains();
ret.SetSize(num_domains);
if(num_domains==1 || mp.only3D_domain_nr)
{
// no need to divide mesh, just fill in meshing data
ret[0].domain = 1;
if(mp.only3D_domain_nr)
ret[0].domain = mp.only3D_domain_nr;
ret[0].mesh.reset(&mesh); // careful, this unique_ptr must not delete &mesh! (it will be released in MergeMeshes after meshing)
ret[0].mp = mp;
return ret;
}
Array<Array<PointIndex, PointIndex>> ipmap;
ipmap.SetSize(num_domains);
auto dim = mesh.GetDimension();
auto num_points = mesh.GetNP();
auto num_facedescriptors = mesh.GetNFD();
auto & identifications = mesh.GetIdentifications();
for(auto i : Range(ret))
{
auto & md = ret[i];
md.domain = i+1;
md.mp = mp;
md.mp.maxh = min2 (mp.maxh, mesh.MaxHDomain(md.domain));
ret[i].mesh = make_unique<Mesh>();
auto & m = *ret[i].mesh;
m.SetLocalH(mesh.GetLocalH());
ipmap[i].SetSize(num_points);
ipmap[i] = PointIndex::INVALID;
m.SetDimension( mesh.GetDimension() );
for(auto i : Range(1, num_facedescriptors+1))
m.AddFaceDescriptor( mesh.GetFaceDescriptor(i) );
}
// mark used points for each domain, add surface elements (with wrong point numbers) to domain mesh
for(const auto & sel : mesh.SurfaceElements())
{
const auto & fd = mesh.GetFaceDescriptor(sel.GetIndex());
int dom_in = fd.DomainIn();
int dom_out = fd.DomainOut();
for( auto dom : {dom_in, dom_out} )
{
if(dom==0)
continue;
auto & sels = ret[dom-1].mesh->SurfaceElements();
for(auto pi : sel.PNums())
ipmap[dom-1][pi] = 1;
sels.Append(sel);
}
}
// mark locked/fixed points for each domain TODO: domain bounding box to add only relevant points?
for(auto pi : mesh.LockedPoints())
for(auto i : Range(ret))
ipmap[i][pi] = 1;
// add used points to domain mesh, build point mapping
for(auto i : Range(ret))
{
auto & m = *ret[i].mesh;
auto & pmap = ret[i].pmap;
for(auto pi : Range(ipmap[i]))
if(ipmap[i][pi])
{
auto pi_new = m.AddPoint( mesh[pi] );
ipmap[i][pi] = pi_new;
pmap.Append( pi );
}
}
MeshingParameters mp = c_mp; // copy mp to change them here
int oldne;
int meshed;
NgArray<INDEX_2> connectednodes;
for(auto i : Range(ret))
if (!mesh3d.HasLocalHFunction()) mesh3d.CalcLocalH(mp.grading);
mesh3d.Compress();
// mesh3d.PrintMemInfo (cout);
if (mp.checkoverlappingboundary)
if (mesh3d.CheckOverlappingBoundary())
throw NgException ("Stop meshing since boundary mesh is overlapping");
int nonconsist = 0;
for (int k = 1; k <= mesh3d.GetNDomains(); k++)
{
auto & imap = ipmap[i];
auto & m = *ret[i].mesh;
if(mp.only3D_domain_nr && mp.only3D_domain_nr !=k)
continue;
PrintMessage (3, "Check subdomain ", k, " / ", mesh3d.GetNDomains());
for (auto & sel : m.SurfaceElements())
for(auto & pi : sel.PNums())
pi = imap[pi];
mesh3d.FindOpenElements(k);
for (int nr = 1; nr <= identifications.GetMaxNr(); nr++)
if (identifications.GetType(nr) != Identifications::PERIODIC)
{
identifications.GetPairs (nr, connectednodes);
for (auto pair : connectednodes)
{
auto pi0 = pair[0];
auto pi1 = pair[1];
if(imap[pi0].IsValid() && imap[pi1].IsValid())
ret[i].connected_pairs.Append({imap[pi0], imap[pi1]});
}
}
}
return ret;
}
void CloseOpenQuads( MeshingData & md)
{
auto & mesh = *md.mesh;
auto domain = md.domain;
MeshingParameters & mp = md.mp;
int oldne;
if (multithread.terminate)
return;
mesh.CalcSurfacesOfNode();
mesh.FindOpenElements(domain);
if (!mesh.GetNOpenElements())
return;
for (int qstep = 0; qstep <= 3; qstep++)
{
if (qstep == 0 && !mp.try_hexes) continue;
if (mesh.HasOpenQuads())
{
string rulefile = ngdir;
const char ** rulep = NULL;
switch (qstep)
{
case 0:
rulep = hexrules;
break;
case 1:
rulep = prismrules2;
break;
case 2: // connect pyramid to triangle
rulep = pyramidrules2;
break;
case 3: // connect to vis-a-vis point
rulep = pyramidrules;
break;
}
Meshing3 meshing(rulep);
MeshingParameters mpquad = mp;
mpquad.giveuptol = 15;
mpquad.baseelnp = 4;
mpquad.starshapeclass = 1000;
mpquad.check_impossible = qstep == 1; // for prisms only (air domain in trafo)
for (PointIndex pi : mesh.Points().Range())
meshing.AddPoint (mesh[pi], pi);
for (auto pair : md.connected_pairs)
meshing.AddConnectedPair (pair);
for (int i = 1; i <= mesh.GetNOpenElements(); i++)
{
Element2d hel = mesh.OpenElement(i);
meshing.AddBoundaryElement (hel);
}
oldne = mesh.GetNE();
meshing.GenerateMesh (mesh, mpquad);
for (int i = oldne + 1; i <= mesh.GetNE(); i++)
mesh.VolumeElement(i).SetIndex (domain);
(*testout)
<< "mesh has " << mesh.GetNE() << " prism/pyramid elements" << endl;
mesh.FindOpenElements(domain);
}
}
if (mesh.HasOpenQuads())
{
PrintSysError ("mesh has still open quads");
throw NgException ("Stop meshing since too many attempts");
// return MESHING3_GIVEUP;
}
}
void PrepareForBlockFillLocalH(MeshingData & md)
{
static Timer t("PrepareForBlockFillLocalH"); RegionTimer rt(t);
md.meshing = make_unique<Meshing3>(nullptr);
auto & mesh = *md.mesh;
mesh.CalcSurfacesOfNode();
mesh.FindOpenElements(md.domain);
for (PointIndex pi : mesh.Points().Range())
md.meshing->AddPoint (mesh[pi], pi);
for (int i = 1; i <= mesh.GetNOpenElements(); i++)
md.meshing->AddBoundaryElement (mesh.OpenElement(i));
if (mesh.HasLocalHFunction())
md.meshing->PrepareBlockFillLocalH(mesh, md.mp);
}
void MeshDomain( MeshingData & md)
{
auto & mesh = *md.mesh;
auto domain = md.domain;
MeshingParameters & mp = md.mp;
if (mp.delaunay && mesh.GetNOpenElements())
{
int oldne = mesh.GetNE();
md.meshing->Delaunay (mesh, domain, mp);
for (int i = oldne + 1; i <= mesh.GetNE(); i++)
mesh.VolumeElement(i).SetIndex (domain);
PrintMessage (3, mesh.GetNP(), " points, ",
mesh.GetNE(), " elements");
}
Box<3> domain_bbox( Box<3>::EMPTY_BOX );
for (auto & sel : mesh.SurfaceElements())
{
if (sel.IsDeleted() ) continue;
for (auto pi : sel.PNums())
domain_bbox.Add (mesh[pi]);
}
domain_bbox.Increase (0.01 * domain_bbox.Diam());
mesh.FindOpenElements(domain);
int cntsteps = 0;
int meshed;
if (mesh.GetNOpenElements())
do
{
if (multithread.terminate)
break;
mesh.FindOpenElements(domain);
PrintMessage (5, mesh.GetNOpenElements(), " open faces");
GetOpenElements( mesh, domain )->Save("open_"+ToString(cntsteps)+".vol");
cntsteps++;
if (cntsteps > mp.maxoutersteps)
throw NgException ("Stop meshing since too many attempts");
PrintMessage (1, "start tetmeshing");
Meshing3 meshing(tetrules);
Array<PointIndex, PointIndex> glob2loc(mesh.GetNP());
glob2loc = PointIndex::INVALID;
for (PointIndex pi : mesh.Points().Range())
if (domain_bbox.IsIn (mesh[pi]))
glob2loc[pi] = meshing.AddPoint (mesh[pi], pi);
for (auto sel : mesh.OpenElements() )
{
for(auto & pi : sel.PNums())
pi = glob2loc[pi];
meshing.AddBoundaryElement (sel);
}
int oldne = mesh.GetNE();
mp.giveuptol = 15 + 10 * cntsteps;
mp.sloppy = 5;
meshing.GenerateMesh (mesh, mp);
for (ElementIndex ei = oldne; ei < mesh.GetNE(); ei++)
mesh[ei].SetIndex (domain);
mesh.CalcSurfacesOfNode();
mesh.FindOpenElements(domain);
// teterrpow = 2;
if (mesh.GetNOpenElements() != 0)
{
meshed = 0;
PrintMessage (5, mesh.GetNOpenElements(), " open faces found");
MeshOptimize3d optmesh(mp);
const char * optstr = "mcmstmcmstmcmstmcm";
for (size_t j = 1; j <= strlen(optstr); j++)
{
mesh.CalcSurfacesOfNode();
mesh.FreeOpenElementsEnvironment(2);
mesh.CalcSurfacesOfNode();
switch (optstr[j-1])
{
case 'c': optmesh.CombineImprove(mesh, OPT_REST); break;
case 'd': optmesh.SplitImprove(mesh, OPT_REST); break;
case 's': optmesh.SwapImprove(mesh, OPT_REST); break;
case 't': optmesh.SwapImprove2(mesh, OPT_REST); break;
case 'm': mesh.ImproveMesh(mp, OPT_REST); break;
}
}
mesh.FindOpenElements();
PrintMessage (3, "Call remove problem");
// mesh.Save("before_remove.vol");
RemoveProblem (mesh, domain);
// mesh.Save("after_remove.vol");
mesh.FindOpenElements();
}
else
{
meshed = 1;
PrintMessage (1, "Success !");
}
}
while (!meshed);
{
PrintMessage (3, "Check subdomain ", domain, " / ", mesh.GetNDomains());
mesh.FindOpenElements(domain);
bool res = (mesh.CheckConsistentBoundary() != 0);
/*
bool res = mesh3d.CheckOverlappingBoundary();
if (res)
{
PrintError ("Surface is overlapping !!");
nonconsist = 1;
}
*/
bool res = (mesh3d.CheckConsistentBoundary() != 0);
if (res)
{
// mesh.Save("output.vol");
PrintError ("Surface mesh not consistent");
nonconsist = 1;
}
}
if (nonconsist)
{
PrintError ("Stop meshing since surface mesh not consistent");
throw NgException ("Stop meshing since surface mesh not consistent");
}
}
// OptimizeVolume( md.mp, mesh );
}
void MeshDomain(Mesh & mesh3d, const MeshingParameters & c_mp, int k, const Identifications & identifications)
double globmaxh = mp.maxh;
for (int k = 1; k <= mesh3d.GetNDomains(); k++)
{
MeshingParameters mp = c_mp; // copy mp to change them here
NgArray<INDEX_2> connectednodes;
int oldne;
int meshed;
if(mp.only3D_domain_nr && mp.only3D_domain_nr !=k)
return;
continue;
if (multithread.terminate)
return;
break;
PrintMessage (2, "");
PrintMessage (1, "Meshing subdomain ", k, " of ", mesh3d.GetNDomains());
(*testout) << "Meshing subdomain " << k << endl;
mp.maxh = min2 (mp.maxh, mesh3d.MaxHDomain(k));
mp.maxh = min2 (globmaxh, mesh3d.MaxHDomain(k));
mesh3d.CalcSurfacesOfNode();
mesh3d.FindOpenElements(k);
if (!mesh3d.GetNOpenElements())
return;
continue;
@ -480,13 +154,13 @@ namespace netgen
for (int i = 1; i <= connectednodes.Size(); i++)
meshing.AddConnectedPair (connectednodes.Get(i));
*/
// for (int nr = 1; nr <= identifications.GetMaxNr(); nr++)
// if (identifications.GetType(nr) != Identifications::PERIODIC)
// {
// identifications.GetPairs (nr, connectednodes);
// for (auto pair : connectednodes)
// meshing.AddConnectedPair (pair);
// }
for (int nr = 1; nr <= mesh3d.GetIdentifications().GetMaxNr(); nr++)
if (mesh3d.GetIdentifications().GetType(nr) != Identifications::PERIODIC)
{
mesh3d.GetIdentifications().GetPairs (nr, connectednodes);
for (auto pair : connectednodes)
meshing.AddConnectedPair (pair);
}
for (int i = 1; i <= mesh3d.GetNOpenElements(); i++)
{
@ -637,116 +311,9 @@ namespace netgen
PrintMessage (1, mesh3d.GetNP(), " points, ",
mesh3d.GetNE(), " elements");
{
if(mp.only3D_domain_nr && mp.only3D_domain_nr !=k)
return;
PrintMessage (3, "Check subdomain ", k, " / ", mesh3d.GetNDomains());
mesh3d.FindOpenElements(k);
bool res = (mesh3d.CheckConsistentBoundary() != 0);
if (res)
{
PrintError ("Surface mesh not consistent");
throw NgException ("Stop meshing since surface mesh not consistent");
}
}
}
void MergeMeshes( Mesh & mesh, Array<MeshingData> & md )
{
// todo: optimize: count elements, alloc all memory, copy vol elements in parallel
static Timer t("MergeMeshes"); RegionTimer rt(t);
if(md.Size()==1)
{
// assume that mesh was never divided, no need to do anything
if(&mesh != md[0].mesh.get())
throw Exception("Illegal Mesh pointer in MeshingData");
md[0].mesh.release();
return;
}
for(auto & m_ : md)
{
auto first_new_pi = m_.pmap.Range().Next();
auto & m = *m_.mesh;
Array<PointIndex, PointIndex> pmap(m.Points().Size());
for(auto pi : Range(PointIndex(PointIndex::BASE), first_new_pi))
pmap[pi] = m_.pmap[pi];
for (auto pi : Range(first_new_pi, m.Points().Range().Next()))
pmap[pi] = mesh.AddPoint(m[pi]);
for ( auto el : m.VolumeElements() )
{
for (auto i : Range(el.GetNP()))
el[i] = pmap[el[i]];
el.SetIndex(m_.domain);
mesh.AddVolumeElement(el);
}
}
}
void MergeMeshes( Mesh & mesh, FlatArray<Mesh> meshes, PointIndex first_new_pi )
{
// todo: optimize: count elements, alloc all memory, copy vol elements in parallel
static Timer t("MergeMeshes"); RegionTimer rt(t);
for(auto & m : meshes)
{
Array<PointIndex, PointIndex> pmap(m.Points().Size());
for(auto pi : Range(PointIndex(PointIndex::BASE), first_new_pi))
pmap[pi] = pi;
for (auto pi : Range(first_new_pi, m.Points().Range().Next()))
pmap[pi] = mesh.AddPoint(m[pi]);
for ( auto el : m.VolumeElements() )
{
for (auto i : Range(el.GetNP()))
el[i] = pmap[el[i]];
mesh.AddVolumeElement(el);
}
}
}
// extern double teterrpow;
MESHING3_RESULT MeshVolume (const MeshingParameters & mp, Mesh& mesh3d)
{
static Timer t("MeshVolume"); RegionTimer reg(t);
mesh3d.Compress();
if (mp.checkoverlappingboundary)
if (mesh3d.CheckOverlappingBoundary())
throw NgException ("Stop meshing since boundary mesh is overlapping");
if(mesh3d.GetNDomains()==0)
return MESHING3_OK;
// localh function is built for each domain separately in blockfill ( more efficient )
if (!mesh3d.HasLocalHFunction() && !mp.blockfill)
mesh3d.CalcLocalH(mp.grading);
auto md = DivideMesh(mesh3d, mp);
ParallelFor( md.Range(), [&](int i)
{
CloseOpenQuads( md[i] );
});
for(auto & md_ : md)
PrepareForBlockFillLocalH(md_);
ParallelFor( md.Range(), [&](int i)
{
MeshDomain(md[i]);
});
MergeMeshes(mesh3d, md);
mp.maxh = globmaxh;
MeshQuality3d (mesh3d);
@ -754,6 +321,325 @@ namespace netgen
}
/*
MESHING3_RESULT MeshVolumeOld (MeshingParameters & mp, Mesh& mesh3d)
{
int i, k, oldne;
int meshed;
int cntsteps;
PlotStatistics3d * pstat;
if (globflags.GetNumFlag("silentflag", 1) <= 2)
pstat = new XPlotStatistics3d;
else
pstat = new TerminalPlotStatistics3d;
cntsteps = 0;
do
{
cntsteps++;
if (cntsteps > mp.maxoutersteps)
{
return MESHING3_OUTERSTEPSEXCEEDED;
}
int noldp = mesh3d.GetNP();
if ( (cntsteps == 1) && globflags.GetDefineFlag ("delaunay"))
{
cntsteps ++;
mesh3d.CalcSurfacesOfNode();
for (k = 1; k <= mesh3d.GetNDomains(); k++)
{
Meshing3 meshing(NULL, pstat);
mesh3d.FindOpenElements(k);
for (i = 1; i <= noldp; i++)
meshing.AddPoint (mesh3d.Point(i), i);
for (i = 1; i <= mesh3d.GetNOpenElements(); i++)
{
if (mesh3d.OpenElement(i).GetIndex() == k)
meshing.AddBoundaryElement (mesh3d.OpenElement(i));
}
oldne = mesh3d.GetNE();
if (globflags.GetDefineFlag ("blockfill"))
{
if (!globflags.GetDefineFlag ("localh"))
meshing.BlockFill
(mesh3d, mp.h * globflags.GetNumFlag ("relblockfillh", 1));
else
meshing.BlockFillLocalH (mesh3d);
}
MeshingParameters mpd;
meshing.Delaunay (mesh3d, mpd);
for (i = oldne + 1; i <= mesh3d.GetNE(); i++)
mesh3d.VolumeElement(i).SetIndex (k);
}
}
noldp = mesh3d.GetNP();
mesh3d.CalcSurfacesOfNode();
mesh3d.FindOpenElements();
for (k = 1; k <= mesh3d.GetNDomains(); k++)
{
Meshing3 meshing(globflags.GetStringFlag ("rules3d", NULL), pstat);
Point3d pmin, pmax;
mesh3d.GetBox (pmin, pmax, k);
rot.SetCenter (Center (pmin, pmax));
for (i = 1; i <= noldp; i++)
meshing.AddPoint (mesh3d.Point(i), i);
for (i = 1; i <= mesh3d.GetNOpenElements(); i++)
{
if (mesh3d.OpenElement(i).GetIndex() == k)
meshing.AddBoundaryElement (mesh3d.OpenElement(i));
}
oldne = mesh3d.GetNE();
if ( (cntsteps == 1) && globflags.GetDefineFlag ("blockfill"))
{
if (!globflags.GetDefineFlag ("localh"))
{
meshing.BlockFill
(mesh3d,
mp.h * globflags.GetNumFlag ("relblockfillh", 1));
}
else
{
meshing.BlockFillLocalH (mesh3d);
}
}
mp.giveuptol = int(globflags.GetNumFlag ("giveuptol", 15));
meshing.GenerateMesh (mesh3d, mp);
for (i = oldne + 1; i <= mesh3d.GetNE(); i++)
mesh3d.VolumeElement(i).SetIndex (k);
}
mesh3d.CalcSurfacesOfNode();
mesh3d.FindOpenElements();
teterrpow = 2;
if (mesh3d.GetNOpenElements() != 0)
{
meshed = 0;
(*mycout) << "Open elements found, old" << endl;
const char * optstr = "mcmcmcmcm";
int j;
for (j = 1; j <= strlen(optstr); j++)
switch (optstr[j-1])
{
case 'c': mesh3d.CombineImprove(); break;
case 'd': mesh3d.SplitImprove(); break;
case 's': mesh3d.SwapImprove(); break;
case 'm': mesh3d.ImproveMesh(2); break;
}
(*mycout) << "Call remove" << endl;
RemoveProblem (mesh3d);
(*mycout) << "Problem removed" << endl;
}
else
meshed = 1;
}
while (!meshed);
MeshQuality3d (mesh3d);
return MESHING3_OK;
}
*/
/*
MESHING3_RESULT MeshMixedVolume(MeshingParameters & mp, Mesh& mesh3d)
{
int i, j;
MESHING3_RESULT res;
Point3d pmin, pmax;
mp.giveuptol = 10;
mp.baseelnp = 4;
mp.starshapeclass = 100;
// TerminalPlotStatistics3d pstat;
Meshing3 meshing1("pyramids.rls");
for (i = 1; i <= mesh3d.GetNP(); i++)
meshing1.AddPoint (mesh3d.Point(i), i);
mesh3d.FindOpenElements();
for (i = 1; i <= mesh3d.GetNOpenElements(); i++)
if (mesh3d.OpenElement(i).GetIndex() == 1)
meshing1.AddBoundaryElement (mesh3d.OpenElement(i));
res = meshing1.GenerateMesh (mesh3d, mp);
mesh3d.GetBox (pmin, pmax);
PrintMessage (1, "Mesh pyramids, res = ", res);
if (res)
exit (1);
for (i = 1; i <= mesh3d.GetNE(); i++)
mesh3d.VolumeElement(i).SetIndex (1);
// do delaunay
mp.baseelnp = 0;
mp.starshapeclass = 5;
Meshing3 meshing2(NULL);
for (i = 1; i <= mesh3d.GetNP(); i++)
meshing2.AddPoint (mesh3d.Point(i), i);
mesh3d.FindOpenElements();
for (i = 1; i <= mesh3d.GetNOpenElements(); i++)
if (mesh3d.OpenElement(i).GetIndex() == 1)
meshing2.AddBoundaryElement (mesh3d.OpenElement(i));
MeshingParameters mpd;
meshing2.Delaunay (mesh3d, mpd);
for (i = 1; i <= mesh3d.GetNE(); i++)
mesh3d.VolumeElement(i).SetIndex (1);
mp.baseelnp = 0;
mp.giveuptol = 10;
for (int trials = 1; trials <= 50; trials++)
{
if (multithread.terminate)
return MESHING3_TERMINATE;
Meshing3 meshing3("tetra.rls");
for (i = 1; i <= mesh3d.GetNP(); i++)
meshing3.AddPoint (mesh3d.Point(i), i);
mesh3d.FindOpenElements();
for (i = 1; i <= mesh3d.GetNOpenElements(); i++)
if (mesh3d.OpenElement(i).GetIndex() == 1)
meshing3.AddBoundaryElement (mesh3d.OpenElement(i));
if (trials > 1)
CheckSurfaceMesh2 (mesh3d);
res = meshing3.GenerateMesh (mesh3d, mp);
for (i = 1; i <= mesh3d.GetNE(); i++)
mesh3d.VolumeElement(i).SetIndex (1);
if (res == 0) break;
for (i = 1; i <= mesh3d.GetNE(); i++)
{
const Element & el = mesh3d.VolumeElement(i);
if (el.GetNP() != 4)
{
for (j = 1; j <= el.GetNP(); j++)
mesh3d.AddLockedPoint (el.PNum(j));
}
}
mesh3d.CalcSurfacesOfNode();
mesh3d.FindOpenElements();
MeshOptimize3d optmesh;
teterrpow = 2;
const char * optstr = "mcmcmcmcm";
for (j = 1; j <= strlen(optstr); j++)
switch (optstr[j-1])
{
case 'c': optmesh.CombineImprove(mesh3d, OPT_REST); break;
case 'd': optmesh.SplitImprove(mesh3d); break;
case 's': optmesh.SwapImprove(mesh3d); break;
case 'm': mesh3d.ImproveMesh(); break;
}
RemoveProblem (mesh3d);
}
PrintMessage (1, "Meshing tets, res = ", res);
if (res)
{
mesh3d.FindOpenElements();
PrintSysError (1, "Open elements: ", mesh3d.GetNOpenElements());
exit (1);
}
for (i = 1; i <= mesh3d.GetNE(); i++)
{
const Element & el = mesh3d.VolumeElement(i);
if (el.GetNP() != 4)
{
for (j = 1; j <= el.GetNP(); j++)
mesh3d.AddLockedPoint (el.PNum(j));
}
}
mesh3d.CalcSurfacesOfNode();
mesh3d.FindOpenElements();
MeshOptimize3d optmesh;
teterrpow = 2;
const char * optstr = "mcmcmcmcm";
for (j = 1; j <= strlen(optstr); j++)
switch (optstr[j-1])
{
case 'c': optmesh.CombineImprove(mesh3d, OPT_REST); break;
case 'd': optmesh.SplitImprove(mesh3d); break;
case 's': optmesh.SwapImprove(mesh3d); break;
case 'm': mesh3d.ImproveMesh(); break;
}
return MESHING3_OK;
}
*/
MESHING3_RESULT OptimizeVolume (const MeshingParameters & mp,
Mesh & mesh3d)
// const CSGeometry * geometry)

View File

@ -1094,107 +1094,23 @@ static int TestSameSide (const Point3d & p1, const Point3d & p2)
*/
void Meshing3 :: PrepareBlockFillLocalH (Mesh & mesh,
const MeshingParameters & mp)
{
static Timer t("Mesing3::PrepareBlockFillLocalH"); RegionTimer reg(t);
double filldist = mp.filldist;
// (*testout) << "blockfill local h" << endl;
// (*testout) << "rel filldist = " << filldist << endl;
PrintMessage (3, "blockfill local h");
adfront -> CreateTrees();
double maxh = 0;
for (int i = 1; i <= adfront->GetNF(); i++)
{
const MiniElement2d & el = adfront->GetFace(i);
for (int j = 1; j <= 3; j++)
{
const Point3d & p1 = adfront->GetPoint (el.PNumMod(j));
const Point3d & p2 = adfront->GetPoint (el.PNumMod(j+1));
double hi = Dist (p1, p2);
if (hi > maxh) maxh = hi;
}
}
if (mp.maxh < maxh) maxh = mp.maxh;
// auto loch_ptr = mesh.LocalHFunction().Copy();
// auto & loch = *loch_ptr;
auto & loch = mesh.LocalHFunction();
bool changed;
static Timer t1("loop1");
t1.Start();
do
{
loch.ClearFlags();
static Timer tbox("adfront-bbox");
tbox.Start();
for (int i = 1; i <= adfront->GetNF(); i++)
{
const MiniElement2d & el = adfront->GetFace(i);
Box<3> bbox (adfront->GetPoint (el[0]));
bbox.Add (adfront->GetPoint (el[1]));
bbox.Add (adfront->GetPoint (el[2]));
double filld = filldist * bbox.Diam();
bbox.Increase (filld);
loch.CutBoundary (bbox); // .PMin(), bbox.PMax());
}
tbox.Stop();
// locadfront = adfront;
loch.FindInnerBoxes (adfront, NULL);
npoints.SetSize(0);
loch.GetInnerPoints (npoints);
changed = false;
for (int i = 1; i <= npoints.Size(); i++)
{
if (loch.GetH(npoints.Get(i)) > 1.5 * maxh)
{
loch.SetH (npoints.Get(i), maxh);
changed = true;
}
}
}
while (changed);
t1.Stop();
}
void Meshing3 :: BlockFillLocalH (Mesh & mesh,
const MeshingParameters & mp)
{
static Timer t("Mesing3::BlockFillLocalH"); RegionTimer reg(t);
if (!mesh.HasLocalHFunction())
{
mesh.CalcLocalH(mp.grading);
PrepareBlockFillLocalH(mesh, mp);
}
double filldist = mp.filldist;
// (*testout) << "blockfill local h" << endl;
// (*testout) << "rel filldist = " << filldist << endl;
PrintMessage (3, "blockfill local h");
NgArray<Point<3> > npoints;
adfront -> CreateTrees();
Box<3> bbox ( Box<3>::EMPTY_BOX );
double maxh = 0;
@ -1228,6 +1144,44 @@ void Meshing3 :: BlockFillLocalH (Mesh & mesh,
if (mp.maxh < maxh) maxh = mp.maxh;
bool changed;
do
{
mesh.LocalHFunction().ClearFlags();
for (int i = 1; i <= adfront->GetNF(); i++)
{
const MiniElement2d & el = adfront->GetFace(i);
Box<3> bbox (adfront->GetPoint (el[0]));
bbox.Add (adfront->GetPoint (el[1]));
bbox.Add (adfront->GetPoint (el[2]));
double filld = filldist * bbox.Diam();
bbox.Increase (filld);
mesh.LocalHFunction().CutBoundary (bbox); // .PMin(), bbox.PMax());
}
// locadfront = adfront;
mesh.LocalHFunction().FindInnerBoxes (adfront, NULL);
npoints.SetSize(0);
mesh.LocalHFunction().GetInnerPoints (npoints);
changed = false;
for (int i = 1; i <= npoints.Size(); i++)
{
if (mesh.LocalHFunction().GetH(npoints.Get(i)) > 1.5 * maxh)
{
mesh.LocalHFunction().SetH (npoints.Get(i), maxh);
changed = true;
}
}
}
while (changed);
if (debugparam.slowchecks)
(*testout) << "Blockfill with points: " << endl;
for (int i = 1; i <= npoints.Size(); i++)
@ -1254,8 +1208,6 @@ void Meshing3 :: BlockFillLocalH (Mesh & mesh,
// find outer points
static Timer tloch2("build loch2");
tloch2.Start();
loch2.ClearFlags();
for (int i = 1; i <= adfront->GetNF(); i++)
@ -1293,7 +1245,6 @@ void Meshing3 :: BlockFillLocalH (Mesh & mesh,
// loch2.CutBoundary (pmin, pmax);
loch2.CutBoundary (Box<3> (pmin, pmax)); // pmin, pmax);
}
tloch2.Stop();
// locadfront = adfront;
loch2.FindInnerBoxes (adfront, NULL);

View File

@ -28,7 +28,6 @@ class Meshing3
NgArray<char*> problems;
/// tolerance criterion
double tolfak;
NgArray<Point<3> > npoints;
public:
///
Meshing3 (const string & rulefilename);
@ -64,7 +63,6 @@ public:
///
void BlockFill (Mesh & mesh, double gh);
///
void PrepareBlockFillLocalH (Mesh & mesh, const MeshingParameters & mp);
void BlockFillLocalH (Mesh & mesh, const MeshingParameters & mp);
/// uses points of adfront, and puts new elements into mesh

View File

@ -852,24 +852,13 @@ namespace netgen
{ _np = np; _typ = typ; _curved = is_curved; }
// ar & _np & _typ & index & _curved;
ar.DoPacked (_np, _typ, index, _curved);
if (ar.Input())
{
np = _np;
typ = ELEMENT_TYPE(_typ);
is_curved = _curved;
flags.marked = 1;
flags.badel = 0;
flags.reverse = 0;
flags.illegal = 0;
flags.illegal_valid = 0;
flags.badness_valid = 0;
flags.refflag = 1;
flags.strongrefflag = false;
flags.deleted = 0;
flags.fixed = 0;
}
{ np = _np; typ = ELEMENT_TYPE(_typ); is_curved = _curved; }
/*
for (size_t i = 0; i < np; i++)
ar & pnum[i];
*/
static_assert(sizeof(int) == sizeof (PointIndex));
ar.Do( (int*)&pnum[0], np);
}

View File

@ -134,7 +134,6 @@ void ResetStatus()
void PushStatus(const MyStr& s)
{
return;
msgstatus_stack.Append(new MyStr (s));
SetStatMsg(s);
threadpercent_stack.Append(0);
@ -142,7 +141,6 @@ void PushStatus(const MyStr& s)
void PushStatusF(const MyStr& s)
{
return;
msgstatus_stack.Append(new MyStr (s));
SetStatMsg(s);
threadpercent_stack.Append(0);
@ -151,7 +149,6 @@ void PushStatusF(const MyStr& s)
void PopStatus()
{
return;
if (msgstatus_stack.Size())
{
if (msgstatus_stack.Size() > 1)

View File

@ -15,6 +15,7 @@ def readData(a, files):
file=[]
for f in files:
for t in a[f]:
file.append(f)
if t['ne1d']>0:
ne1d.append(t['ne1d'])
if t['ne2d']>0:
@ -23,7 +24,6 @@ def readData(a, files):
ne3d.append(t['ne3d'])
if t['total_badness']>0.0:
bad.append(t['total_badness'])
file.append(f)
if 'angles_tet' in t:
amin.append(t['angles_tet'][0])
amax.append(t['angles_tet'][1])

File diff suppressed because it is too large Load Diff

View File

@ -87,13 +87,9 @@ def test_pickle_geom2d():
def test_pickle_mesh():
import netgen.csg as csg
geo1 = csg.CSGeometry()
geo2 = csg.CSGeometry()
geo = csg.CSGeometry()
brick = csg.OrthoBrick(csg.Pnt(-3,-3,-3), csg.Pnt(3,3,3))
geo2.Add(brick)
for geo in [geo1, geo2]:
mesh = geo.GenerateMesh(maxh=2)
mesh = geo.GenerateMesh(maxh=0.2)
assert geo == mesh.GetGeometry()
dump = pickle.dumps([geo,mesh])
geo2, mesh2 = pickle.loads(dump)