Fix CGNS reader for 2d meshes, cleanup

This commit is contained in:
Matthias Hochsteger 2020-07-15 13:31:16 +02:00
parent ec3d7c3ec9
commit 7058732e23

View File

@ -176,9 +176,11 @@ namespace netgen::cg
{ {
ZoneType_t zone_type; ZoneType_t zone_type;
int fn, base, zone; int fn, base, zone;
int nv, ne, first_mat, first_bc; int first_index_1d, first_index_2d, first_index_3d;
Array<int> materials; int nv=0, ne_1d=0, ne_2d=0, ne_3d=0;
Array<int> boundaries;
Array<string> names_1d, names_2d, names_3d;
string name; string name;
cgsize_t size[3]; cgsize_t size[3];
@ -200,7 +202,7 @@ namespace netgen::cg
solutions[si] = Solution{fn, base, zone, si+1}; solutions[si] = Solution{fn, base, zone, si+1};
} }
void ReadSolutions( std::vector<string> & sol_names, std::vector<Array<double>> & sol_values, std::vector<int> & sol_locations ) void ReadSolutions( int meshdim, std::vector<string> & sol_names, std::vector<Array<double>> & sol_values, std::vector<int> & sol_locations )
{ {
static Timer tall("CGNS::ReadSolutions"); RegionTimer rtall(tall); static Timer tall("CGNS::ReadSolutions"); RegionTimer rtall(tall);
for (auto & sol : solutions) for (auto & sol : solutions)
@ -208,6 +210,7 @@ namespace netgen::cg
for (auto fi : Range(sol.field_names.Size())) for (auto fi : Range(sol.field_names.Size()))
{ {
cgsize_t size = sol.n_points; cgsize_t size = sol.n_points;
size=0; // TODO: check if sol.point_type is a list or range, and handle appropriately
if(size==0) if(size==0)
{ {
switch(sol.location) switch(sol.location)
@ -216,7 +219,7 @@ namespace netgen::cg
size = nv; size = nv;
break; break;
case CellCenter: case CellCenter:
size = ne; size = (meshdim == 3 ? ne_3d : ne_2d);
break; break;
case FaceCenter: case FaceCenter:
case IFaceCenter: case IFaceCenter:
@ -228,7 +231,6 @@ namespace netgen::cg
} }
} }
size = size==0 ? nv : size;
auto values = Array<double>(size); auto values = Array<double>(size);
cgsize_t imin = 1UL; cgsize_t imin = 1UL;
@ -244,9 +246,9 @@ namespace netgen::cg
{ {
static Timer tall("CGNS::ReadMesh-Zone"); RegionTimer rtall(tall); static Timer tall("CGNS::ReadMesh-Zone"); RegionTimer rtall(tall);
static Timer tsection("CGNS::ReadMesh-Section"); static Timer tsection("CGNS::ReadMesh-Section");
first_mat = mesh.GetRegionNamesCD(0).Size(); first_index_1d = mesh.GetRegionNamesCD(2).Size();
first_bc = mesh.GetRegionNamesCD(1).Size(); first_index_2d = mesh.GetRegionNamesCD(1).Size();
ne = 0; first_index_3d = mesh.GetRegionNamesCD(0).Size();
Array<double> x(nv), y(nv), z(nv); Array<double> x(nv), y(nv), z(nv);
cgsize_t imin=1; cgsize_t imin=1;
@ -276,8 +278,10 @@ namespace netgen::cg
int nsections; int nsections;
cg_nsections(fn, base, zone, &nsections); cg_nsections(fn, base, zone, &nsections);
int bc = first_bc; int index_1d = first_index_1d;
int material = first_mat; int index_2d = first_index_2d;
int index_3d = first_index_3d;
for (auto section : Range(1,nsections+1)) for (auto section : Range(1,nsections+1))
{ {
RegionTimer rtsection(tsection); RegionTimer rtsection(tsection);
@ -288,8 +292,6 @@ namespace netgen::cg
cg_section_read(fn, base, zone, section, sec_name, &type, &start, &end, &nbndry, &parent_flag); cg_section_read(fn, base, zone, section, sec_name, &type, &start, &end, &nbndry, &parent_flag);
PrintMessage(4, "Read section ", section, " with name ", sec_name, " and element type ", cg_ElementTypeName(type)); PrintMessage(4, "Read section ", section, " with name ", sec_name, " and element type ", cg_ElementTypeName(type));
if(name == "Coil" && string(sec_name) == "Top")
continue;
string ngname{sec_name}; string ngname{sec_name};
@ -300,6 +302,7 @@ namespace netgen::cg
if(type==MIXED) if(type==MIXED)
{ {
bool have_1d_elements = false;
bool have_2d_elements = false; bool have_2d_elements = false;
bool have_3d_elements = false; bool have_3d_elements = false;
@ -327,40 +330,50 @@ namespace netgen::cg
if(dim==1) if(dim==1)
{ {
if(!have_1d_elements)
{
index_1d++;
have_1d_elements = true;
mesh.AddEdgeDescriptor(EdgeDescriptor{});
names_1d.Append(ngname);
}
auto el = ReadCGNSElement1D(type, vertices.Range(vi, vertices.Size())); auto el = ReadCGNSElement1D(type, vertices.Range(vi, vertices.Size()));
el.si = index_1d;
mesh.AddSegment(el); mesh.AddSegment(el);
vi += el.GetNP(); vi += el.GetNP();
ne_1d++;
} }
if(dim==2) if(dim==2)
{ {
if(!have_2d_elements) if(!have_2d_elements)
{ {
bc++; index_2d++;
have_2d_elements = true; have_2d_elements = true;
mesh.AddFaceDescriptor(FaceDescriptor(bc, 1, 0, 1)); mesh.AddFaceDescriptor(FaceDescriptor(index_2d, 1, 0, 1));
mesh.SetBCName(bc-1, ngname); names_2d.Append(ngname);
} }
auto el = ReadCGNSElement2D(type, vertices.Range(vi, vertices.Size())); auto el = ReadCGNSElement2D(type, vertices.Range(vi, vertices.Size()));
el.SetIndex(bc); el.SetIndex(index_2d);
mesh.AddSurfaceElement(el); mesh.AddSurfaceElement(el);
vi += el.GetNP(); vi += el.GetNP();
ne_2d++;
} }
if(dim==3) if(dim==3)
{ {
if(!have_3d_elements) if(!have_3d_elements)
{ {
material++; index_3d++;
have_3d_elements = true; have_3d_elements = true;
mesh.SetMaterial(material, ngname); names_3d.Append(ngname);
} }
auto el = ReadCGNSElement3D(type, vertices.Range(vi, vertices.Size())); auto el = ReadCGNSElement3D(type, vertices.Range(vi, vertices.Size()));
el.SetIndex(material); el.SetIndex(index_3d);
mesh.AddVolumeElement(el); mesh.AddVolumeElement(el);
vi += el.GetNP(); vi += el.GetNP();
ne++; ne_3d++;
} }
} }
} }
@ -381,48 +394,78 @@ namespace netgen::cg
if(dim==1) if(dim==1)
{ {
index_1d++;
mesh.AddEdgeDescriptor(EdgeDescriptor{});
names_1d.Append(ngname);
for(auto i : Range(ne_section)) for(auto i : Range(ne_section))
{ {
auto el = ReadCGNSElement1D(type, vertices.Range(np*i, np*(i+1))); auto el = ReadCGNSElement1D(type, vertices.Range(np*i, np*(i+1)));
el.si = index_1d;
mesh.AddSegment(el); mesh.AddSegment(el);
} }
ne_1d += ne_section;
} }
if(dim==2) if(dim==2)
{ {
bc++; index_2d++;
mesh.AddFaceDescriptor(FaceDescriptor(bc, 1, 0, 1)); mesh.AddFaceDescriptor(FaceDescriptor(index_2d, 1, 0, 1));
names_2d.Append(ngname);
for(auto i : Range(ne_section)) for(auto i : Range(ne_section))
{ {
auto el = ReadCGNSElement2D(type, vertices.Range(np*i, np*(i+1))); auto el = ReadCGNSElement2D(type, vertices.Range(np*i, np*(i+1)));
el.SetIndex(bc); el.SetIndex(index_2d);
mesh.AddSurfaceElement(el); mesh.AddSurfaceElement(el);
} }
mesh.SetBCName(bc-1, ngname); ne_2d += ne_section;
} }
if(dim==3) if(dim==3)
{ {
material++; index_3d++;
names_3d.Append(ngname);
for(auto i : Range(ne_section)) for(auto i : Range(ne_section))
{ {
auto el = ReadCGNSElement3D(type, vertices.Range(np*i, np*(i+1))); auto el = ReadCGNSElement3D(type, vertices.Range(np*i, np*(i+1)));
el.SetIndex(material); el.SetIndex(index_3d);
mesh.AddVolumeElement(el); mesh.AddVolumeElement(el);
} }
mesh.SetMaterial(material, ngname); ne_3d += ne_section;
ne += ne_section;
} }
} }
} }
} }
void SetNames( Mesh & mesh )
{
if(mesh.GetDimension() == 2)
{
for (auto i : Range(names_1d.Size()))
mesh.SetBCName(first_index_1d + i, names_1d[i]);
for (auto i : Range(names_2d.Size()))
mesh.SetMaterial(first_index_2d + i +1, names_2d[i]);
}
else
{
for (auto i : Range(names_1d.Size()))
mesh.SetCD2Name(first_index_1d + i +1, names_1d[i]);
for (auto i : Range(names_2d.Size()))
mesh.SetBCName(first_index_2d + i, names_2d[i]);
for (auto i : Range(names_3d.Size()))
mesh.SetMaterial(first_index_3d + i +1, names_3d[i]);
}
}
}; };
} }
namespace netgen namespace netgen
{ {
void ReadCGNSMesh (Mesh & mesh, const string & filename) int ReadCGNSMesh (Mesh & mesh, const string & filename, Array<unique_ptr<cg::Zone>> & zones)
{ {
mesh.SetDimension(3);
static Timer tall("CGNS::ReadMesh"); RegionTimer rtall(tall); static Timer tall("CGNS::ReadMesh"); RegionTimer rtall(tall);
int fn; int fn;
cg_open(filename.c_str(),CG_MODE_READ,&fn); cg_open(filename.c_str(),CG_MODE_READ,&fn);
@ -431,9 +474,6 @@ namespace netgen
int nzones; int nzones;
cg_nzones(fn, base, &nzones); cg_nzones(fn, base, &nzones);
int bc = 0;
int material = 0;
int n_vertices = 0; int n_vertices = 0;
for (auto zi : Range(1, nzones+1)) for (auto zi : Range(1, nzones+1))
{ {
@ -454,58 +494,41 @@ namespace netgen
PrintMessage(2, "skipping zone with type ", cg_ZoneTypeName(zone_type) ); PrintMessage(2, "skipping zone with type ", cg_ZoneTypeName(zone_type) );
continue; continue;
} }
cg::Zone zone(fn, base, zi); auto zone = make_unique<cg::Zone>(fn, base, zi);
zone.ReadMesh( mesh, points ); zone->ReadMesh( mesh, points );
zones.Append(std::move(zone));
} }
if(mesh.GetNE() == 0)
mesh.SetDimension(2);
for (auto & zone : zones)
zone->SetNames(mesh);
return fn;
}
void ReadCGNSMesh (Mesh & mesh, const string & filename)
{
Array<unique_ptr<cg::Zone>> zones;
int fn = ReadCGNSMesh(mesh, filename, zones);
cg_close(fn);
} }
// Reads mesh and solutions of .csns file // Reads mesh and solutions of .csns file
tuple<shared_ptr<Mesh>, vector<string>, vector<Array<double>>, vector<int>> ReadCGNSFile(string filename, int base) tuple<shared_ptr<Mesh>, vector<string>, vector<Array<double>>, vector<int>> ReadCGNSFile(string filename, int base)
{ {
static Timer tall("CGNS::ReadFile"); RegionTimer rtall(tall); static Timer tall("CGNS::ReadFile"); RegionTimer rtall(tall);
int fn;
cg_open(filename.c_str(),CG_MODE_READ,&fn);
int nbases;
cg_nbases(fn, &nbases);
int nzones;
cg_nzones(fn, base, &nzones);
auto mesh = make_shared<Mesh>(); auto mesh = make_shared<Mesh>();
Array<unique_ptr<cg::Zone>> zones;
int bc = 0; int fn = ReadCGNSMesh(*mesh, filename, zones);
int material = 0;
std::vector<string> names; std::vector<string> names;
std::vector<Array<double>> values; std::vector<Array<double>> values;
std::vector<int> locations; std::vector<int> locations;
int n_vertices = 0; for (auto & zone : zones)
for (auto zi : Range(1, nzones+1)) zone->ReadSolutions( mesh->GetDimension(), names, values, locations );
{
int size[3];
char name[100];
cg_zone_read(fn,base,zi, name, size);
n_vertices += size[0];
}
cg::PointTable points(2*n_vertices);
for (auto zi : Range(1, nzones+1))
{
ZoneType_t zone_type;
cg_zone_type(fn, base, zi, &zone_type);
if(zone_type != Unstructured )
{
clog << "skipping zone with type " << cg_ZoneTypeName(zone_type) << endl;
continue;
}
cg::Zone zone(fn, base, zi);
zone.ReadMesh( *mesh, points );
zone.ReadSolutions( names, values, locations );
}
cg_close(fn); cg_close(fn);
return std::make_tuple(mesh, names, values, locations); return std::make_tuple(mesh, names, values, locations);