mirror of
https://github.com/NGSolve/netgen.git
synced 2025-01-12 14:10:34 +05:00
PointInElement2d use newton in nonlinear quad, better startpoint for
Newton in trig
This commit is contained in:
parent
e8c4c6c4c7
commit
72a34f9fe1
@ -5288,6 +5288,32 @@ namespace netgen
|
||||
const Point3d & p3 = Point(el.PNum(3));
|
||||
const Point3d & p4 = Point(el.PNum(4));
|
||||
|
||||
if (el.GetOrder() > 1 || el.GetHpElnr() != -1) {
|
||||
netgen::Point<2> lam(0.5,0.5);
|
||||
Vec<3> rhs;
|
||||
Vec<2> deltalam;
|
||||
|
||||
netgen::Point<3> x;
|
||||
Mat<3,2> Jac;
|
||||
double delta = 1.;
|
||||
const int maxits = 30;
|
||||
int i = 0;
|
||||
while(delta > 1e-16 && i < maxits)
|
||||
{
|
||||
curvedelems->CalcSurfaceTransformation(lam,element-1,x,Jac);
|
||||
rhs = p - x;
|
||||
Jac.Solve(rhs,deltalam);
|
||||
lam += deltalam;
|
||||
delta = deltalam.Length2();
|
||||
i++;
|
||||
}
|
||||
if(i == maxits)
|
||||
return false;
|
||||
lami[0] = lam[0];
|
||||
lami[1] = lam[1];
|
||||
return true;
|
||||
}
|
||||
|
||||
// Coefficients of Bilinear Mapping from Ref-Elem to global Elem
|
||||
// X = a + b x + c y + d x y
|
||||
Vec3d a = p1;
|
||||
@ -5638,7 +5664,13 @@ namespace netgen
|
||||
|
||||
if (SurfaceElement(element).GetType() ==TRIG6 || curvedelems->IsSurfaceElementCurved(element-1))
|
||||
{
|
||||
netgen::Point<2> lam(1./3,1./3);
|
||||
// netgen::Point<2> lam(1./3,1./3);
|
||||
netgen::Point<2> lam(sol.X(), sol.Y());
|
||||
if(SurfaceElement(element).GetType() != TRIG6)
|
||||
{
|
||||
lam[0] = 1-sol.X()-sol.Y();
|
||||
lam[1] = sol.X();
|
||||
}
|
||||
Vec<3> rhs;
|
||||
Vec<2> deltalam;
|
||||
netgen::Point<3> x;
|
||||
|
Loading…
Reference in New Issue
Block a user