mirror of
https://github.com/NGSolve/netgen.git
synced 2024-12-26 05:50:32 +05:00
Merge branch 'elliptic_cone' into 'master'
Elliptic cone See merge request jschoeberl/netgen!79
This commit is contained in:
commit
a1d1df91b7
@ -1493,8 +1493,215 @@ namespace netgen
|
|||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
/// Elliptic Cone
|
||||||
|
/// Josephat Kalezhi (kalezhi@cbu.ac.zm)
|
||||||
|
/// February 21st, 2018
|
||||||
|
///
|
||||||
|
|
||||||
|
EllipticCone :: EllipticCone (const Point<3> & aa, const Vec<3> & avl,
|
||||||
|
const Vec<3> & avs, double ah, double avlr)
|
||||||
|
{
|
||||||
|
a = aa;
|
||||||
|
h = ah;
|
||||||
|
vlr = avlr;
|
||||||
|
|
||||||
|
if (avl.Length2() >= avs.Length2())
|
||||||
|
{
|
||||||
|
vl = avl;
|
||||||
|
vs = avs;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
vl = avs;
|
||||||
|
vs = avl;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
CalcData();
|
||||||
|
// Print (cout);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
Primitive * EllipticCone :: CreateDefault ()
|
||||||
|
{
|
||||||
|
return new EllipticCone (Point<3> (0,0,0), Vec<3> (1,0,0), Vec<3> (0,1,0), 1, 0.5);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void EllipticCone :: GetPrimitiveData (const char *& classname, Array<double> & coeffs) const
|
||||||
|
{
|
||||||
|
classname = "ellipticcone";
|
||||||
|
coeffs.SetSize (15);
|
||||||
|
coeffs.Elem(1) = a(0);
|
||||||
|
coeffs.Elem(2) = a(1);
|
||||||
|
coeffs.Elem(3) = a(2);
|
||||||
|
coeffs.Elem(4) = vl(0);
|
||||||
|
coeffs.Elem(5) = vl(1);
|
||||||
|
coeffs.Elem(6) = vl(2);
|
||||||
|
coeffs.Elem(7) = vs(0);
|
||||||
|
coeffs.Elem(8) = vs(1);
|
||||||
|
coeffs.Elem(9) = vs(2);
|
||||||
|
coeffs.Elem(10) = h;
|
||||||
|
coeffs.Elem(11) = vlr;
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void EllipticCone :: SetPrimitiveData (Array<double> & coeffs)
|
||||||
|
{
|
||||||
|
|
||||||
|
a(0) = coeffs.Elem(1);
|
||||||
|
a(1) = coeffs.Elem(2);
|
||||||
|
a(2) = coeffs.Elem(3);
|
||||||
|
vl(0) = coeffs.Elem(4);
|
||||||
|
vl(1) = coeffs.Elem(5);
|
||||||
|
vl(2) = coeffs.Elem(6);
|
||||||
|
vs(0) = coeffs.Elem(7);
|
||||||
|
vs(1) = coeffs.Elem(8);
|
||||||
|
vs(2) = coeffs.Elem(9);
|
||||||
|
h = coeffs.Elem(10);
|
||||||
|
vlr = coeffs.Elem(11);
|
||||||
|
CalcData();
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
void EllipticCone :: CalcData ()
|
||||||
|
{
|
||||||
|
Vec<3> nh = Cross(vl, vs);
|
||||||
|
nh.Normalize();
|
||||||
|
|
||||||
|
double lvl = vl.Length();
|
||||||
|
double lvs = vs.Length();
|
||||||
|
|
||||||
|
Vec<3> t1vec = lvl*(vlr -1)*(1/h)*nh;
|
||||||
|
|
||||||
|
Vec<3> va (a);
|
||||||
|
double t1 = lvl*(1 - (vlr -1)*(1/h)*(va*nh));
|
||||||
|
|
||||||
|
Vec<3> nvl = (1.0/lvl)*vl;
|
||||||
|
Vec<3> nvs = (1.0/lvs)*vs;
|
||||||
|
double ellipt2 = sqr(lvl/lvs);
|
||||||
|
|
||||||
|
cxx = nvl(0)*nvl(0) + ellipt2*nvs(0)*nvs(0) - t1vec(0)*t1vec(0);
|
||||||
|
cyy = nvl(1)*nvl(1) + ellipt2*nvs(1)*nvs(1) - t1vec(1)*t1vec(1);
|
||||||
|
czz = nvl(2)*nvl(2) + ellipt2*nvs(2)*nvs(2) - t1vec(2)*t1vec(2);
|
||||||
|
|
||||||
|
cxy = 2*(nvl(0)*nvl(1) + ellipt2*nvs(0)*nvs(1) - t1vec(0)*t1vec(1));
|
||||||
|
cxz = 2*(nvl(0)*nvl(2) + ellipt2*nvs(0)*nvs(2) - t1vec(0)*t1vec(2));
|
||||||
|
cyz = 2*(nvl(1)*nvl(2) + ellipt2*nvs(1)*nvs(2) - t1vec(1)*t1vec(2));
|
||||||
|
|
||||||
|
Vec<3> v = -2*((va*nvl)*nvl + ellipt2*(va*nvs)*nvs + t1*t1vec);
|
||||||
|
cx = v(0);
|
||||||
|
cy = v(1);
|
||||||
|
cz = v(2);
|
||||||
|
|
||||||
|
c1 = pow(va*nvl,2) + ellipt2*pow(va*nvs,2) - t1*t1;
|
||||||
|
|
||||||
|
double lvltop = vlr*lvl;
|
||||||
|
double minlvl = (lvl < lvltop) ? lvl : lvltop;
|
||||||
|
double maxlvl = max2( lvl,lvltop);
|
||||||
|
cxx /= maxlvl; cyy /= maxlvl; czz /= maxlvl;
|
||||||
|
cxy /= maxlvl; cxz /= maxlvl; cyz /= maxlvl;
|
||||||
|
cx /= maxlvl; cy /= maxlvl; cz /= maxlvl;
|
||||||
|
c1 /= maxlvl;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
INSOLID_TYPE EllipticCone :: BoxInSolid (const BoxSphere<3> & box) const
|
||||||
|
{
|
||||||
|
double rp, dist;
|
||||||
|
|
||||||
|
Vec<3> cv( box.Center());
|
||||||
|
Vec<3> nh = Cross(vl, vs);
|
||||||
|
nh.Normalize();
|
||||||
|
|
||||||
|
double lvl = vl.Length();
|
||||||
|
Vec<3> t1vec = lvl*(vlr -1)*(1/h)*nh;
|
||||||
|
Vec<3> va (a);
|
||||||
|
double t1 = lvl*(1 - (vlr -1)*(1/h)*(va*nh));
|
||||||
|
rp = cv*t1vec + t1;
|
||||||
|
double lvltop = vlr*lvl;
|
||||||
|
double maxlvl = max2( lvl,lvltop);
|
||||||
|
|
||||||
|
dist = sqrt( CalcFunctionValue(box.Center())*maxlvl + rp*rp) - rp;
|
||||||
|
|
||||||
|
if (dist - box.Diam() > 0) return IS_OUTSIDE;
|
||||||
|
if (dist + box.Diam() < 0) return IS_INSIDE;
|
||||||
|
return DOES_INTERSECT;
|
||||||
|
}
|
||||||
|
|
||||||
|
double EllipticCone :: HesseNorm () const
|
||||||
|
{
|
||||||
|
return 1.0/min(vs.Length2 (),vl.Length2());
|
||||||
|
}
|
||||||
|
|
||||||
|
double EllipticCone :: MaxCurvature () const
|
||||||
|
{
|
||||||
|
double a = vs.Length();
|
||||||
|
double b = vl.Length();
|
||||||
|
|
||||||
|
return max2(b/(a*a),a/(b*b));
|
||||||
|
}
|
||||||
|
|
||||||
|
double EllipticCone :: MaxCurvatureLoc (const Point<3> & c,
|
||||||
|
double rad) const
|
||||||
|
{
|
||||||
|
#ifdef JOACHIMxxx
|
||||||
|
cout << "max curv local" << endl;
|
||||||
|
return 0.02;
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// saubere Loesung wird noch notwendig !!!
|
||||||
|
double a = vs.Length();
|
||||||
|
double b = vl.Length();
|
||||||
|
return max2(b/(a*a),a/(b*b));
|
||||||
|
}
|
||||||
|
|
||||||
|
Point<3> EllipticCone :: GetSurfacePoint () const
|
||||||
|
{
|
||||||
|
return a + vl;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
void EllipticCone :: GetTriangleApproximation
|
||||||
|
(TriangleApproximation & tas,
|
||||||
|
const Box<3> & boundingbox, double facets) const
|
||||||
|
{
|
||||||
|
int i, j;
|
||||||
|
double lg, bg;
|
||||||
|
int n = int(facets) + 1;
|
||||||
|
|
||||||
|
Vec<3> nh = Cross(vl, vs);
|
||||||
|
nh.Normalize();
|
||||||
|
Vec<3> vh = h*nh;
|
||||||
|
|
||||||
|
double lvl = vl.Length();
|
||||||
|
double lvs = vs.Length();
|
||||||
|
Vec<3> nvl = (1.0/lvl)*vl;
|
||||||
|
Vec<3> nvs = (1.0/lvs)*vs;
|
||||||
|
|
||||||
|
for ( j = 0; j <= n; j++ )
|
||||||
|
for (i = 0; i <= n; i++)
|
||||||
|
{
|
||||||
|
lg = 2 *M_PI * double (i) /n;
|
||||||
|
bg = double(j) /n;
|
||||||
|
|
||||||
|
Point<3> p = a + (bg *vh)
|
||||||
|
+ (( lvl*(1 + (vlr -1)*bg) * cos(lg)) * nvl)
|
||||||
|
+ (( lvs*(1 + (vlr -1)*bg)* sin(lg) ) * nvs);
|
||||||
|
|
||||||
|
tas.AddPoint (p);
|
||||||
|
}
|
||||||
|
|
||||||
|
for ( j = 0; j < n; j++)
|
||||||
|
for ( i = 0; i < n; i++)
|
||||||
|
{
|
||||||
|
int pi = i + (n+1) * j;
|
||||||
|
tas.AddTriangle (TATriangle (0, pi, pi+1, pi+n+2));
|
||||||
|
tas.AddTriangle (TATriangle (0, pi, pi+n+2, pi+n+1));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
@ -365,10 +365,46 @@ namespace netgen
|
|||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
///
|
||||||
|
|
||||||
|
/// Elliptic Cone
|
||||||
|
/// Josephat Kalezhi (kalezhi@cbu.ac.zm)
|
||||||
|
/// February 21st, 2018
|
||||||
|
///
|
||||||
|
|
||||||
|
///
|
||||||
|
class EllipticCone : public QuadraticSurface
|
||||||
|
{
|
||||||
|
Point<3> a;
|
||||||
|
Vec<3> vl, vs;
|
||||||
|
double h, vlr;
|
||||||
|
|
||||||
|
public:
|
||||||
|
///
|
||||||
|
EllipticCone (const Point<3> & aa, const Vec<3> & avl,
|
||||||
|
const Vec<3> & avs, double ah, double avlr);
|
||||||
|
|
||||||
|
static Primitive * CreateDefault ();
|
||||||
|
virtual void GetPrimitiveData (const char *& classname, Array<double> & coeffs) const;
|
||||||
|
virtual void SetPrimitiveData (Array<double> & coeffs);
|
||||||
|
|
||||||
|
///
|
||||||
|
virtual INSOLID_TYPE BoxInSolid (const BoxSphere<3> & box) const;
|
||||||
|
///
|
||||||
|
virtual double HesseNorm () const;
|
||||||
|
virtual double MaxCurvature () const;
|
||||||
|
virtual double MaxCurvatureLoc (const Point<3> & /* c */ ,
|
||||||
|
double /* rad */) const;
|
||||||
|
///
|
||||||
|
virtual Point<3> GetSurfacePoint () const;
|
||||||
|
|
||||||
|
virtual void GetTriangleApproximation (TriangleApproximation & tas,
|
||||||
|
const Box<3> & bbox,
|
||||||
|
double facets) const;
|
||||||
|
|
||||||
|
private:
|
||||||
|
void CalcData();
|
||||||
|
};
|
||||||
|
|
||||||
|
|
||||||
/** Torus
|
/** Torus
|
||||||
|
@ -477,6 +477,15 @@ namespace netgen
|
|||||||
delete_them.Append(cone);
|
delete_them.Append(cone);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
else if(classname == "ellipticcone")
|
||||||
|
{
|
||||||
|
EllipticCone * ellipticcone = new EllipticCone(dummypoint,dummyvec,dummyvec,dummydouble,dummydouble);
|
||||||
|
|
||||||
|
ellipticcone->SetPrimitiveData(coeffs);
|
||||||
|
|
||||||
|
AddSurface(ellipticcone);
|
||||||
|
delete_them.Append(ellipticcone);
|
||||||
|
}
|
||||||
else if(classname == "extrusionface")
|
else if(classname == "extrusionface")
|
||||||
{
|
{
|
||||||
ExtrusionFace * ef =
|
ExtrusionFace * ef =
|
||||||
|
@ -39,6 +39,7 @@ namespace netgen
|
|||||||
{ TOK_SPHERE, "sphere" },
|
{ TOK_SPHERE, "sphere" },
|
||||||
{ TOK_CYLINDER, "cylinder" },
|
{ TOK_CYLINDER, "cylinder" },
|
||||||
{ TOK_CONE, "cone" },
|
{ TOK_CONE, "cone" },
|
||||||
|
{ TOK_ELLIPTICCONE, "ellipticcone" },
|
||||||
{ TOK_ELLIPTICCYLINDER, "ellipticcylinder" },
|
{ TOK_ELLIPTICCYLINDER, "ellipticcylinder" },
|
||||||
{ TOK_ELLIPSOID, "ellipsoid" },
|
{ TOK_ELLIPSOID, "ellipsoid" },
|
||||||
{ TOK_ORTHOBRICK, "orthobrick" },
|
{ TOK_ORTHOBRICK, "orthobrick" },
|
||||||
@ -327,7 +328,19 @@ namespace netgen
|
|||||||
return new Solid (surf);
|
return new Solid (surf);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
case TOK_ELLIPTICCONE:
|
||||||
|
{
|
||||||
|
Point<3> a;
|
||||||
|
Vec<3> vl, vs;
|
||||||
|
double h, vlr;
|
||||||
|
|
||||||
|
scan.ReadNext();
|
||||||
|
scan >> '(' >> a >> ';' >> vl >> ';' >> vs >> ';' >> h >>';' >> vlr >> ')';
|
||||||
|
|
||||||
|
OneSurfacePrimitive * surf = new EllipticCone ( a, vl, vs, h, vlr );
|
||||||
|
geom->AddSurfaces (surf);
|
||||||
|
return new Solid (surf);
|
||||||
|
}
|
||||||
|
|
||||||
case TOK_SPHERE:
|
case TOK_SPHERE:
|
||||||
{
|
{
|
||||||
|
@ -27,7 +27,7 @@ namespace netgen
|
|||||||
enum PRIMITIVE_TYPE
|
enum PRIMITIVE_TYPE
|
||||||
{
|
{
|
||||||
TOK_SPHERE = 1, TOK_CYLINDER, TOK_PLANE, TOK_ELLIPTICCYLINDER,
|
TOK_SPHERE = 1, TOK_CYLINDER, TOK_PLANE, TOK_ELLIPTICCYLINDER,
|
||||||
TOK_ELLIPSOID, TOK_CONE,
|
TOK_ELLIPSOID, TOK_CONE, TOK_ELLIPTICCONE,
|
||||||
TOK_ORTHOBRICK, TOK_POLYHEDRON,
|
TOK_ORTHOBRICK, TOK_POLYHEDRON,
|
||||||
TOK_TORUS,
|
TOK_TORUS,
|
||||||
TOK_TUBE, TOK_GENCYL, TOK_EXTRUSION, TOK_REVOLUTION,
|
TOK_TUBE, TOK_GENCYL, TOK_EXTRUSION, TOK_REVOLUTION,
|
||||||
|
@ -330,6 +330,23 @@ DLL_HEADER void ExportCSG(py::module &m)
|
|||||||
Solid * sol = new Solid(extr);
|
Solid * sol = new Solid(extr);
|
||||||
return make_shared<SPSolid> (sol);
|
return make_shared<SPSolid> (sol);
|
||||||
}));
|
}));
|
||||||
|
m.def("EllipticCone", [](const Point<3>& a, const Vec<3>& v, const Vec<3>& w,
|
||||||
|
double h, double r)
|
||||||
|
{
|
||||||
|
auto ellcone = new EllipticCone(a,v,w,h,r);
|
||||||
|
auto sol = new Solid(ellcone);
|
||||||
|
return make_shared<SPSolid>(sol);
|
||||||
|
}, py::arg("a"), py::arg("vl"), py::arg("vs"), py::arg("h"), py::arg("r"),
|
||||||
|
R"raw_string(
|
||||||
|
An elliptic cone, given by the point 'a' at the base of the cone along the main axis,
|
||||||
|
the vectors v and w of the long and short axis of the ellipse, respectively,
|
||||||
|
the height of the cone, h, and ratio of base long axis length to top long axis length, r
|
||||||
|
|
||||||
|
Note: The elliptic cone has to be truncated by planes similar to a cone or an elliptic cylinder.
|
||||||
|
When r =1, the truncated elliptic cone becomes an elliptic cylinder.
|
||||||
|
When r tends to zero, the truncated elliptic cone tends to a full elliptic cone.
|
||||||
|
However, when r = 0, the top part becomes a point(tip) and meshing fails!
|
||||||
|
)raw_string");
|
||||||
|
|
||||||
m.def ("Or", FunctionPointer([](shared_ptr<SPSolid> s1, shared_ptr<SPSolid> s2)
|
m.def ("Or", FunctionPointer([](shared_ptr<SPSolid> s1, shared_ptr<SPSolid> s2)
|
||||||
{
|
{
|
||||||
|
21
tutorials/ellipticcone.geo
Normal file
21
tutorials/ellipticcone.geo
Normal file
@ -0,0 +1,21 @@
|
|||||||
|
#
|
||||||
|
## An elliptic cone
|
||||||
|
#
|
||||||
|
|
||||||
|
# An elliptic cone, given by the point c = (c x , c y , c z ) at the base of the cone along the main axis,
|
||||||
|
# the vectors v and w of the long and short axis of the ellipse, respectively,
|
||||||
|
# the height of the cone, h, and ratio of base long axis length to top long axis length, r:
|
||||||
|
# ellipticcone (c x , c y , c z ; v x , v y , v z ; w x , w y , w z; h; r)
|
||||||
|
|
||||||
|
# Note: The elliptic cone has to be truncated by planes similar to a cone or an elliptic cylinder.
|
||||||
|
# When r =1, the truncated elliptic cone becomes an elliptic cylinder.
|
||||||
|
# When r tends to zero, the truncated elliptic cone tends to a full elliptic cone.
|
||||||
|
# However, when r = 0, the top part becomes a point(tip) and meshing fails!
|
||||||
|
|
||||||
|
algebraic3d
|
||||||
|
|
||||||
|
solid cutcone = ellipticcone ( 0, 0, 0; 5, 0, 0; 0, 2, 0; 5; 0.5)
|
||||||
|
and plane (0, 0, 0; 0, 0, -1)
|
||||||
|
and plane (0, 0, 5; 0, 0, 1);
|
||||||
|
|
||||||
|
tlo cutcone;
|
Loading…
Reference in New Issue
Block a user